砂土地震液化判别

合集下载

砂土液化判别

砂土液化判别

〈三〉地震效应分析根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动测试报告可知:场地位于基本烈度Ⅶ度区,建筑物应按相应地震烈度进行抗震设防。

设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地土类型整体为中硬土,局部区域为中软土,建筑场地类别为Ⅱ类,属于抗震不利地段。

〈四〉场地砂土液化判别拟建场地位于基本烈度Ⅶ度区,依据《建筑抗震设计规范》(GB50011-2001)规范要求,须对场地内存在的饱和砂土进行液化判别。

根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层,松散~稍密状,顶板埋深0.00~3.90m ,局部区域位于地下水位以上,未达饱和状态;按Ⅶ度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。

依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层,再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级别。

砂土液化判别公式如下:()[]ρowsocrd d N N31.09.0-+=(适用于地面以下15m以内)[]ρos o cr d N N 31.04.2-= (适用于地面以下15~20m以内)式中: d s —饱和土标准贯入点深度(m );d w —地下水位深度(m )ρo —粘粒含量百分率,小于3或为砂土时,取3。

N cr —饱和土液化临界标准贯入锤击数;N o —饱和土液化判别的基准标准贯入锤击数。

对于可液化土层,按下式计算的液化指数(I ie )来确定液化等级;w d NN Iiini criiie)1(1∑=-= 式中: I ie :液化指数;N i :饱和土层中i 点的实测标准贯入锤击数; N cri :相应于Ni 深度处的临界标准贯入锤击数;n :每个钻孔内15m 深度范围内饱和土层中标准贯入点总数;并按表4的标准进行砂土液化等级划分。

基于静力触探测试的国内外砂土液化判别方法

基于静力触探测试的国内外砂土液化判别方法

基于静力触探测试的国内外砂土液化判别方法一、本文概述液化是砂土在地震动荷载作用下由固态转变为液态的现象,是工程地震学中一个极为重要的问题。

液化会导致地基失效,建筑物沉陷或倾倒,从而引发严重的灾害。

因此,准确有效地对砂土液化进行判别,对于确保工程结构的安全性和稳定性具有至关重要的作用。

静力触探测试作为一种原位测试技术,具有操作简便、结果直观等优点,因此在砂土液化判别中得到了广泛应用。

本文旨在综述基于静力触探测试的国内外砂土液化判别方法。

将介绍砂土液化的基本概念和静力触探测试的基本原理。

将详细阐述国内外在砂土液化判别方面的研究成果和现状,包括各种判别方法的基本原理、适用范围和优缺点。

将探讨静力触探测试在砂土液化判别中的具体应用,以及未来在砂土液化判别领域的研究方向和发展趋势。

通过本文的综述,希望能够为工程师和研究人员提供关于砂土液化判别方法的全面了解和参考,为砂土液化判别技术的发展和应用提供有益的借鉴和启示。

二、国内外砂土液化判别方法研究现状砂土液化判别方法的研究一直是岩土工程领域的重要课题。

液化现象指的是在地震、爆炸等动力荷载作用下,无粘性土(如砂土)由固态转变为液态的现象,这种转变会导致土壤失去承载能力,对建筑物和基础设施造成极大破坏。

因此,准确判别砂土液化对于预防地震等自然灾害具有重要的工程实际意义。

在国内外,砂土液化判别方法的研究已经取得了显著进展。

传统的判别方法主要基于静力触探测试(CPT)的结果,通过分析CPT数据中的锥尖阻力、侧壁摩阻力等参数,结合现场的地质环境条件和地震动参数,来评估砂土液化的可能性。

