实验二 快速傅里叶变换(FFT)及其应用

合集下载

数字信号处理 实验报告 实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理 实验报告  实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理实验报告实验二应用快速傅立叶变换对信号进行频谱分析2011年12月7日一、实验目的1、通过本实验,进一步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法 原理和FFT 子程序的应用。

2、掌握应用FFT 对信号进行频谱分析的方法。

3、通过本实验进一步掌握频域采样定理。

4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理与方法1、一个连续时间信号)(t x a 的频谱可以用它的傅立叶变换表示()()j t a a X j x t e dt +∞-Ω-∞Ω=⎰2、对信号进行理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进行Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅立叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字角频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωωπ+∞-∞=-∑ ( 2-6 )7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。

(信号为有限带宽,采样满足Nyquist 定理)8、无线长序列可以用有限长序列来逼近,对于有限长序列可以使用离散傅立叶变换(DFT )。

可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。

当序列()x n 的长度为N 时,它的离散傅里叶变换为:1()[()]()N knN n X k DFT x n x n W-===∑ 其中2jNN W eπ-=,它的反变换定义为:101()[()]()N knN k x n IDFT X k X k W N --===∑比较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==k N W -是Z 平面单位圆上幅角为2kNπω=的点,也即是将单位圆N 等分后的第k 点。

快速傅立叶变换FFT实验报告

快速傅立叶变换FFT实验报告

快速傅立叶变换〔FFT〕算法试验一.试验目的1.加深对DFT 算法原理和根本性质的理解;2.生疏FFT 算法原理和FFT 子程序的应用;3.学习用FFT 对连续信号和时域信号进展谱分析的方法,了解可能消灭的分析误差及其缘由,以便在实际中正确应用FFT。

二.试验设备计算机,CCS 3.1 版软件,E300 试验箱,DSP 仿真器,导线三.根本原理1.离散傅立叶变换DFT 的定义:将时域的采样变换成频域的周期性离散函数,频域的采样也可以变换成时域的周期性离散函数,这样的变换称为离散傅立叶变换,简称DFT。

2.FFT 是DFT 的一种快速算法,将DFT 的N2 步运算削减为〔N/2〕logN 步,极大2的提高了运算的速度。

3.旋转因子的变化规律。

4.蝶形运算规律。

5.基2FFT 算法。

四.试验步骤1.E300 底板的开关SW4 的第1 位置ON,其余置OFF。

其余开关不用具体设置。

2.E300 板子上的SW7 开关的第1 位置OFF,其余位置ON3.阅读本试验所供给的样例子程序;4.运行CCS 软件,对样例程序进展跟踪,分析结果;记录必要的参数。

5.填写试验报告。

6.供给样例程序试验操作说明A.试验前预备用导线连接“Signal expansion Unit”中2 号孔接口“SIN”和“A/D 单元”的2 号孔接口“AD_IN0”。

〔试验承受的是外部的AD模块〕B.试验1.正确完成计算机、DSP 仿真器和试验箱的连接后,系统上电。

2.启动CCS3.1,Project/Open 翻开“algorithm\01_fft”子名目下“fft.pjt”工程文件;双击“fft.pjt”及“Source”可查看各源程序;加载“Debug\fft.out”;3.单击“Debug\Go main”进入到主程序,在主程序“flag=0;”处设置断点;4.单击“Debug \ Run”运行程序,或按F5 运行程序;程序将运行至断点处停顿;5.用View / Graph / Time/Frequency 翻开一个图形观看窗口;设置该观看图形窗口变量及参数;承受双踪观看在启始地址分别为px 和pz,长度为128,数值类型为16 位整型,p x:存放经A/D 转换后的输入信号;p z:对该信号进展FFT 变换的结果。

实验二FFT实现信号频谱分析

实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换

快速傅里叶变换(含详细实验过程分析)

快速傅里叶变换(含详细实验过程分析)

快速傅⾥叶变换(含详细实验过程分析)[实验2] 快速傅⾥叶变换 (FFT) 实现⼀、实验⽬的1、掌握FFT 算法和卷积运算的基本原理;2、掌握⽤C 语⾔编写DSP 程序的⽅法;3、了解利⽤FFT 算法在数字信号处理中的应⽤。

