高三物理碰撞与动量守恒练习题(带答案)

合集下载

2020高考物理专题10碰撞与动量守恒定律(高考押题)(解析版)

2020高考物理专题10碰撞与动量守恒定律(高考押题)(解析版)

高考押题专练1.如图所示,两木块A、B 用轻质弹簧连在一起,置于光滑的水平面上.一颗子弹水平射入木块A ,并留在其中.在子弹打中木块 A 及弹簧被压缩的整个过程中,对子弹、两木块和弹簧组成的系统,列说法中正确的是( )B.动量守恒、机械能不守恒C.动量不守恒、机械能守恒D.动量、机械能都不守恒【答案】B【解析】子弹击中木块 A 及弹簧被压缩的整个过程,系统不受外力作用,外力冲量为0,系统动量守恒.但是子弹击中木块A过程,有摩擦做功,部分机械能转化为内能,所以机械能不守恒, B 正确.2.如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律.若一个系统动量守恒时,则( )A.此系统内每个物体所受的合力一定都为零B.此系统内每个物体的动量大小不可能都增加C.此系统的机械能一定守恒D.此系统的机械能可能增加【答案】D【解析】若一个系统动量守恒,则整个系统所受的合力为零,但是此系统内每个物体所受的合力不一定都为零, A 错误.此系统内每个物体的动量大小可能会都增加,但是方向变化,总动量不变这是有可能的, B 错误.因系统合外力为零,但是除重力以外的其他力做功不一定为零,故机械能不一定守恒,系统的机械能可能增加,也可能减小,C错误,D 正确.3.在光滑水平面上,质量为m 的小球 A 正以速度v0匀速运动.某时刻小球 A 与质量为3m的静止小球 B 发生正碰,两球相碰后, A 球的动能恰好变为原来的14.则碰后 B 球的速度大小是( ) v0 v0 v0 v0A.2B.6C.2或6D.无法确定【答案】A解析】两球相碰后 A 球的速度大小变为原来的21,相碰过程中满足动量守恒,若碰后 A 速度方向不变,则mv0=1mv0+3mv1,可得 B 球的速度v1=v,而 B 在前,A 在后,碰后 A 球的速度大于 B 球的速度,26不符合实际情况,因此A球一定反向运动,即mv0=-21mv0+3mv1,可得v1=v20,A 正确,B、C、D错误.4.A、B 两物体在光滑水平面上沿同一直线运动,如图表示发生碰撞前后的v-t 图线,由图线可以判断( )A.A、B 的质量比为3∶2B.A、B 作用前后总动量守恒C.A、B 作用前后总动量不守恒D.A、B 作用前后总动能不变【答案】ABD【解析】设 A 的质量为m1,B 的质量为m2,碰撞前后两物体组成的系统所受合外力为零,系统动量守恒,从图象上可得碰撞前后两者的速度,故有m1×6+m2×1=m1×2+m2×7,解得m1∶m2=3∶2, A 、 B 正1 1 55 1 1 55 确,C 错误.碰撞前系统的总动能E k1=2m1×62+2m2×12=3 m1,碰撞后总动能为 E k2=2m1×22+2m2 ×72=3 m1=E k1,动能不变, D 正确.5.在光滑水平面上动能为E0、动量大小为p 的小钢球 1 与静止小钢球 2 发生碰撞,碰撞前后球 1 的运动方向相反,将碰撞后球 1 的动能和动量大小分别记为E1、p1,球 2 的动能和动量大小分别记为E2、p2,则必有( )A.E1<E0 B.p2>p0 C.E2> E0 D.p1>p0【答案】AB【解析】因为碰撞前后动能不增加,故有E1<E0,E2<E0,p1<p0,A 正确,C、D 错误.根据动量守恒定律得p0=p2-p1,得到p2=p0+p1,可见,p2>p0,B 正确.6.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块.若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示.则上述两种情况相比较 ( )A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功不相同D .子弹和滑块间的水平作用力一样大【答案】 AB解析】根据动量守恒,两次最终子弹与滑块的速度相等, A 正确.根据能量守恒可知,初状态子弹的动能相同, 末状态两滑块与子弹的动能也相同, 因此损失的动能转化成的热量相等, B 正确.子 弹对滑块做的功等于滑块末状态的动能,两次相等,因此做功相等, C 错误.产生的热量 Q =f ×Δs ,由t =0 时刻,以初速度 v 0从足够长的粗糙斜面底端向上滑行,物块速度B .物块所受摩擦力大小C .斜面倾角 θD .3t 0 时间内物块克服摩擦力所做的功【答案】 AC解析】上滑过程中做初速度为 v 0 的匀减速直线运动,下滑过程中做初速度为零、末速度为v 的匀加速直线运动,上滑和下滑的位移大小相等,所以有v 20t 0= v 2·2t 0,解得 v = v 20,A 正确.上滑过程中有-(mgsin θ+ μmgcos θ) ·t 0= 0- mv 0,下滑过程中有 (mgsin θ- μ mcgos θ) ·2t 0=m 2v ,解得 F f = μ mcgos θ=3mv0,sin θ= 5v0 ,由于不知道质量,所以不能求出摩擦力,可以求出斜面倾角,B 错误,C 正确.由8t 08gt 0于不知道物体的质量,所以不能求解克服摩擦力所做的功, D 错误.9.如图甲所示,物块 A 、B 间拴接一个压缩后被锁定的轻弹簧,整个系统静止放在光滑水平地面 上,其中于产生的热量相等,而相对位移 Δs 不同,因此子弹和滑块间的水平作用力大小不同, D 错误.3t 0 时刻物块又返回底端.由此可以确定7.如图甲所示,一物块在A .物块返回底端时的速度A 物块最初与左侧固定的挡板相接触,B物块质量为 4 kg。