这些方法虽然在一定程度上能够反映砂土的液化特性,但由于缺乏考虑动力因素,其准确性和可靠性有待进一步提高。

近年来,随着科技的发展和研究的深入,国内外学者提出了许多新的砂土液化判别方法。

这些方法不仅考虑了静力因素,还引入了动力参数,如地震加速度、频率等,以更全面地评估砂土的液化风险。

随着机器学习等技术的快速发展,一些基于数据驱动的砂土液化判别模型也逐渐兴起。

砂土液化的判别方法

砂土液化的判别方法

砂土液化的判别方法
嘿,朋友们!今天咱来聊聊砂土液化这个事儿。

你说砂土液化像啥呢?就好比是砂土突然得了一场“怪病”,变得稀里哗啦的!
砂土液化可不是开玩笑的事儿啊!那怎么判别它呢?咱先看看砂土本身呀。

就像挑水果一样,得看看这砂土“长得”咋样。

如果它松松垮垮的,好像没什么精神头,那可得多留意了。

然后呢,再看看周围的环境。

要是这地方老是晃来晃去,比如地震频发,那砂土可就危险啦!这就好像一个人总在动荡的环境里,也容易出问题呀。

还有啊,砂土的含水情况也很重要。

要是水太多了,就像给砂土洗了个“大水澡”,那它能不变得奇怪吗?就好比面团和多了水,稀稀的。

咱再想想,如果在这片砂土上盖房子,房子会不会摇摇晃晃的呢?要是会,那很可能就是砂土液化在捣乱呢!这就像你走在路上,突然地变得软绵绵的,那还不吓人啊!
砂土液化有时候还挺会隐藏的呢,你可得睁大双眼仔细瞧。

比如说,有些地方表面上看起来好好的,没啥异样,可说不定下面已经在悄悄变化了呢。

这就跟有些人表面看着挺正常,实际心里不知道在琢磨啥呢。

你说要是没发现砂土液化,后果会咋样?哎呀,那可不得了!房子可能会倒,路可能会塌,这可不是闹着玩的呀!所以咱得重视起来,不能马虎。

咱可以通过一些专业的方法来判别砂土液化呀。

就像医生给病人看病似的,各种检查都来一遍。

看看砂土的物理性质呀,分析分析它的成分呀。

总之呢,砂土液化这事儿不能小瞧。

咱得像个侦探一样,仔细去观察、去判别。

可别等出了问题才后悔莫及呀!砂土液化关系到我们的生活和安全,大家都要上心呀!咱得把砂土液化这个“小怪兽”给牢牢抓住,不能让它捣乱!。

(完整版)砂土液化的判别

(完整版)砂土液化的判别

(完整版)砂⼟液化的判别砂⼟液化判别基本原理⼀、地震地球内部,聚蓄的能量,在迅速释放时,使地壳产⽣快速振动,并以波的形式从震源向外扩散、传播称为地震。

诱发地震的因素很多,当地下岩浆活动、⽕⼭喷发、溶洞塌陷、⼭崩、泥⽯流、⼈⼯爆破、⽔库蓄⽔、矿⼭开采、深井注⽔等都会引起地震的发⽣。

但是它们的强度和影响范围都较⼩,危害不太⼤;世界上绝⼤多数地震,是由地壳运动引起岩⽯受⼒发⽣弹性变形并储存能量(应⼒),当能量聚积达到⼀定的强度并超过岩⽯某⼀强度时,使岩层发⽣断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围⼴、破坏性⼤,发⽣的频率⾼,占破坏性地震的90%以上。

因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作⽤下建筑的设防问题。

(⼀)地震波按其在地壳传播的位置不同,可分为体波、⾯波。

1、体波在地球内部传播的波为体波。

体波⼜可分纵波和横波,纵波⼜称P 波,它是从震源向四周传播的压缩波。

这种波的周期短、振幅⼩、波速快,它在地壳内传播的速度⼀般为200-1400m/s ;它主要引起地⾯垂直⽅向的振动。

横波⼜称s波,是由震源向四周传播的剪切波。

这种波的周期长、振幅⼤、波速慢,在地壳内的波速⼀般为100-800m/s。

它主要引起地⾯的⽔平⽅向的振动。

2、⾯波在地球表⾯传播的波,⼜称L波。

它是由于体波经过地层界⾯多次反射、折射所形成的次⽣波。

它是在体波到达之后(纵波P⾸先到达,横波S次之),⾯波(L波)最后才传到地⾯。

⾯波与横波⼀样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地⾯的破坏最强的⼀种。

所以在岩⼟⼯程勘察中,我们主要关⼼的还是⾯波(L波)对场地⼟的破坏。

⼆、砂⼟液化对⼯程建筑的危害地震时由于地震波的振动,会使埋深于地下⽔位以下的饱和砂⼟和粉⼟,⼟的颗粒之间有变密的趋势,孔隙⽔不能及时地排出,使⼟颗粒处于悬浮状态,呈现液体状。