⼆、实验设备 1. ⼀台装有CCS 软件的计算机; 2. DSP 实验箱的TMS320C5410主控板; 3. DSP 硬件仿真器。

三、实验原理(⼀)快速傅⾥叶变换傅⾥叶变换是⼀种将信号从时域变换到频域的变换形式,是信号处理的重要分析⼯具。

离散傅⾥叶变换(DFT )是傅⾥叶变换在离散系统中的表⽰形式。

但是DFT 的计算量⾮常⼤, FFT 就是DFT 的⼀种快速算法, FFT 将DFT 的N 2步运算减少⾄ ( N/2 )log 2N 步。

离散信号x(n)的傅⾥叶变换可以表⽰为∑=-=10][)(N N nk N W n x k X , Nj N e W /2π-=式中的W N 称为蝶形因⼦,利⽤它的对称性和周期性可以减少运算量。

⼀般⽽⾔,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两⼤类。

两者的区别是蝶形因⼦出现的位置不同,前者中蝶形因⼦出现在输⼊端,后者中出现在输出端。

本实验以时间抽取⽅法为例。

时间抽取FFT 是将N 点输⼊序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。

偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。

这样x(n) 的N 点DFT 可写成:()()∑++∑=-=+-=12/0)12(12/02122)(N n kn NN n nkNW n x Wn x k X考虑到W N 的性质,即2/)2//(22/)2(2][N N j N j N W e e W ===--ππ因此有:()()∑++∑=-=-=12/02/12/02/122)(N n nkN k NN n nkN W n x WWn x k X或者写成:()()12()kN X k X k W X k =+由于X 1(k) 与X 2(k) 的周期为N/2,并且利⽤W N 的对称性和周期性,即:kNNkNWW-=+2/可得:()()12(/2)kNX k N X k W X k+=-对X1(k) 与X2(k)继续以同样的⽅式分解下去,就可以使⼀个N点的DFT最终⽤⼀组2点的DFT来计算。

快速傅里叶变换FFT算法及其应用

快速傅里叶变换FFT算法及其应用

快速傅里叶变换FFT算法及其应用快速傅里叶变换(Fast Fourier Transform, FFT)是一种高效的计算离散傅里叶变换(Discrete Fourier Transform, DFT)的算法,它可以将一个时间域上的信号转换为频域上的表示。

