河北省中考数学试卷及答案
2023年河北省中考数学考试卷及答案解析

2023年河北省中考数学考试卷及答案解析一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D .【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD△,利用尺规作图找一点C,使得四边形ABCD为平行四边形.图1~图3是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC AO=;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD的中点O,图2,得出OC AO=,可知使得对角线互相平分,从而得出四边形ABCD为平行四边形,判定四边形ABCD为平行四边形的条件是:对角线互相平分,故选:C.【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k ≤≤均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k ≤≤∴k 可以取4.故答案为4(答案不唯一,满足39k ≤≤均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b 21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 33BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯=,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a an b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛⎫=-++- ⎪--⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD 中,8,11,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ∽,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA ==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP'∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105ADDBA BD ∠===,∴2103sin 35BQBP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQHA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。
河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。
答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。
答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。
答案:9014. 一个数的平方根是2,那么这个数是________。
答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。
答案:516. 一个数的立方根是-2,那么这个数是________。
2023年河北中考数学真题+答案详解

2023年河北中考数学真题+答案详解(真题部分)一、选择题1. 代数式-7x 的意义可以是( )A. 7−与x 的和B. 7−与x 的差C. 7−与x 的积D. 7−与x 的商 2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的( )A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( ) A. 6xy B. 5xy C. 25x y D. 26x y4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D. 5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 56. 若k 为任意整数,则22(23)4k k +−的值总能( )A. 被2整除B. 被3整除C. 被5整除D. 被7整除7. 若27a b ==,2214a b=( ) A. 2 B. 4 C. 7 D. 28. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =; (3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A. 两组对边分别平行B. 两组对边分别相等C. 对角线互相平分D. 一组对边平行且相等 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较 10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =( )A. 43B. 83C. 12D. 1612. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒ 14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A. 2B. 2mC. 4D. 22m二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB有交点,写出一个符合在条件的k 的数值:_________.18. 根据下表中的数据,写出a 的值为_______.b 的值为_______. x结果代数式 2 n31x +7 b 21x x + a 119. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区 脱靶 一次计分(分) 3 1 2−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小.25. 在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定直线上.设这条直线为3l ,在图中直接画出3l 的图象; (3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26. 如图1和图2,平面上,四边形ABCD 中,8,211,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).的2023年河北中考数学真题+答案详解(答案详解)一、选择题1. 代数式-7x的意义可以是()A. 7−与x的和B. 7−与x的差C. 7−与x的积D. 7−与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.−的意义可以是7−与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( )A. 6xyB. 5xyC. 25x yD. 26x y【答案】A 【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭, 故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.【答案】B 【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张, ∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃, 故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解. 