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案)

1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=

m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。

M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。

MN右侧空间有一范围足够大的匀强电场。

在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。

处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。

现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。

(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。

2)碰撞后整体C的速度。

3)整体C运动到最高点时绳的拉力大小。

2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。

一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。

质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。

已知CO=4S,OD=S。

求撤去外力后:1)弹簧的最大弹性势能。

2)物块B最终离O点的距离。

3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。

现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。

当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。

高中物理练习题动量守恒与碰撞

高中物理练习题动量守恒与碰撞

高中物理练习题动量守恒与碰撞高中物理练习题:动量守恒与碰撞动量守恒与碰撞是高中物理课程中非常重要的内容之一。

在力学领域,动量守恒定律是一个基本原理,描述了在没有外力作用下,一个系统的总动量保持不变。

本文将通过一些练习题来帮助读者更好地理解动量守恒和碰撞的概念。

1. 弹簧振子的碰撞假设有两个相同质量的弹簧振子,如图所示。

一个振子从左侧以速度v1向右运动,另一个振子从右侧以速度v2向左运动。

两个振子在中间发生完全弹性碰撞后,各自的速度如何?(插入图示)解析:根据动量守恒定律,两个振子的总动量在碰撞前后保持不变。

由于两个振子质量相同,可以得到以下方程:m * v1 + m * v2 = m * v1' + m * v2'由于碰撞是完全弹性碰撞,动能守恒定律也适用。

可得以下方程:1/2 * m * v1^2 + 1/2 * m * v2^2 = 1/2 * m * v1'^2 + 1/2 * m * v2'^2通过解这组方程,可以求出两个振子碰撞后的速度v1'和v2'。

2. 粒子的非完全弹性碰撞现在考虑另一种情况,两个质量不同的粒子发生非完全弹性碰撞。

一个质量为m1,速度为v1的粒子与另一个质量为m2,速度为v2的粒子碰撞后,它们的速度如何?解析:在非完全弹性碰撞中,碰撞过程中会有能量损失。

因此,动能守恒定律不再适用,而动量仍然守恒。

可以得到以下方程:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'其中v1'和v2'是碰撞后粒子的速度。