此时,⼟体内的抗剪强度暂时为零,如果建筑物的地基⼟没有⾜够的稳定持⼒层,会导致喷⽔、冒砂,使地基⼟产⽣不均匀沉陷、裂缝、错位、滑坡等现象。

地震砂土液化的判定方法

地震砂土液化的判定方法

地震砂土液化的判定方法
1. 观察地表啊!你想想,如果地震后地面突然像变成了一锅粥一样,砂土和水混在一起,到处流淌,那不是砂土液化了还能是什么呀!就好比做蛋糕时,面糊稀了到处淌一样。

比如那次我们在海边看到的场景,地面就是这种情况啊!
2. 看看建筑物的沉降情况呀!要是房子莫名其妙地往下陷,出现倾斜或不均匀沉降,那很有可能是砂土液化在捣鬼呢!这就像人站不稳要摔倒一样明显嘛!我记得隔壁小区那次地震后就有几栋楼出现了这样的情况。

3. 注意地下水位的变化嘛!要是地震后地下水位突然上升很多,变得异常,那可要小心砂土液化哦!这就如同河水突然涨起来一样惊人。

我们村那次地震后就出现了这种情况呢!
4. 听听有没有异常的声响呀!如果有那种咕噜咕噜像冒泡一样的声音从地下传来,很可能就是砂土液化的信号啦!就好像开水烧开了咕嘟咕嘟响一样。

上次在工地就听到了类似的声音。

5. 检查一下基础设施嘛!比如地下管道啊,如果它们扭曲变形甚至破裂了,那极有可能是砂土液化导致的呀!这不就和我们玩的橡皮泥被揉变形了一个道理嘛!记得有个地方地震后水管就是这样破的。

6. 多留意地面有没有喷砂冒水的现象呀!要是突然有砂和水从地下喷出来,那肯定是砂土液化在搞鬼啦!就好像火山喷发一样让人惊讶。

那次地震后在公园里就看到了这样让人震惊的场面。

总之,通过这些方法去判断砂土液化准没错!要仔细观察、用心留意呀!。

砂土液化的判别

砂土液化的判别

砂土液化的判别什么是砂土液化?砂土是一种常见的构造材料,在地质工程中具有广泛的应用。

然而,在地震、爆破或振动等外力作用下,砂土可能会发生液化现象,丧失原有的承载力和稳定性。

砂土液化是指砂土在振动作用下部分或全部失去固结状态,变成类似流体的状态的一种现象。

砂土液化的危害砂土液化对工程造成的危害主要表现在以下几个方面:•土体稳定性降低:砂土液化后,土体的稳定性会大大降低,可能导致工程物体的失稳,如建筑物、桥梁等。

•土压力减小:砂土液化后,土体的相对密度减小,土压力也会随之减小。

这可能导致基础和土体受到更大的荷载,从而引发更严重的问题。

•土体下沉变形加剧:液化的砂土受到外力作用后,会表现出像液体一样的行为,沉降会比普通土体更加严重,这也可能影响到工程物体的稳定性。

因此,对砂土液化的判别十分重要,能够预测砂土的液化风险和采取相应的防治措施,保障工程的安全运行。

如何判别砂土液化砂土液化的判别是通过分析砂土的地震反应特征来实现的。

根据国际上一般的砂土液化判别标准,判别的参数主要有以下几个:1.土的含水率2.土的相对密度3.震动加速度4.应力状态5.地震波的强度和持续时间为了更加准确地进行砂土液化的判别,一般需要对这些参数进行探测和监测。

