智能伺服系统简介

合集下载

伺 服 系 统

伺 服 系 统

图4-1 伺服系统的基本结构
1.2 伺服系统的工作原理
伺服系统是以机械运动为驱动设备,电机为控制对象,以控制器为核心, 以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的 电气传动自动控制系统。这类系统控制电机的转矩、转速和转角,将电 能转换为机械能,实现驱动机械的运动要求。具体在数控机床中,伺服 系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由 电机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通 过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户 所要求的复杂形状的工件。
1.3 伺服系统的类型
一、开伺服系统
数控装置
步进电机
机床工作台
图4-2 开环伺服系统
二、闭环伺服系统
位置比较 速度比较
伺服 电机
速度反馈 位置反馈
图4-3 闭环伺服系统
测量元件
三、半闭环伺服系统
位置比较
速度比较
伺服电机
机床工作台
测速机 旋变
图4-4 半闭环系统
伺服系统
伺服驱动系统(Servo System)简称伺服系统,是一种以机械 位置或角度作为控制对象的自动控制系统。
1.1 伺服系统的结构
从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、 反馈装置和电机,如图4-1所示。控制器按照数控系统的给定值和通过反 馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的 主回路,一方面按控制量的大小将电网中的电能作用到电机之上,调节 电机转矩的大小,另一方面按电机的要求把恒压恒频的电网供电转换为 电机所需的交流电或直流电;电机则按供电大小拖动机械运转。

伺服系统基本概述

伺服系统基本概述

第一节:伺服系统基本概述
如果说整个系统的可靠性主要取决于数控装置 的话,那么,驱动系统的性能,在较大程度上 决定了现代数控机床的性能,数控机床的最大 移动速度、定位精度等指标主要取决于驱动系 统及CNC位置控制部分的动态和静态性能。另 外,对某些加工中心而言,刀库驱动也可认为 是数控机床的某一伺服轴,用以控制刀库中刀 具的定位。
在数控机床中,由计算机发出指令脉冲,让哪 一个驱动电动机拖着工作台动,这一台电动机就 动,而且这台电动机的运动速度、运动的距离, 完全按着计算机的指令行事,非常准确无误地完 成指令要求的任务。
第一节:伺服系统基本概述
很显然,伺服系统所以能作到这一点,也是非 常不容易的。因为电动机拖着一个重量很重的 工作台,而且摩擦力随着季节、新旧程度、润 滑状态等因素而变化,控制了一个稳定速度, 精确定位,可以想象其难度之大。
高精度的机床为了保证尺寸精度和表面粗糙度的水 平,
第一节:伺服系统基本概述
数控机床的进给系统,实际上是一个位置 随动系统。同任何一个位置随动系统一样,
当指令位移以某一速度变化时,实际位移必 须比指令位移滞后,这就是所谓跟随误差、, 当数控机床的各坐标轴以不同的速度和不同 的方向同时位移时,跟随误差就会造成加工 尺寸和形状的误差。
该系统主要用于精度要求很高的镗铣床、超精车 床、超精磨床以及较大型的数控机床等。
第一节:伺服系统基本概述
2.按使用的执行元件分类
(1)电液伺服系统 电液脉冲马达和电液伺服马达。 优点:在低速下可以得到很高的输出力矩,刚性好,时间常 数小、反应快和速度平稳。 缺点:液压系统需要供油系统,体积大。噪声、漏油。
没有位置测量装置,信号流是单向的(数
控装置→进给系统),故系统稳定性好。