FFT算法的提出改变了信号处理、图像处理、音频处理等领域的发展,广泛应用于各种科学与工程领域。

FFT算法的基本思想是将一个N点的DFT分解为多个较小规模的DFT,然后再通过合并子问题的解来得到原问题的解。

这种分治思想使得FFT算法的时间复杂度从O(N^2)降低到了O(NlogN),大大提高了计算效率。

FFT算法主要利用了DFT的对称性和周期性质,通过递归和迭代的方式,以分离出DFT的实部和虚部的形式计算出频域上的信号。

FFT算法的应用非常广泛。

在通信领域中,FFT算法常被用于信号的频谱分析、频域滤波、信号调制解调等方面。

在图像处理中,FFT算法可用于图像增强、滤波、噪声去除等。

在音频处理中,FFT算法可以用于音频压缩、声音合成等。

此外,FFT算法还广泛应用于科学计算、数字信号处理、雷达信号处理、语音识别、生物信息学等领域。

以音频处理为例,使用FFT算法可以将音频信号从时域转换到频域表示,使得我们可以对音频信号进行频谱分析。

通过FFT计算,我们可以获取音频信号的频率分量、频谱特征、能量分布等信息。

这对于音频的压缩、降噪、音频增强、音频特征提取等操作非常有帮助。

例如,在音频压缩中,我们可以根据音频信号的频谱特性,选择性地保留主要的频率成分,从而实现压缩效果。

而在音频增强中,我们可以通过FFT计算,去除或减弱一些频率上的噪声,提高音频的质量。

在实际应用中,为了提高计算效率和减少计算量,通常会使用基于FFT算法的快速卷积、快速滤波等技术。

这些技术可以利用FFT算法的高效性质,实现更快速、更准确的计算。

此外,也可以采用多线程、并行计算等技术,进一步提高FFT算法的性能。

实验二的应用快速傅里叶变换对信号进行频谱分析

实验二的应用快速傅里叶变换对信号进行频谱分析

实验二的应用快速傅里叶变换对信号进行频谱分析频谱分析在许多领域都有广泛的应用。

它可以帮助我们了解信号中包含的不同频率分量,从而帮助我们研究和诊断不同类型的信号。

下面将介绍一些具体的应用场景。

第一个应用是音频信号处理。

在音频领域,频谱分析可以帮助我们了解音频信号的频率成分。

例如,我们可以通过频谱分析来检测音频信号中是否存在杂音或低频噪音。

频谱分析也可以帮助我们识别频谱特征,比如音乐中的各种乐器,从而进行音频编码和解码。

另一个应用是通信信号处理。

在通信领域,我们常常需要分析传输信号的频谱。

频谱分析可以帮助我们确定信号带宽和频率范围,从而进行信道建模和传输质量评估。

它还可以用于频率选择性信道的均衡和消除干扰。

频谱分析还可以在图像处理中发挥作用。

图像信号可以表示为空间域中的二维信号。

通过应用二维FFT,我们可以将图像信号从空间域转换到频率域。

这种分析可以帮助我们了解图像中的频率特征,例如图像的纹理和边缘。

频谱分析在图像编码、图像压缩和图像增强等方面都有广泛应用。

此外,频谱分析在信号处理的教学和研究中也是非常重要的。

通过实验二中的应用,学生可以学习和理解信号的频率内容,掌握FFT算法的原理和实现。

总之,实验二的应用快速傅里叶变换对信号进行频谱分析具有广泛的应用场景。

不仅可以帮助我们理解信号的频率内容,还可以帮助我们研究和诊断信号,并在音频处理、通信处理和图像处理等领域中应用。

通过这种分析,我们可以更好地理解和处理不同类型的信号。

快速傅里叶变换FFT及其应用

快速傅里叶变换FFT及其应用

快速傅里叶变换FFT 及其应用摘要: FFT(Fast Fourier transform)技术是快速傅里叶变换,它是离散傅里叶的快速算法,随着大规模集成器件的问世以及计算机技术的迅速发展,FFT 技术已应用于现代科学技术的各个领域。

本文首先简单介绍了FFT 的原理,还介绍了FFT 在数字图像处理、机床噪声分析、数据采集、现代雷达、机车故障检测记录等领域的应用。

关键词:DFT ;FFT ;应用;1. 快速傅里叶变换FFT 简介1.1离散傅里叶变换(DFT)在信号处理中,DFT 的计算具有举足轻重的地位,信号的相关、滤波、谱估计等等都可通过DFT 来实现。

然而,由DFT 的定义式可以看出,求一个N 点的DFF 要N 2次复数乘法和N(N-1)次负数加法。

当N 很大时,其计算量是相当大。

傅立叶变换是信号分析和处理的重要工具。

离散时间信号*(n)的连续傅立叶变换定义为:式中()j X e ω是一个连续函数,不能直接在计算机上做数字运算。

为了在计算机上实现频谱分析,必须对x(n)的频谱作离散近似。

有限长离散信号x(n), n=0, 1, .......,N-1的离散傅立叶变换(DFT)定义为:式中()exp -2/N ,n=0,1,........N-1N W j π=。

其反变换定义为:将DFT 变换的定义式写成矩阵形式,得到X=Ax 。

其中DFT 的变换矩阵A 为1.2快速傅里叶变换(FFT)快速傅里叶变换(FFT)是1965年J. W. Cooley 和J. W Tukey 巧妙地利用造了DFT 的快速算法,即快速离散傅里叶变换(FFT)。