【详解】解:在ACD 中,2AD CD ==, ∴2222AC −<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去; 若3AC AB ==时,ABC 为等腰三角形, 故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题. 6. 若k 为任意整数,则22(23)4k k +−的值总能( ) A. 被2整除 B. 被3整除C. 被5整除D. 被7整除【答案】B 【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式. 【详解】解:22(23)4k k +−(232)(232)k k k k =+++− 3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +−的值总能被3整除, 故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b −=−+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7. 若27a b ==,2214a b=( ) A. 2 B. 4 C.7 D.2【答案】A 【解析】 【分析】把27a b ==,【详解】解:∵27a b ==,()()2222142141424277ab ⨯⨯====, 故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是( ) A. 两组对边分别平行 B. 两组对边分别相等 C. 对角线互相平分 D. 一组对边平行且相等【答案】C 【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断. 【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =, 可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分, 故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理. 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较【答案】A 【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +−=−,根据123PP P 的三边关系即可得解. 【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+, ∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++122313PP P P PP =−+在123PP P 中有122313PP P P PP >+ ∴1223130b a PP P P PP −=+>− 故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数【答案】D 【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答. 【详解】解:A. 12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意; B. 12129.46100.46910⨯−≠⨯,故该选项错误,不符合题意; C. 129.4610⨯是一个13位数,故该选项错误,不符合题意; D. 129.4610⨯是一个13位数,正确,符合题意. 故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABCS=( )A. 43B. 83C. 12D. 16【答案】B 【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解. 【详解】解:∵16AMEF S =正方形, ∴164AM ==,∵Rt ABC △中,点M 是斜边BC 的中点, ∴28BC AM ==, ∴22224438AC BC AB =−=−=∴114438322ABCSAB AC =⨯⨯=⨯⨯= 故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个, 故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒【答案】C 【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢, ∵306B B AB A B '''∠=∠=︒==,, ∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==, ∴()Rt Rt HL ACD A C D '''≌△△, ∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒−∠=︒−︒; 综上,C '∠的值为n ︒或180n ︒−︒. 故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.【答案】D 【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发, 设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++, ∵两个人机器人速度相同, ∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C , 故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒【答案】C 【解析】【分析】如图,由平角的定义求得18034ADB ADE ???,由外角定理求得,16AHDADBα???,根据平行性质,得16GIFAHD???,进而求得44EGFGIFβ???.【详解】如图,∵146ADE ∠=︒ ∴18034ADB ADE ????∵ADB AHD α???∴503416AHD ADBα??????∵12l l ∥∴16GIF AHD??∵EGF GIF β?? ∴601644EGFGIFβ?????故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( ) A. 2 B. 2m C. 4D. 22m【答案】A 【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可. 【详解】解:令0y =,则220x m x −+=和220x m −=, 解得0x =或2x m =或x m =−或x m =, 不妨设0m >,∵()0m ,和()0m −,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =−的对称轴为0x =,抛物线22y x m x =−+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2, 故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可) 【解析】【分析】先分别求得反比例函数(0)ky k x=≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)ky k x=≠图像过(3,3)A 时,339k =⨯=; 当反比例函数(0)ky k x=≠图像过(3,1)B 时,313k =⨯=; ∴k 的取值范围为39k << ∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键. 18. 