伺服系统简介

伺服系统简介

§5-1 伺服系统的性能要求
大惯量宽调速直流伺服电动机 特点:有良好测速性能, 特点:有良好测速性能,能在较大过载转矩下长时间工作 电动机转子惯量大, 电动机转子惯量大,能与丝杠连接不需中间传动装置 结构复杂,价格较贵 结构复杂, 交流伺服系统: ③ 交流伺服系统: 采用交流异步伺服电动机和永磁同步伺服电动机驱动 采用交流异步伺服电动机和永磁同步伺服电动机驱动 交流异步伺服电动机 交流异步伺服电动机: 交流异步伺服电动机:用于主轴伺服系统 永磁同步伺服电动机: 永磁同步伺服电动机:用于进给伺服系统
第五章 伺服系统简介
§5-1 伺服系统的性能要求
定义:数控机床的伺服系统是指以数控机床移动部件( 定义:数控机床的伺服系统是指以数控机床移动部件(如工作 伺服系统是指以数控机床移动部件 位置和速度作为控制量的自动控制系统 作为控制量的自动控制系统, 台)的位置和速度作为控制量的自动控制系统,也就是 位置随动系统。 位置随动系统。 作用: 作用:是接受来自数控装置中插补器或计算机插补软件 生成的进给脉冲,经变换、 生成的进给脉冲,经变换、放大将其转化为数控 机床移动部件的位移,并保证动作的快速和准确。 机床移动部件的位移,并保证动作的快速和准确。 组成:伺服电路、伺服驱动装置、机械传动部件、 组成:伺服电路、伺服驱动装置、机械传动部件、末端执行件
§5-2 常用伺服系统简介
4、步进式伺服系统的特性 工作台位移量: ① 工作台位移量:进给脉冲的数量决定工作台的位移量 步进电动机的角位移θ 步进电动机的角位移θ,θ=nα(α为步距角) =nα 为步距角) 工作台的位移量L 工作台的位移量L: L=θP/360° L=θP/360°(P为导程) 为导程)
§5-1 伺服系统的性能要求
一、基本要求