在以后的几十年中,FFT 算法有了进一步的发展,目前较常用的是基2算法和分裂基算法。

在讨论图像的数学变换时,我们把图像看成具有两个变量x, y 的函数。

首先引入二维连续函数的傅里叶变换,设f(x,y)是两个独立变量x ,y 的函数,且满足()++--,<0f x y dxdy ∞∞∞∞⎰⎰, 则定义:()++-2(ux+vy)--(u,v) = ,j F f x y e dxdy π∞∞∞∞⎰⎰为f(x,Y)的傅立叶变换。

快速 Fourier 变换(FFT)及其应用

快速 Fourier 变换(FFT)及其应用
Columns 37 through 45
0.0395 0.0538 0.0098 0.0245 -0.0054 -0.0737 -0.0881 -0.1385 -0.1163
Columns 46 through 54
-0.0813 -0.0359 -0.0453 -0.0418 -0.0116 -0.0676 -0.0672 -0.0403 -0.0966
x=ifft(X,64);
n=k;
stem(n,abs(x))
grid
运行结果:
3、对实验现象、数据及观察结果的分析与讨论:
图一的理论分析:
图二的理论分析:
比较用IFFT函数时,得其结果是复数求其模值与理论值进行比较得:
程序代码:
x1=1/(1-0.8^N)*0.8.^n;
delta=x1-abs(x)
Columns 19 through 27
-0.0035 0 0.0035 -0.0208 -0.0694 -0.0685 -0.0572 -0.0048 0.0529
Columns 28 through 36
0.0659 0.0969 0.1177 0.1598 0.1266 0.1231 0.0762 0.1276 0.0911
5、实验总结
⑴本次实验成败之处及其原因分析:
⑵本实验的关键环节及改进措施:
①做好本实验需要把握的关键环节:
对matlab语言要极其的熟悉,其次对于课程理论学习的知识要很好的掌握。
②若重做本实验,为实现预期效果,仪器操作和实验步骤应如何改善:
实践前做好充足的准备,熟练掌握matlaB软件,多加练习相关类似的习题一增加理解。
运行结果:
delta =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》课程(2010-2011学年第1学期)成绩:实验二快速傅里叶变换(FFT)及其应用学生姓名:***所在院系:电子信息工程学院自动化系年级专业:2008级自动化系学号:********指导教师:***完成日期:2010年9月27日实验二 快速傅里叶变换(FFT )及其应用一、实验目的(1)在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。

(2)应用FFT 对典型信号进行频谱分析。

(3)了解应用FFT 进行信号频谱分析过程可能出现的问题,以便在实际中正确应用FFT 。

(4)应用FFT 实现序列的线性卷积和相关。

二、实验内容实验中用到的信号序列: a )高斯序列2()015()0n p qa en x n --⎧⎪≤≤=⎨⎪⎩其他b )衰减正弦序列sin(2)015()0an b e fn n x n π-⎧≤≤=⎨⎩其他c )三角波序列03()8470c nn x n n n ≤≤⎧⎪=-≤≤⎨⎪⎩其他d )反三角波序列403()4470d n n x n n n -≤≤⎧⎪=-≤≤⎨⎪⎩其他上机实验内容:(1)观察高斯序列的时域和幅频特性,固定信号()a x n 中参数8p =,改变q 的值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号的时域和幅频特性的影响;固定8q =,改变p ,使p 分别等于8、13、14,观察参数p变化对信号序列的时域及幅频特性的影响,注意p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

解答:>> n=0:1:15;>> xn=exp(-(n-8).^2/2);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)');>> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xn=exp(-(n-8).^2/4);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)');>> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xn=exp(-(n-8).^2/8);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xn=exp(-(n-13).^2/8);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xn=exp(-(n-14).^2/8);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');随着q 值的增大,时域信号幅值变化缓慢,频域信号频谱泄露程度减小。

随着p 的增大,时域信号幅值不变,会在时间轴移位。

(2)观察衰减正弦序列()b x n 的时域和幅频特性,0.1a =,0.0625f =,检查普峰出现的位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和普峰出现的位置,有无混叠和泄漏现象?说明产生现象的原因。