由于能量损失,我们无法通过简单的方程求解得到v1'和v2'。

通常情况下,我们需要通过实验或者更复杂的模型来计算非完全弹性碰撞的结果。

3. 碰撞中的力学能量在一维碰撞中,有时候我们需要计算碰撞中的力学能量。

例如,两个物体在碰撞前有不同的高度,我们想要知道碰撞后是否有机械能转化。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理碰撞与动量守恒练习题(带答案)
第1章碰撞与动量守恒章末练习1
1.质量M=50kg的空箱子,放在光滑的水平面上,箱中有一质量m =30kg的铁块,如图56-1所示.铁块的左侧面与箱子内壁的左侧面相距S=1m,铁块一旦碰到箱壁后不再分开,箱底与铁块间摩擦可忽略不计,现用向右的恒力F=10N作用于箱子,经过时间t=2s后撤去.求 (1)箱的左壁与铁块碰撞前铁块和箱的速度; (2)箱的左壁与铁块碰撞后箱子的速度.解析:(1)在F作用的2s内,设箱没有碰到铁块,则对于箱子2s末立,所以碰前箱的速度为0.4m/s,水平向右,铁块的速度为零. (2)箱子与铁块碰撞时,外力F已撤去,对箱子与铁块这一系统碰撞过程中总动量守恒MvM=(M+m)v',所以碰后的共同速度为v′=点拨:要善于分析不同的物理过程和应用相应物理规律,对整个运动过程,我们就箱子和铁块这一系统用动量定理有:Ft=(M+m)v',这一关系不论在何时撤去F,最终的共同速度都由此关系求出 2.质量为m,半径为R的小球,放在质量为M,半径为2R的圆柱形桶内,桶静止在光滑的水平面上,当小球从图56-2所示的位球的质量之比.点拨:在球和圆筒相互作用的过程中,系统在水平方向的动量始终不变(在竖直方向的动量先增大后减少),所以可以用水平方向的位移来表示水平方向的动量守恒. 3.从地面以速率v1竖直向上抛出一小球,小球落地时的速率为v2,若小球在运动过程中所受的空气阻力大小与其速率成正比,试求小球在空中的运动时间.解析:小球在上升阶段和下落阶段发生的位移大小相等,方向相反.位移在速度图象上是图线与时间轴所围的“面积”,冲量在力随时间变化的图象(F~t图象)上是图线与时间轴所围的“面积”,由题意空气阻力与速率成正比,可得到小球在上升阶段和下落阶段空气阻力的冲量大小相等,方向相反,即在小球的整个运动过程中,空气阻力对小球的总冲量为零.对小球在整个过程中,由动量定理得:点拨在各知识点间进行分析,类比是高考对考生能力的要求,高考考纲明文规定“能运用几何图形,函数图象进行表达、分析”. 4.总质量为M的列车以不变的牵引力匀速行驶,列车所受的阻力与其重量成正比,在行驶途中忽然质量为m的最后一节车厢脱
钩.司机发现事故关闭油门时已过时间T,求列车与车厢停止运动的时间差.点拨车厢未脱钩时,列车匀速运动,所以牵引力F=kMg,车厢脱钩后,对脱钩的车厢和前面部分的列车分别应用动量定理.本题也可以这样来考虑,若车厢一脱钩司机就关闭油门,则列车与脱钩的车厢同时停止运动,现由于过了时间T才关闭油门,所以存在时间差ΔT,按冲量作用与动量变化的关系应有,牵引力在时间T内的冲量等于前面部分的列车比脱钩的车厢多运动时间ΔT内阻力的冲量.即kMgT=k(M-m)gΔT. 5.一个宇航员,连同装备的总质量
为100kg,在空间跟飞船相距45m处相对飞船处于静止状态,他带有一个装有0.5kg氧气的贮气筒,贮气筒上有一个可以以50m/s的速度喷出氧气的喷嘴,宇航员必须向着跟返回飞船方向相反的方向释放氧气,才能回到飞船上去,同时又必须保留一部分氧气供他在返回飞船的途中呼吸,已知宇航员呼吸的耗氧率为2.5×10-4kg/s试问: (1)如果他在准备返回的瞬时,释放0.15kg的氧气,他是否能安全地返
回到飞船? (2)宇航员安全地返回飞船的最长和最短时间分别是多少?解析:宇航员使用氧气喷嘴喷出一部分氧气后,根据动量守恒
定律,可以求出他返回的速度,从而求出返回的时间和返回途中呼吸所消耗的氧气. (1)令M=100kg, m0=0.5kg,Δm=0.15kg,氧气的释放速度为u,宇航员的返回速度为v 由动量守恒定律得0=(M-Δm)v-Δm(u-v) 宇航员返回途中所耗氧气m'=kt=