根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7 b 21x x+ a1【答案】 ①. 52②. 2− 【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==, 当x n =时,211x x +=,即211n n+=, 解得1n =−,经检验,1n =−是分式方程的解, ∴()3112b =⨯−+=−, 故答案为:52;2− 【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中 (1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】 ①. 30 ②. 23【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒−︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,3DE PE == 由图1知223AG BF PE === 由正六边形的结构特征知:12332OM =⨯=, ()1312BC BF CH =−=−,333tan 33BC AB BAC ∴===∠ 231BD AB ∴=−=,又1212DE =⨯=,3BE BD DE ∴=+= 23ON OM BE ∴=+=故答案为:3【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置 A 区 B 区 脱靶一次计分(分)312−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分; (2)6k =. 【解析】【分析】(1)根据题意列式计算即可求解; (2)根据题意列一元一次方程即可求解.解:由题意得()4321426⨯+⨯+⨯−=(分), 答:珍珍第一局的得分为6分; 【小问2详解】解:由题意得()()3311032613k k +⨯+−−⨯−=+, 解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值; (2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析 【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=; 【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a −=++−+=−+=−∵1a >,∴()21210S S a −=−>, ∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可; (2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解. 【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分; ∴客户所评分数的中位数为:343.52+=(分) 由统计图可知,客户所评分数的平均数为:11233645553.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分, ∴该部门不需要整改. 【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档, ∴监督人员抽取的问卷所评分数为5分, ∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分, 即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =−,1c =; (2)符合条件的n 的整数值为4和5. 【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解. 【小问1详解】解:∵抛物线21:(3)2C y a x =−+,∴1C 的最高点坐标为()32,, ∵点(6,1)A 在抛物线21:(3)2C y a x =−+上, ∴21(63)2a =−+,解得:19a =−, ∴抛物线1C 的解析式为21(3)29y x =−−+,令0x =,则21(03)219c =−−+=; 【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171,,, 当经过()51,时,211551188n=−⨯+⨯++, 解得175n =; 当经过()71,时,211771188n=−⨯+⨯++,解得417n =; ∴174157n ≤≤ ∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥. 计算:在图1中,已知48cm MN =,作OC MN ⊥于点C . (1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小. 【答案】(1)7cm ;(2)11cm 2;(3)3cm 3EF =,25π=cm 6EQ ,EF EQ >. 【解析】【分析】(1)连接OM ,利用垂径定理计算即可;。
河北中考数学试卷(含答案解析)

河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
河北省2022年中考数学真题试题(含解析)

河北省 2022年中考数学真题试题第一卷(共42分)一、选择题:本大题共16个小题,共42分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.以下运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-【答案】A.【解析】试题分析:因为负数的偶数次方是正数,异号两数相除商为负,零乘以任何数都等于0,较小的数减去较大的数差为负数,故答案选A.考点:乘方,有理数的除法,有理数的乘法,有理数的减法.2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,那么a 为( )A .1B .2-C .0.813D .8.13 【答案】D.【解析】试题分析:科学记数法中,a 的整数位数是一位,故答案选D.考点:科学记数法.3.用量角器测量MON ∠的度数,操作正确的选项是( )【答案】C.考点:角的比拟.4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n【答案】B.【解析】 试题分析:m 个2相乘表示为2m ,n 个3相加表示为3n ,故答案选B.考点:有理数的乘方.5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④【答案】C. 考点:中心对称图形.6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分【答案】B. 考点:绝对值,倒数,相反数,立方根,平均数.7.假设ABC ∆的每条边长增加各自的10%得'''A B C ∆,那么'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变【答案】D.【解析】试题分析:角的度数与角的边的大小没有关系,故答案选D.考点:角的比拟.8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )【答案】A.【解析】试题分析:主视图从图形的正面观察得到的图形,注意后排左上角的那个小正方体,故答案选A.考点:三视图.9.求证:菱形的两条对角线互相垂直.:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥.③∵四边形ABCD 是菱形, ④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②【答案】D. 考点:菱形的性质,等腰三角形的性质.10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为防止行进中甲、乙相撞,那么乙的航向不能是( )A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒【答案】D.考点:方向角.11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( )【答案】A.【解析】试题分析:正方形的对角线的长是10214.14,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,以下选项错误的选项是( )A .4446+-=B .004446++=C .34446++=D .14446-÷+= 【答案】D. 考点:算术平方根,立方根,0指数幂,负数指数幂.13.假设321x x -=-( )11x +-,那么( )中的数是( ) A .1-B .2-C .3-D .任意实数 【答案】B.【解析】试题分析:因为321222111x x x x x ---==----,故答案选B. 考点:分式的加减.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比拟5月份两组家庭用水量的中位数,以下说法正确的选项是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断【答案】B. 考点:中位数,扇形统计图.15.如图,假设抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,那么反比例函数k y x =(0x >)的图象是( )【答案】D.【解析】试题分析:因为在封闭区域内的整数点的个数是4,所以k =4,故答案选D.考点:二次函数的图象,反比例函数的图象.16.正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如下图.按以下步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第二卷(共78分)【答案】C. 考点:正多边形的有关计算.二、填空题(此题共有3个小题,总分值10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,那么A ,B 间的距离为 m .【答案】100.考点:三角形的中位线定理.18.如图,依据尺规作图的痕迹,计算α∠=°.【答案】56.【解析】试题分析:如图,根据作图痕迹可知,GH垂直平分AC,AG平分∠CAD. ∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ABC=68°。
2022河北中考数学试卷真题及答案

2022年河北中考数学试题及答案一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算得,则“?”是()A. 0B. 1C. 2D. 3【答案】C【详解】,则“?”是2,故选:C.2. 如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的()A. 中线B. 中位线C. 高线D. 角平分线【答案】D【详解】解:如图,∵由折叠的性质可知,∴AD是的角平分线,故选:D.3. 与相等的是()A. B. C. D. 【答案】A【详解】A、,故此选项符合题意;B、,故此选项不符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选:A.4. 下列正确的是()A. B. C. D. 【答案】B【详解】解:A.,故错误;B.,故正确;C.,故错误;D.,故错误;故选:B.5. 如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为,,则正确的是()A. B.C. D. 无法比较与的大小【答案】A【详解】解:∵多边形的外角和为,∴△ABC与四边形BCDE的外角和与均为,∴,故选:A.6. 某正方形广场的边长为,其面积用科学记数法表示为()A. B. C. D.【答案】C【详解】解:面积为:,故选:C.7. ①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A. ①③B. ②③C. ③④D. ①④【答案】D【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D8. 依据所标数据,下列一定为平行四边形的是()A. B. C.D.【答案】D【详解】解:平行四边形对角相等,故A错误;一组对边平行不能判断四边形是平行四边形,故B错误;三边相等不能判断四边形是平行四边形,故C错误;一组对边平行且相等的四边形是平行四边形,故D正确;故选:D.9. 若x和y互为倒数,则值是()A. 1B. 2C. 3D. 4【答案】B【详解】∵x和y互为倒数∴故选:B10. 某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是()A. cmB. cmC. cmD. cm【答案】A【详解】解:如图,PA,PB分别与所在圆相切于点A,B.,∠P=40°,,该圆半径是9cm,cm,故选:A.11. 要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A. Ⅰ可行、Ⅱ不可行B. Ⅰ不可行、Ⅱ可行C. Ⅰ、Ⅱ都可行D. Ⅰ、Ⅱ都不可行 【答案】C【详解】方案Ⅰ:如下图,即为所要测量的角∵∴∴故方案Ⅰ可行方案Ⅱ:如下图,即为所要测量的角在中:则:故方案Ⅱ可行故选:C12. 某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m 个人共同完成需n天,选取6组数对,在坐标系中进行描点,则正确的是()A. B.C. D.【答案】C【详解】解:依题意,,,且为整数.故选C.13. 平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A. 1B. 2C. 7D. 8【答案】C【详解】解:如图,设这个凸五边形,连接,并设,在中,,即,在中,,即,所以,,在中,,所以,观察四个选项可知,只有选项C符合,故选:C.14. 五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A. 只有平均数B. 只有中位数C. 只有众数D. 中位数和众数【答案】D【详解】解:追加前的平均数为:(5+3+6+5+10)=5.8;从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:(5+3+6+5+20)=7.8;从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.15. “曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A. 依题意B. 依题意C. 该象的重量是5040斤D. 每块条形石的重量是260斤【答案】B【详解】解:根据题意可得方程;故选:B.16. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:,乙答:d=1.6,丙答:,则正确的是()A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整【答案】B【详解】过点C作于,在上取∵∠B=45°,BC=2,∴是等腰直角三角形∴∵∴若对于d的一个数值,只能作出唯一一个△ABC通过观察得知:点A在点时,只能作出唯一一个△ABC(点A在对称轴上),此时,即丙的答案;点A在射线上时,只能作出唯一一个△ABC(关于对称的AC不存在),此时,即甲的答案,点A在线段(不包括点和点)上时,有两个△ABC(二者的AC边关于对称);故选:B二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17. 