什么是伺服系统

什么是伺服系统

什么是伺服系统伺服系统是一种控制机械系统运动的技术,它通过传感器对输出信号进行反馈控制,实现精确的位置、速度和力控制。

伺服系统广泛应用于工业生产和自动化领域,提高了生产效率和产品质量。

一、伺服系统的工作原理伺服系统主要由伺服驱动器、伺服电机和反馈传感器组成。

伺服驱动器负责接收和处理控制信号,将信号转换为合适的电压或电流输出,驱动伺服电机运动。

而伺服电机作为执行器,根据伺服驱动器提供的控制信号,输出相应的运动。

反馈传感器则监测伺服电机的运动状态,将监测到的位置、速度或力信号返回给伺服驱动器,驱动器通过与设定值的比较,调整输出信号,实现对运动状态的精确控制。

二、伺服系统的特点1. 高精度:伺服系统能够实现微小运动的精确控制,可实时监测和调整输出信号,适用于对运动精度要求较高的场景。

2. 高响应性:伺服系统的反馈传感器能够实时监测电机的运动状态,并将信息传递给伺服驱动器,驱动器通过处理反馈信号,及时调整输出信号,使系统能够快速响应各种指令。

3. 多功能:伺服系统可通过调整控制参数,实现对位置、速度和力的精确控制,适用于不同的工业应用。

4. 稳定性好:伺服系统通过反馈控制,能够实时调整输出信号,使系统保持稳定运行。

5. 适应性强:伺服系统可根据不同的工作负载,调整输出信号,适应不同工况的需求。

三、伺服系统的应用1. 工业机械:伺服系统广泛应用于机床、激光切割机、注塑机等工业机械设备中,实现对加工精度和速度的要求。

2. 机器人技术:伺服系统在机器人技术中发挥重要作用,通过对关节运动的精确控制,实现机器人的灵活运动和高精度定位。

3. 自动化生产线:伺服系统可应用于自动化生产线中,控制工件输送、装配等过程,提高生产效率和产品质量。

4. 医疗设备:伺服系统在医疗设备中广泛使用,如手术机械臂、电动床等,实现对患者的精确控制和操作。

5. 航空航天:伺服系统应用于航空航天领域,控制飞机和航天器的各个部件的运动,确保航行安全和舒适。

ai伺服的原理

ai伺服的原理

ai伺服的原理
AI伺服,也称为智能伺服,是指结合了人工智能(AI)技术的伺服系统。

伺服系统是一种用于精确控制机械运动的系统,广泛应用于工业自动化、机器人、航空航天等领域。

传统的伺服系统主要依赖于控制算法和传感器来实现对机械运动的高精度控制。

而AI伺服则在此基础上引入了人工智能技术,如机器学习、深度学习等,以提升伺服系统的性能和智能化水平。

AI伺服的工作原理可以概括为以下几个步骤:
1.数据采集:AI伺服系统通过传感器和其他设备采集机械运动过程中的各种数据,如位置、速度、加速度、力矩等。

2.数据处理:采集到的数据被送入AI模型进行处理。

AI模型可以是基于机器学习的模型,如支持向量机(SVM)、随机森林等,也可以是基于深度学习的模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。

这些模型通过对历史数据的学习,可以提取出运动过程中的特征和规律。

3.预测与优化:AI模型根据提取的特征和规律,对机械运动的未来状态进行预测。

然后,根据预测结果和实际需求,AI伺服系统可以优化控制策略,调整电机的输出,以实现更精确、更快速的运动控制。

4.实时反馈:AI伺服系统通过实时反馈机制,不断修正预测结果和优化控制策略。

这可以确保系统在实际运行过程中始终保持最佳状态,并适应各种复杂和变化的环境。

总之,AI伺服系统通过引入人工智能技术,可以实现对机械运动更精确、更快速、更智能的控制。

这不仅可以提高工业生产的效率和质量,还可以降低能耗和减少故障率,为工业自动化和智能制造的发展提供有力支持。

伺服系统简介介绍

伺服系统简介介绍

受控对象
被控制的设备或系统, 可以是机械系统、电气 系统或其他系统。
伺服系统的分类
按受控对象
可分为位置伺服系统、速度伺服系统和力伺 服系统等。
按控制方式
可分为开环伺服系统和闭环伺服系统。
按执行器类型
可分为电动伺服系统、气动伺服系统和液压 伺服系统等。
02
01
按应用领域
可分为数控机床、机器人、航空航天、自动 化生产线等领域的伺服系统。
04
03
02 伺服系统的工作原理
伺服系统的工作原理
• 伺服系统是一种能够精确控制运动和速度的控制系 统。它广泛应用于各种工业自动化设备中,如数控 机床、机器人、印刷机等。
伺服系统的应用场景
03
工业自动化
01
数控机床
伺服系统用于数控机床的精密加工,提高加工精度和效 率。
02
生产线自动化
伺服系统用于生产线自动化,实现生产过程的精确控制 和优化。
能。
自动驾驶
伺服系统用于自动驾驶汽车的导航 和控制,实现精确的路径规划和避 障。
悬挂系统控制
伺服系统用于悬挂系统的控制,提 高车辆的行驶平顺性和稳定性。
04 伺服系统的优势与挑战
伺服系统的优势与挑战
• 伺服系统是一种被广泛应用于各种工业和商业领域的控制系 统。它通过接收输入信号,并利用内部的电子和机械部件来 控制输出运动,以满足特定的应用需求。伺服系统具有高精 度、高速度、高可靠性等优点,但也面临着一些挑战。
升级的工业应用需求。
03
5G技术的应用
5G技术为工业互联网的发展带来了新的机遇。未来的伺服系统将更加
注重与5G技术的融合,以实现更高效、更稳定的生产和制造。