特别是在工程建设项目中,需要对砂土的液化特征进行精确分析和预测,才能有效地防止液化发生。

在实际应用过程中,砂土液化的判别可以通过各种试验和模拟手段进行。

例如,可以通过地震模拟器来模拟不同强度的地震,以探测砂土在地震作用下的反应情况;还可以通过人工加荷试验、标准贯入试验和直接剪切试验等方法来研究土体的特性和变形规律。

这些方法可以辅助砂土液化的判别,使得工程运行更加稳定安全。

砂土液化的防治措施对于砂土液化的预防和防治可以从以下几个方面入手:1.加强地基加固:通过加强地基的支撑和加固,提高其承载力和稳定性,从而减小砂土液化的可能性。

2.改善土体的物理性质:增加土体的密实度和承载能力,降低砂土液化的风险。

饱和砂土及饱和粉土液化判别与计算

饱和砂土及饱和粉土液化判别与计算

饱和砂土及饱和粉土液化判别与计算液化土的判别与计算一、判别依据《建筑抗震设计规范》GB50011-2010:第4.3.1条:饱和砂土和饱和粉土(不含黄土)的液化判别和处理,6度时,一般情况下可不进行判别与处理,但对液化沉陷敏感的乙类建筑可按7度的要求进行判别与处理,7~9度时,乙类建筑可按本地区抗震设防烈度的要求进行判别与处理。

第4.3.2条(本人加注:此属强制性条文):地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别;存在液化土层的地基,应根据建筑的抗震设防类别、地基的液化等级,结合具体情况采取相应的措施。

(注:本条饱和土液化判别不含黄土、粉质粘土)第4.3.4条:当饱和粉土、或饱和砂土的初步判别认为需要进一步进行液化判别时,应采用标准贯入试验判别法判别地面以下20m范围内土的液化;但对本规范第4.2.1条规定可不进行天然地基和基础的抗震承载力验算的各类建筑可(不经杆长只判别地面以下15m范围内土的液化。

当饱和土标准贯入锤击数N修正)小于或等于液化判别标准贯入锤击数临界值时,应别为液化土。

【第4.2.1条:1本规范规定可不进行上部结构抗震验算的建筑;2地基主要受力层[系指条形基础底面下深度3b(b为基础底面宽度)、独立基础下1.5b,且厚度不小于5m的范围]范围内不存在软弱粘性土层(指7度、8度和9度时,地基承载力特征值分别小于80、100和120kpa的土层)的建筑:1)一般的单层厂房和单层空旷房屋、2)砌体房屋、3)不超过8层且高度在24m以下的一般民用框架和框架—抗震墙房屋、4)基础荷载与“3)项”相当的多层框架房屋和多层混凝土抗震墙房屋】二、判别方法第4.3.3条:饱和粉土及饱和砂土的液化判别1、地质年代为晚更新世(Q3)及以前的地层,7、8度时可判别为不液化。