如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是______.【答案】【详解】解:根据题意得:抽到6号赛道的概率是.故答案为:18. 如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?______(填“是”或“否”);(2)AE=______.【答案】①. 是②. ##【详解】解:(1)如图:AC=CF=2,CG=DF=1,∠ACG=∠CFD=90°,∴△ACG≌△CFD,∴∠CAG=∠FCD,∵∠ACE+∠FCD=90°,∴∠ACE+∠CAG=90°,∴∠CEA=90°,∴AB与CD是垂直的,故答案为:是;(2)AB=2,∵AC∥BD,∴△AEC∽△BED,∴,即,∴,∴AE=BE=.故答案为:.(2)设甲盒中都是黑子,共个,乙盒中都是白子,共2m个,嘉嘉从甲盒拿出个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多______个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有个白子,此时乙盒中有y个黑子,则的值为______.【答案】①. 4 ②. ③. 1依题意:解得:第一次变化后,乙比甲多:故答案为:第二次变化,变化的a个棋子中有x个白子,个黑子则:故答案为:1三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20. 整式的值为P.(1)当m=2时,求P的值;(2)若P的取值范围如图所示,求m的负整数值.【答案】(1)(2)【小问1详解】解:∵当时,;【小问2详解】,由数轴可知,即,,解得,的负整数值为.21. 某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图.(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.【答案】(1)甲(2)乙【小问1详解】解:甲三项成绩之和为:9+5+9=23;乙三项成绩之和为:8+9+5=22;录取规则是分高者录取,所以会录用甲.【小问2详解】“能力”所占比例为:;“学历”所占比例为:;“经验”所占比例为:;∴“能力”、“学历”、“经验”的比为3:2:1;甲三项成绩加权平均为:;乙三项成绩加权平均为:;所以会录用乙.22. 发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.【答案】验证:;论证见解析【详解】证明:验证:10的一半为5,;设“发现”中的两个已知正整数为m,n,∴,其中为偶数,且其一半正好是两个正整数m和n的平方和,∴“发现”中的结论正确.【点睛】本题考查列代数式,根据题目要求列出代数式是解答本题的关键.23. 如图,点在抛物线C:上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程.【答案】(1)对称轴为直线,的最大值为4,(2)5【小问1详解】,∴对称轴为直线,∵,∴抛物线开口向下,有最大值,即的最大值为4,把代入中得:,解得:或,∵点在C的对称轴右侧,∴;【小问2详解】∵,∴是由向左平移3个单位,再向下平移4个单位得到,平移距离为,∴移动的最短路程为5.24. 如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.(1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)【答案】(1),(2)见详解,约米【小问1详解】解:∵水面截线,,,在中,,,,解得.【小问2详解】过点作,交MN于D点,交半圆于H点,连接OM,过点M作MG⊥OB于G,如图所示:水面截线,,,,为最大水深,,,,且,,,即,即,在中,,,,即,解得,,最大水深约为米.25. 如图,平面直角坐标系中,线段AB的端点为,.(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数中,分别输入m和n的值,使得到射线CD,其中.当c=2时,会从C处弹出一个光点P,并沿CD飞行;当时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.【答案】(1)(2)①,理由见解析②5【小问1详解】解:设直线AB的解析式为,把点,代入得:,解得:,∴AB所在直线的解析式为;【小问2详解】解:,理由如下:若有光点P弹出,则c=2,∴点C(2,0),把点C(2,0)代入得:;∴若有光点P弹出,m,n满足的数量关系为;②由①得:,∴,∵点,,AB所在直线的解析式为,∴线段AB上的其它整点为,∵有光点P弹出,并击中线段AB上的整点,∴直线CD过整数点,∴当击中线段AB上的整点(-8,19)时,,即(不合题意,舍去),当击中线段AB上的整点(-7,18)时,,即,当击中线段AB上的整点(-6,17)时,17=(-6-2)m,即(不合题意,舍去),当击中线段AB上的整点(-5,16)时,16=(-5-2)m,即(不合题意,舍去),当击中线段AB上的整点(-4,15)时,15=(-4-2)m,即(不合题意,舍去),当击中线段AB上的整点(-3,14)时,14=(-3-2)m,即(不合题意,舍去),当击中线段AB上的整点(-2,13)时,13=(-2-2)m,即(不合题意,舍去),当击中线段AB上的整点(-1,12)时,12=(-1-2)m,即m=-4,当击中线段AB上的整点(0,11)时,11=(0-2)m,即(不合题意,舍去),当击中线段AB上的整点(1,10)时,10=(1-2)m,即m=-10,当击中线段AB上的整点(2,9)时,9=(2-2)m,不存在,当击中线段AB上的整点(3,8)时,8=(3-2)m,即m=8,当击中线段AB上的整点(4,7)时,7=(4-2)m,即(不合题意,舍去),当击中线段AB上的整点(5,6)时,6=(5-2)m,即m=2,当击中线段AB上的整点(6,5)时,5=(6-2)m,即(不合题意,舍去),综上所述,此时整数m的个数为5个.26. 如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).【答案】(1)见详解(2)①;②;③【小问1详解】∵,∴则在四边形中故四边形为矩形,在中,∴,∵∴;【小问2详解】①过点Q作于S由(1)得:在中,∴平移扫过面积:旋转扫过面积:故边PQ扫过面积:②运动分两个阶段:平移和旋转平移阶段:旋转阶段:由线段长度得:取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T设,则在中:设,则,,,,∵DM为直径∴在中:在中:中:∴,PQ转过的角度:s总时间:③旋转:设,和中,由:得:由:即:解得:又∵,解得:旋转:设,在和中,由:得:由:即:解得:又∵,解得:,综上所述:.。
2024河北中考数学卷子