2.5×10-4×600=0.15(kg) 氧气筒喷射后剩余氧气m″=m0-m=
0.5-0.15=0.35(kg)>m',所以宇航员能安全返回飞船. (2)设释
放氧气Δm未知,途中所需时间为t,则 m0=kt+Δm 宇航员安全
返回飞船的最长和最短时间分别为1800s和200s.点拨喷嘴喷出
氧气的速度为相对喷嘴的速度,本例中找出动量守恒的系统和过程是关键,通过物理量间的制约关系得出问题的解. 6.火箭推进器中盛有强还原剂液态肼(N2H4)和强氧化剂液态双氧水,当它们混合反应时,即产生大量的氮气和水蒸气,并放出大量热,已知0.4mol液态肼与
等量液态双氧水反应,生成氮气和水蒸气,放出256.625kJ的热量. (1)写出该反应的热化学方程式________. (2)又已知H2O(液)=H2O(气)-44kJ,则16g液态肼与等量液态双氧水反应生成液态水
时放出的热量是________kJ (3)此反应用于对火箭的推进,它是
________定律的一个实际应用,在此反应中除释放大量热和快速产生大量气体外,还有一个很大的优点是________ 点拨火箭是利用喷出气体的反冲来获得动力的,是动量守恒定律的实际应用,从此反应的生成物来看,不会对环境造成污染.高考巡礼 7.如图56-3所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都为n(n=1、2、3……),每人只有一只沙袋,x>0一侧的每个沙袋质量为m
=14.0kg,x<0一侧的每个沙袋质量为m'=10.0kg,一质量为M=48.0kg的小车以某初速度从原点出发向正x方向滑行,不计轨道阻力,当车每经过一人身旁时,此时就把沙袋以水平速度v朝与车速相反的方向沿车面扔到车上,v的大小等于扔此袋之前的瞬间车速大小的2n倍(n是此人的序号数). (1)空车出发后,车上堆积了几个沙
袋时车就反向滑行? (2)车上最终大小沙袋共几个?解析:(1)在小车朝正x方向滑行的过程中第(n-1)个沙袋扔到车上后的车速为
vn-1,第n个沙袋扔到车上后的车速为vn,由动量守恒定律有 [M+(n-1)m]vn-1-2nmvn-1=(M+nm)vn 小车反向运动的条件是vn-1>0,vn<0 即M-nm>0 M-(n+1)m<0 n应为整数,故n=3,即车
上堆积3个沙袋后车就反向滑行. (2)车自反向滑行直到接近x<0
一侧第1人所在位置时,车速保持不变,而车的质量为M+3m,若车朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为v'n-1,第n个沙袋仍到车上后车速为vn',现取在图中向左的方向(负x方向)为的正方向,则由动量守恒定律有 [M+3m+(n-1)m']v'n-1
-2nm'v'n-1=(M+3m+nm')vn'车不再向左滑行的条件是v'
n-1>0,vn'≤0 即M+3m-nm'>0 M+3m-(n+1)m'≤0 n=8时,车停止滑行,即在x<0一侧第8个沙袋扔到车上后车就停住,故车
上最终共有大小沙袋3+8=11个.点拨本题要求考生在准确领会
题意的基础上,应用归纳的方法,找准研究对象和物理过程,正确地运用动量守恒定律,建立第n个沙袋扔上车前后之间动量守恒的方程,对考生具有很高的综合素质要求. 8.质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾,现小孩a沿水平方向以速率v(相对静止水面)向前跃入水中,然后小
孩b沿水平方向以同一速率v(相对静止水面)向后跃入水中,求小孩b跃出后小船的速度.点拨将小船和两小孩作为系统,系统的总动量守恒,在用动量守恒定律列等式时,各个速度都应相对静止水面的速度,题中所给的多个速度恰都是相对静止水面的.
参考答案 (气)+4H2O(气)+641.63kJ; (2)408.81kJ(3)动量守恒;生成物不污染。

相关文档
最新文档