解答: >> n=0:1:15;>> xn=exp(-0.1*n).*sin(2*pi*0.0625*n);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xn=exp(-0.1*n).*sin(2*pi*0.4375*n);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xn=exp(-0.1*n).*sin(2*pi*0.5625*n);>> subplot(1,2,1);stem(n,xn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');(3)观察三角波和反三角波的时域和幅频特性,用8N =点FFT 分析信号序列()c x n 和()d x n 的幅频特性,观察两者的序列形状和频谱曲线有什么异同?绘出两序列及其幅频特性曲线。

在()c x n 和()d x n 末尾补零,用32N =点FFT 分析这两个信号的幅频特性,观察幅频特性发生了什么变化?两种情况下的FFT 频谱还有相同之处吗?这些变化说明了什么?解答:>> for n=0:1:3xcn(n+1)=n;end;>> for n=4:1:7xcn(n+1)=8-n;end;>> xcnxcn =0 1 2 3 4 3 2 1>> n=0:1:7;>> subplot(1,2,1);stem(n,xcn);xlabel('t/T');ylabel('x(n)');>> xk1=fft(xcn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> for n=0:1:3xdn(n+1)=4-n;end;>> for n=4:1:7xdn(n+1)=n-4;end;>> xdnxdn =4 3 2 1 0 1 2 3>> n=0:1:7;>> subplot(1,2,1);stem(n,xdn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xdn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xcn=[xcn,zeros(1,24)];>> n=0:1:31;>> subplot(1,2,1);stem(n,xcn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xcn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');>> xdn=[xdn,zeros(1,24)]; >> n=0:1:31;>> subplot(1,2,1);stem(n,xdn);xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xdn);xk1=abs(xk1);>> subplot(1,2,2);stem(n,xk1);xlabel('k');ylabel('X(k)');8N =时,()c x n 和()d x n 的幅频特性相同,在()c x n 和()d x n 末尾补零,用32N =点FFT 分析这两个信号的幅频特性时,它们还有相同之处,即当k 取4的整数倍时对应幅值相等。

分析:8N =点FFT 分析信号的幅频特性:1121()0()()*N N j nk Nn X k x n e π-==∑32N =点FFT 分析信号的幅频特性:224222411()()440()()*()*N N N j nk j nk NNn n X k x n ex n eππ--====∑∑由上两式可知,当k2=4k1时,两个信号的对应频率幅值相等,即对信号末尾补零加长整数个周期可以对原信号达到细化频谱的作用。

(4)一个连续时间信号含两个频率分量,经采样得()sin[20.125]cos[2(0.125)]0,1,,1x n n f n n N ππ=++∆=⋅⋅⋅-已知16N =,f ∆分别为1/16和1/64,观察其频谱;当128N =时,f ∆不变,其结果有何不同,为什么?解答: >> n=0:1:15;>> x1n=sin(2*pi*0.125*n)+cos(2*pi*(0.125+1/16)*n); >> xk1=fft(x1n);xk1=abs(xk1);>>subplot(1,2,1);stem(n,xk1);xlabel('k');ylabel('X(k)');legend('f =1/16');>> x2n=sin(2*pi*0.125*n)+cos(2*pi*(0.125+1/64)*n); >> xk2=fft(x2n);xk2=abs(xk2);>>subplot(1,2,2);stem(n,xk2);xlabel('k');ylabel('X(k)');legend('f =1/64');>> n=0:1:127;>> x1n=sin(2*pi*0.125*n)+cos(2*pi*(0.125+1/16)*n); >> xk1=fft(x1n);xk1=abs(xk1);>> stem(n,xk1);xlabel('k');ylabel('X(k)');legend('f=1/16');>> x2n=sin(2*pi*0.125*n)+cos(2*pi*(0.125+1/64)*n); >> xk2=fft(x2n);xk2=abs(xk2);>> stem(n,xk2);xlabel('k');ylabel('X(k)');legend('f=1/64');分析:由于离散傅里叶变换的选频性质:()2/o jqw no x n e w Nπ==2()2()/1()[()]01j q k j q k N N q k e X k DFT x n q ke ππ--=⎧-===⎨≠-⎩当q 不等于整数时,则信号频谱会发生泄漏。

相关文档
最新文档