1. 下列哪个数不是有理数?- A. √4- B. √9- C. π- D. 22/7- (答案:C)2. 若直线y = kx + b经过第一、三、四象限,则k和b的符号是?- A. k > 0, b > 0- B. k > 0, b < 0- C. k < 0, b > 0- D. k < 0, b < 0- (答案:B)3. 下列等式成立的是?- A. |-5| = 5- B. |-5| = -5- C. |5| = -5- D. -|-5| = 5- (答案:A)4. 若x²- 4x + k = (x - 2)²,则k的值为?- A. 4- B. -4- C. 2- D. -2- (答案:A)5. 下列运算正确的是?- A. 3a + 2b = 5ab- B. 5a²- 2b²= 3- C. 7a³b²÷a²b = 7a- D. (a + b)²= a²+ b²- (答案:C)6. 下列图形中,既是轴对称图形又是中心对称图形的是?- A. 等边三角形- B. 平行四边形- C. 正五边形- D. 圆- (答案:D)7. 若关于x的不等式组{ x > a, x ≤b }无解,则a与b的大小关系是?- A. a < b- B. a = b- C. a > b- D. 无法确定- (答案:C)8. 下列函数中,y随x的增大而减小的是?- A. y = 2x- B. y = -3x- C. y = x²(x > 0)- D. y = 1/x (x < 0)- (答案:B)9. 已知等腰三角形的两边长分别为4和9,则这个等腰三角形的周长为?- A. 17- B. 22- C. 17或22- D. 无法确定- (答案:B)10. 下列命题中,真命题是?- A. 对角线相等的四边形是矩形- B. 对角线互相垂直的四边形是菱形- C. 对角线互相平分的四边形是平行四边形- D. 对角线互相垂直且相等的四边形是正方形- (答案:C)。
2023年河北省中考数学试卷(带答案)

2023年河北省初中毕业生升学文化课考试数学试卷一、选择题1.代数式-7x 的意义可以是()A.-7与x 的和B.-7与x 的差C.-7与x 的积D.-7与x 的商2.淇淇一家要到革命圣地西柏坡参观。
如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.化简x3y 3x2的结果是()A.xy 6B.xy 5C.x 2y 5D.x 2y 64.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上。
若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化。
当△ABC为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.56.若k 为任意整数,则(2k +3)2-4k 2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.若a =2,b =7,则14a 2b 2=()A.2B.4C.7D.28.综合实践课上,嘉嘉画出△ABD ,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形。
图1~图3是其作图过程。
(1)作BD 的垂直平分线交BD 于点O ;(2)连接AO ,在AO 的延长线上截取OC =AO ;(3)连接DC ,BC ,则四边形ABCD 即为所求。
在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.如图,点P 1~P 8是⊙O 的八等分点。
若△P 1P 3P 7,四边形P 3P 4P 6P 7的周长分别为a ,b ,则下列正确的是()A.a <bB.a =bC.a >bD.a ,b 大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 年河北省中考数学试卷一、选择题(本大题有 16 个小题,共 42分, 1-10 小题各 3 分, 11-16 小题各 2 分,在每小题给出 的四个选项中,只有一项是符合题目要求的)4.( 3分)语句“ x 的与x 的和不超过5”可以表示为()5 . ( 3 分)如图,菱形 ABCDK Z D= 150°,则Z 1=(6 ( 3 分)小明总结了以下结论: ① a ( b +c )= ab +ac ; ② a ( b — c )= ab — ac ;3( b — c )* a = b * a — c * a (a 工 0);④a *( b +c )= a *b +a *c (a 工0) 其中一定成立的个数是( )A 1B 2C 37( 3 分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容1. 3 分)下列图形为正多边形的是( A .B .C .D .2. (3分)规定:(f 2)表示向右移动 2 记作 +2,则( 3)表示向左移动 3 记作( )3. A .+3B.— 3C .D .+(3分)如图,从点C 观测点D 的仰角是( )A.Z DABB.Z DCEC.Z DCAD. Z ADCA. +x w 5B. +x > 5C.W 5D. +x = 5A 30°B 25°C 20°D 15则回答正确的是(A. ◎代表/ FECB.锹表同位角C. ▲代表/ EFCD.※代表AB8.(3 分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()-4 - 5 - 4 - 5A. 5X 10B. 5X 10C. 2 X 10D. 2 X 109.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A. 10B. 6C. 3D. 210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②-③-①一④B.③-④-①-②C.①-②一④-③ D •②-④-③一①12. (2分)如图,函数y=的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q13. (2分)如图,若x为正整数,则表示-的值的点落在(A.段①B.段②C.段③D.段④2214. (2分)图2是图1中长方体的三视图,若用S表示面积,S主=x+2x, S左=x+x,贝V S俯=()2 2 2 2A. x +3x+2B. x +2C. x +2x+1D. 2x +3x15. (2分)小刚在解关于x的方程ax2+bx+c= 0 (a工0)时,只抄对了a= 1, b = 4,解出其中一个根是x=- 1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=- 1D.有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n = 13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n= 14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n= 13.下列正确的是()A. 甲的思路错,他的n值对B. 乙的思路和他的n值都对C. 甲和丙的n值都对D. 甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18〜19小题各有2个空,每空2分,把答案写在题中横线上)17. (3 分)若7 ' 丁1X 70= 7p,则p 的值为_______ .18. (4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3= 7则(1)用含x的式子表示m= _______(2)当y=- 2时,n的值为_________19. (4分)勘测队按实际需要构建了平面直角坐标系,并标示了A, B, C三地的坐标,数据如图(单位:km).笔直铁路经过A, B两地.(1)A, B间的距离为_____ km;(2)计划修一条从C到铁路AB的最短公路丨,并在丨上建一个维修站D,使D到A, C的距离相等,贝V C, D间的距离为______ k m.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. (8分)有个填写运算符号的游戏:在“1口2口6口9”中的每个□内,填入+,-,x,*中的某一个(可重复使用),然后计算结果.