2、粉土的粘粒(粒径<0.005㎜的颗粒)含量百分率:7度、8度和9度分别不小于10、13和16时可判别为不液化。

砂土液化判别及案例的思考

砂土液化判别及案例的思考

1
/
2
(7.3.6)
式中:Vscr ——饱和粉土或砂土剪切波速临界值(m/s);
Kv ——与烈度、土类有关的经验系数。按表 7.3.6 取值;
ds ——剪切波速测点的深度(m);深度为 15m~20m 时,取 ds=15m。d1=1m。
当实测剪切波速值小于按(7.3.6)式计算的剪切波速临界值时,应判为液化土,否则为不
K Dcr
KD0 0.8
0.04(ds
dw)
a
ds dw 0.9(ds
dw) (14
3 4ID
)1/ 2
式中
KDo——液化临界水平应力指数基准值,在 7 度地震且地震加速度 a =0.1g 时取 2.5;
ds ——实测水平应力指数所代表的深度(m); dw ——地下水位深度(m),可采用常年地下水位平均值;
原位测试判别包括:标准贯入试验、静力触探、波速、 扁铲侧胀试验。 标准贯入试验
判别在地面下20m深度范围内,液化判别标准贯入锤 击数临界值可按下式计算:
静力触探试验判别 当采用静力触探试验对地面下15m(8度、9度地区
20m)深度范围内的饱和砂土或饱和粉土进行液化判别 时,可按下式计算。当实测值小于临界值时,可判为液 化土。
石江华(2011)采用波速(选取36个点)对 巴楚地震液化进行研究。
3 汶川地震 2008年5月12日汶川发生Ms8.0级地震,调
查显示,本次地震出现了大量砂砾土液化及 液化震害现象,液化涉及范围广,分布不均 匀,很大程度上受到工程地质条件的影响和 控制。
2 平原液化与岸边液化的不同表现 平原地区的地基失效一般与喷水冒砂有关,
没有喷水冒砂的地方,一般见不到地基失效 导致建筑物破坏的现象,故将喷水冒砂作为 地震液化的宏观标志。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4砂土地震液化的判别
初判:饱和的砂土或粉土(不含黄土),当符合下列条件之一时,可初步判别为
不液化或可不考虑液化影响:
1 地质年代为第四纪晚更新世(Q3)及其以前时,7、8度时可判为不液化。

2 粉土的黏粒(粒径小于0.005mm的颗粒)含量百分率,7度、8度和9 度分别不小于10,13和16时,可判为不液化土。

注:用于液化判别的黏粒含量系采用六偏磷酸钠作分散剂测定,采用其他方法时应按有
关规定换算。

3 浅埋天然地基的建筑,当上覆非液化土层厚度和地下水位深度符合下列条件之一时,可不考虑液化影响:
d u> do+ d b—2
dw> do+ d b —3
d u+ dw> 1.5do + 2d b—4.5
式中:dw――地下水位深度(m),宜按设计基准期内年平均最高水位采用,也可按近期内年最高水位采用;
d u――上覆盖非液化土层厚度(m),计算时宜将淤泥和淤泥质土层扣除;
db ---- 基础埋置深度(m),不超过2m时应采用2m
d0 ---- 液化土特征深度(m),可按表1采用。

表1液化土特征深度(m)
复判:当饱和砂土、粉土的初步判别认为需进一步进行液化判别时,应采用
标准贯入试验判别法判别地面下20m范围内土的液化;但对本规范第421条规定可不进行天然地基及基础的抗震承载力验算的各类建筑,可只判别地面下15m 范围内土的液化。

当饱和土标准贯人锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。

当有成熟经验时,尚可采用其他判别方法。

在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算:
Ncr=No B [In(0.6ds+1.5)-0.ldw] .3/ p c
式中:Ncr――液化判别标准贯入锤击数临界值;
No ――液化判别标准贯入锤击数基准值,可按表2采用;
ds ――饱和土标准贯入点深度(m);
dw ------- 地下水位(m);
p c ---- 黏粒含量百分率,当小于3或为砂土时,应米用3;
B ――调整系数,设计地震第一组取0.80,第二组取0.95,第三组取1.05。

表2液化判别标准贯入锤击数基准值No
液化指数和液化等级:对存在液化砂土层、粉土层的地基,应探明各液化土层的深度和厚度,按下式计算每个钻孔的液化指数,并按表3综合划分地基的液化等级:
n
I IE = [1-Ni/Ncri]diWi
i 1
式中:l lE——液化指数;
n ――在判别深度范围内每一个钻孔标准贯人试验点的总数;
Ni、Ncri ――分别为i点标准贯人锤击数的实测值和临界值,当实测值大于临界值时应取临界值;当只需要判别15m范围以内的液化时,15m以下的实测值可按临界值采用;
di ----------- i点所代表的土层厚度(m),可采用与该标准贯入试验点相邻的上、下两标准贯人试验点深度差的一半,但上界不高于地下水位深度,下界不深于液化深度;
Wi ――i 土层单位土层厚度的层位影响权函数值(单位为m1)。

当该层中点深度不大于5m时应采用10,等于20m时应采用零值,5〜20m时应按线性内插法取值。

表3液化等级与液化指数的对应关系。

相关文档
最新文档