初步了解伺服系统

初步了解伺服系统

初步了解伺服系统(没有明确的格式要求,所以本文将采用常规的段落文章格式。

)初步了解伺服系统伺服系统作为一种自动控制系统,在现代机械设备的应用中越来越普遍。

本文将介绍伺服系统的基本结构以及其工作原理。

一、伺服系统的基本结构伺服系统由三个基本部分组成:控制器(Controller)、执行机构(Actuator)和反馈传感器(Feedback Sensor)。

控制器根据反馈传感器的输入信号控制执行机构的运动,从而达到预定的控制目标。

具体地说,控制器主要包括中央处理器(CPU)和控制电路组成,用于计算控制信号并输出到执行机构。

执行机构通常是电动机,包括直流电动机、交流电动机和步进电动机等。

反馈传感器的作用是对执行机构的位置、速度和加速度等运动状态进行检测,并将检测结果反馈给控制器。

常见的反馈传感器包括编码器、旋转变压器以及霍尔传感器等。

二、伺服系统的工作原理伺服系统的工作原理可以概括为反馈控制原理。

具体来说,控制器会根据反馈传感器的信号与预设信号之间的误差进行比较,计算出修正控制信号,从而使执行机构向预定状态(如位置、速度或加速度)靠近。

这个过程不断重复,直到执行机构到达目标状态。

伺服系统的工作过程分为四个基本阶段:采集、处理、输出和反馈。

在采集阶段,反馈传感器会捕捉执行机构的实际运动状态,并将信息反馈给控制器。

在处理阶段,控制器会根据反馈信号和预设信号计算出控制信号,并输出给执行机构。

在输出阶段,执行机构会根据控制信号进行运动。

在反馈阶段,反馈传感器会不断捕捉执行机构的实际运动状态,并再次反馈给控制器。

三、伺服系统的应用伺服系统广泛应用于各种机械设备,如机床、制造业、飞行器等。

在自动化生产流水线中,伺服系统可用于控制并保持产品的稳定状态,提高生产效率和质量。

在飞行器中,伺服系统可控制机身的姿态和运动,保证飞机飞行的稳定性和安全性。

在工程领域,伺服系统是一个非常关键的技术,对于自动化生产线和机器人等领域具有重要意义。

伺服系统基础知识资料

伺服系统基础知识资料

交流永磁同步伺服驱动系统一、伺服系统简介伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。

伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。

在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。

交流永磁同步伺服驱动系统(以下简称伺服系统),是基于国外高端伺服技术开发出适合于国内环境的伺服驱动系统,具有性能优异、可靠性强,广泛应用于数控机床、织袜机械、纺织机械、绣花机、雕刻机械等领域,在这些要求高精度高动态性能以及小体积的场合,应用交流永磁同步电机(PMSM)的伺服系统具有明显的优势。

其中,PMSM具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高。

交流伺服系统的性能指标可以从调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面来衡量。

伺服系统调速范围一般的在1:5000~1:10000;定位精度一般都要达到±1个脉冲;稳速精度,尤其是低速下的稳速精度,比如给定1rpm时,一般的在±0.1rpm以内,高性能的可以达到±0.01rpm以内;动态响应方面,通常衡量的指标是系统最高响应频率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后不超过90°或者幅值不小于50%。

应用在特定要求高的一些场合,目前国内主流产品的频率在200~500Hz。

运行稳定性方面,主要是指系统在电压波动、负载波动、电机参数变化、上位控制器输出特性变化、电磁干扰、以及其他特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。

二、伺服系统的组成伺服系统的组成1.上位机上位机通过控制端口发送指令(模拟指令或脉冲指令)给驱动器。

驱动器跟随外部指令来执行,同时驱动器反馈信号给上位机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能伺服系统简介
伺服系统的原理是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。

伺服的主要任务是按控制命令的要求,对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。

伺服电机的工作原理:伺服电机是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电机正向或反向地转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为零,从而达到使伺服电机精确定位的目的。

通用及智能智能伺服电机是一款高集成度的智能电机,技术要求达到了国际先进水平,智能电机不仅具有高精密电机的功能,同时还涵盖了伺服电机驱动器和PLC的功能,用户的机器方案使用我们的智能电机将使系统的布线变的非常精简,实现一“芯”二用的功能。

从而大大提供用户机器的电控部分的稳定可靠性,同时也为用户节省了成本。

上海佳蔚JEV A智能一体化交流伺服系统,JISD200可备份保存整个系统的全部参数,维护替换驱动器无需设置任何参数,JEV A的创新方案将运动控制与驱动的灵活性,可靠性,可维护性,占用空间,综合成本发展到一个新的历史高度。

相关文档
最新文档