(1)计算:1+2- 6 - 9;(2 )若1* 2X 6口9=- 6,请推算□内的符号;(3)在“1口2口 6 - 9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.2 2 221. (9 分)已知:整式A=(n - 1)+ (2n),整式B>0.尝试化简整式A.发现A= B2,求整式B.联想由上可知,E2=( n2- 1) 2+ (2n) 2,当n> 1时,『-1, 2n, B为直角三角形的三边长,如图•填写下表中B的值:直角三角形三边n2- 12n B勾股数组I/8勾股数组口35/22.( 9分)某球室有三种品牌的4 个乒乓球,价格是7, 8, 9(单位:元)三种.从中随机拿出一个球,已知P (—次拿到8元球)=.(1 )求这 4 个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的 3 个球价格的中位数与原来 4 个球价格的中位数是否相同并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.( 9 分)如图,△ ABO^A ADE中, AB= AD= 6, BG= DE Z B=Z D= 30°,边AD与边BC交于点P (不与点B, C重合),点B, E在AD异侧,I APC勺内心.(1)求证:Z BAD=Z CAE(2)设AP= x,请用含x的式子表示PD并求PD的最大值;(3)当ABL AC时,/ AIC的取值范围为m <Z AIC v n°,分别直接写出m n的值.24. (10分)长为300m的春游队伍,以v (ms)的速度向东行进,如图1和图2,当队伍排尾行进至检置0时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (ms),当甲返回排尾后,他及队伍均停止行进•设排尾从位置0开始行进的时间为t (s), 排头与o的距离为S头(m .(1 )当v= 2时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置0的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T (s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25. (10 分)如图1 和2, ?ABCDK AB= 3, BC= 15, tan Z DAB=.点P为AB延长线上一点,过点A作O O切CP于点P,设BP^ x.(1)如图1 , x为何值时,圆心O落在AP上若此时O O交AD于点E,直接指出PE与BC的位置关系;(2)当x= 4时,如图2,O O与AC交于点Q求Z CAFP勺度数,并通过计算比较弦AP与劣弧长度的大小;(3)当0 O与线段AD只有一个公共点时,直接写出x的取值范围.26. ( 12分)如图,若b是正数,直线l : y = b与y轴交于点A直线a:y = x- b与y轴交于点2B;抛物线L: y=- x +bx的顶点为C,且L与x轴右交点为D.(1 )若AB= 8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在丨下方时,求点C与丨距离的最大值;(3)设x o工0,点(x o, yj(x o, y2) ,( x o, y3)分别在丨,a和L上,且y3是y1, y的平均数,求点(x o, 0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b= 2019和b=时“美点”的个数.2019 年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16 个小题,共42分,1-10 小题各 3 分,11-16 小题各 2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2. 【解答】解:"正"和"负"相对,所以,如果(f 2)表示向右移动2记作+2,则(J 3)表示向左移动3记作-3.故选:B.3. 【解答】解:•••从点C观测点D的视线是CD水平线是CE•••从点C观测点D的仰角是/ DCE故选:B.4. 【解答】解:“ x的与x的和不超过5”用不等式表示为x+x w5.故选:A.5. 【解答】解:•••四边形ABC[是菱形,/ D= 150°,••• AB// CD Z BAD= 2 Z 1,••上 BAD Z D= 180°,•••Z BAD= 180°- 150°= 30°,•••Z 1= 15°;故选:D.6. 【解答】解:①a (b+c)= ab+ac,正确;②a (b - c)= ab- ac,正确;3(b —c)* a= b* a —c* a (a工0),正确;④a*(b+c)= a*b+a*c (a工0),错误,无法分解计算.故选:C.7. 【解答】证明:延长BE交CD于点F,则/ BEC=Z EF(+Z C (三角形的外角等于与它不相邻两个内角之和).又/ BEC=Z B■/C,得/ B=Z EFC故AB// CD(内错角相等,两直线平行).故选:C.8【解答】解:==2 X1O「5.故选:D.9.【解答】解:如图所示,n 的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11 .【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录一④整理借阅图书记录并绘制频数分布表-③绘制扇形图来表示各个种类所占的百分比-①从扇形图中分析出最受学生欢迎的种类,故选:D.12. 【解答】解:由已知可知函数y =关于y轴对称,所以点M是原点;故选:A.13. 【解答】解= 1 -=又:x为正整数,/•< X V 1故表示-的值的点落在②故选:B.2214. 【解答】解:T S主=x +2x = x (x+2), S左=x +x = x (x+1),•••俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2) (x+1)= X2+3X+2,故选:A.15. 【解答】解:•••小刚在解关于x的方程ax2+bx+c= 0 (a工0)时,只抄对了a= 1, b= 4,解出其中一个根是x=- 1,2••(- 1) - 4+c= 0,解得:c= 3,故原方程中c= 5,2贝V b - 4ac = 16 - 4x 1 x 5=- 4V 0,则原方程的根的情况是不存在实数根.故选:A.16. 【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n= 14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18〜19小题各有2个空,每空2分,把答案写在题中横线上)17. 【解答】解:T 7-2X 7- 1X 70= 7P,「•- 2- 1+0= p,解得:P=- 3.故答案为:-3.18. 【解答】解:(1)根据约定的方法可得:m= x+2x= 3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3= m+n= y.当y=- 2 时,5x+3=- 2.解得x=- 1 .••• n = 2x+3=- 2+3= 1.故答案为:1.19. 【解答】解:(1)由A B两点的纵坐标相同可知:AB// x轴,•AB= 12-(- 8)20;l 于点D,(2)过点C作丨丄AB于点E,连接AC作AC的垂直平分线交直线由( 1 )可知:CE= 1 -(- 17)= 18,AE= 12,设CD= x,•AD= CD= x ,2 2 2由勾股定理可知:x2=(18- x)2+122,•解得:x= 13,•CD= 13,故答案为:(1)20;(2)13;三、解答题(本大题有7 个小题,共67 分. 解答应写出文字说明、证明过程或演算步骤)20. 【解答】解:(1)1+2- 6- 9=3 - 6 - 9=-3- 9=-12;⑵丁1* 2X 6口9=- 6,••• 1 XX 6口9=- 6,3□ 9 =- 6,•□内的符号是“-”;( 3 )这个最小数是- 20,理由:•••在“ 1口2口6-9”的□内填入符号后,使计算所得数最小,•1□ 2 □ 6 的结果是负数即可,• 1 □ 2□ 6 的最小值是 1 - 2X 6=- 11,• 1 □ 2□ 6 - 9 的最小值是-11 - 9=- 20,•这个最小数是- 20.2 2 2 4 2 2 4 2 2 221. 【解答】解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,2•/ A= B , B> 0,•B= n +1 ,2 2当2n= 8 时,n= 4,二n+1= 4 +1= 15;2 2当n - 1= 35 时,n+1 = 37.故答案为:15;3722.【解答】解:(1)v p (—次拿到8元球)••• 8元球的个数为4X= 2(个),按照从小到大的顺序排列为7, 8, 8, 9,.•.这4个球价格的众数为8元;(2[①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来 4 个球的价格按照从小到大的顺序排列为7, 8, 8, 9,原来4个球价格的中位数为=8 (元),所剩的 3 个球价格为8, 8, 9,.所剩的 3 个球价格的中位数为8元,.所剩的 3 个球价格的中位数与原来 4 个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,.乙组两次都拿到8 元球的概率为.23. 【解答】解:(1)在厶ABCFH A ADE中,(如图1)•••△ ABS ADE( SASBAG=Z DAE即/ BAD/ DA(==Z DAG / GAE••上 BAD=/ GAE(2)v AD= 6, AF== x,PD= 6 - x当ADL BC时,AP= AB= 3最小,即PD= 6 - 3 = 3为PD的最大值.(3)如图2,设/ BAP=a,则/ APG=a +30 °,T AB丄AG./ BAG= 90°,/ PGA= 60°,/ PAG= 90°,•••I为厶APQ的内心••• AI、CI 分别平分/ PAC Z PCA•— IAC=Z PAC Z ICA=Z PCA•••Z AIC= 180°— (Z IAC+Z ICA)=180°-(Z PAC Z PCA=180°-( 90°-a +60°)=a +105°• 0 VaV 90 °,• 105°Va +105°V 150°,即卩105°V Z AIC V 150°,•m= 105,n= 150.24. 【解答】解:(1)①排尾从位置O开始行进的时间为t (s),则排头也离开原排头t (s),•- S 头=2t +300②甲从排尾赶到排头的时间为300*( 2v- v)= 300- v= 300- 2= 150 S,此时S头=2t+300 =600 m甲返回时间为:( t- 150) s•- S 甲=S 头-S 甲回=2X 150+300- 4 (t - 150)=- 4t +1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=-4t+1200.( 2) T= t 追及+t 返回= +=,在甲这次往返队伍的过程中队伍行进的路程为:v X(T-150)= v X(-- 150)=400-150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为( 400- 150v) m25. 【解答】解:(1)如图1, AP经过圆心Q T CP与O O相切于P,/•Z APC= 90°,t ?ABCD,••• AD// BC/•Z PBC=Z DAB•°.= tan Z PBC= tan Z DAB=,设CP= 4k, BP= 3k,由CP+BP= BC,得(4k)2+ (3k)2= 152,解得k1=- 3 (舍去),k2= 3,•/ x = BP= 3 x 3= 9,故当x= 9时,圆心O落在AP上;T AP是O O的直径,•Z AEP= 90°,•PEL ADt ?ABCD•BC/ AD•PE L BC(2)如图2,过点C作CGLAP于G,t ?ABCD•BC/ AD,•Z CBG=Z DAB•= tan Z CBG= tan Z DAB=,设CG= 4m, BG= 3m,由勾股定理得:(4m)2+ (3m)2= 152,解得m= 3 ,••• CG= 4X 3= 12, BG= 3X 3= 9, PG= BG- BP= 9- 4= 5, AP= AE+BP= 3+4= 7,••• AG= AB F BG= 3+9= 12•- tan Z CAP= = = 1,•Z CA= 45°;连接OP OQ 过点O作OH L AP于H,则Z PO= 2Z CAP= 2X 45°= 90°, PH= AP=,在Rt△ CPG^,== 13,•••CP是O O的切线,•Z OPC=Z OHP=90°,Z OPH+Z CPG=90°,Z PCG+Z CPG=90°•Z OPH=Z PCG•••△OP" PCG•,即卩P出CP= CG< OP x 13= 12OP•OP=•劣弧长度==•v 2nv 7•••弦AP的长度〉劣弧长度.(3)如图3, O O与线段AD只有一个公共点,即圆心O位于直线AB下方,且Z OAI>90 ° ,当Z OA= 90 °, Z CP=Z DAB时,此时BP取得最小值,过点C作CML AB于M•Z DAB=Z CBP•Z CPM=Z CBP•CB= CP•CM L AB•BP=2BM=2x 9=18• x > 1826. 【解答】解:(1)当x= 0吋,y= x- b =- b,二B (0,- b),T AB= 8,而A (0, b),二b - (- b)= 8,二b = 4.2/. L: y =- x +4x,•••L的对称轴x= 2,当x= 2 吋, y= x- 4=- 2,•L 的对称轴与a 的交点为( 2,- 2 );2( 2) y=-( x-) 2+,•L 的顶点C()•••点C在丨下方,•C与l 的距离b- = -( b- 2)2+1< 1,•••点C与1距离的最大值为1;( 3)由題意得,即y1+y2= 2y3,2得b+x0- b= 2(- x0 +bx0)解得X o = 0 或X o= b-.但x o#0,取X o = b -,2对于L,当y = 0 吋,0= - x +bx,即卩0=- x (x- b), 解得x1= 0, x2= b, •/ b> 0,•••右交点D(b, 0).•••点(x o, 0)与点D间的距离b-( b-) =(4)①当b = 2019时,抛物线解析式L: y =- x2+2019x直线解析式a: y = x- 2019联立上述两个解析式可得:X i =- 1, X2= 2019,•••可知每一个整数x的值都对应的一个整数y值,且-1和2019之间(包括-1和-2019)共有2021 个整数;•••另外要知道所围成的封闭图形边界分两部分:线段和抛物线,•线段和抛物线上各有2021 个整数点•总计4042 个点,•••这两段图象交点有2个点重复重复,•美点”的个数:4042- 2= 4040(个);②当b=时,2抛物线解析式L:y=- x2+,直线解析式a:y= x-,联立上述两个解析式可得:x1=- 1 , x2=,•••当x取整数时,在一次函数y = x-上, y取不到整数值,因此在该图象上“美点”为0,在二次函数y= x+图象上,当x为偶数时,函数值y可取整数,可知- 1 到之间有1009个偶数,并且在- 1 和之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b= 2019时“美点”的个数为4040个,b =时“美点”的个数为1010个.。