包含体分离纯化

合集下载

包涵体蛋白的分离纯化

包涵体蛋白的分离纯化

包涵体蛋白的分离纯化赵玲0743085096 包涵体是外源基因在原核细胞中表达时,尤其在大肠杆菌中高效表达时,形成的由膜包裹的高密度、不溶性蛋白质颗粒,在显微镜下观察时为高折射区,与胞质中其他成分有明显区别。

包涵体形成是比较复杂的,与胞质内蛋白质生成速率有关,新生成的多肽浓度较高,无充足的时间进行折叠,从而形成非结晶、无定形的蛋白质的聚集体;此外,包涵体的形成还被认为与宿主菌的培养条件,如培养基成分、温度、pH 值、离子强度等因素有关.细胞中的生物学活性蛋白质常以可融性或分子复合物的形式存在,功能性的蛋白质总是折叠成特定的三维结构型.包涵体内的蛋白是非折叠状态的聚集体,不具有生物学活性,因此要获得具有生物学活性的蛋白质必须将包涵体溶解,释放出其中的蛋白质,并进行蛋白质的复性。

包涵体的主要成分就是表达产物,其可占据集体蛋白的40%~95%,此外,还含有宿主菌的外膜蛋白、RNA聚合酶、RNA、DNA、脂类及糖类物质,所以分离包涵体后,还要采用适当的方法(如色谱法)进行重组蛋白质的纯化。

1. 包涵体的形成重组蛋白不论在原核细胞还是真核细胞中表达时,都可形成包涵体.通常所说的包涵体是指重组蛋白在大肠杆菌中高效表达时形成的无活性蛋白聚集体,一般含有50%以上重组蛋白,其余为核糖体组分、RN A聚合酶,外膜蛋白等杂蛋白,以及质粒DNA、RNA片断、脂质、肽聚糖、脂多糖等成分]。

由于包涵体在相差显微镜下为黑色斑点, 所以也称为折射体。

包涵体形成的原因主要有以下几点:⑴蛋白合成速度太快,以致于没有足够的时间进行折叠.蛋白折叠的动力学模型表明:蛋白质天然构象形成的速率取决于肽链的合成速率、折叠速率和聚集速率几个因素。

中间体正确折叠是分子内的一级反应,而中间体的聚集是发生在分子间的二级或高级反应,因此,折叠中间体的浓度对聚集反应影响非常大];⑵重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物的翻译后修饰系统(如糖基化等) ,致使中间体大量积累,容易形成包涵体;⑶培养条件不佳和重组蛋白所处的环境也可导致包涵体形成,如发酵温度高,胞内pH 接近蛋白的等电点等;⑷二硫键在蛋白折叠中有重要作用,而大肠杆菌胞内的还原环境不利于二硫键的形成;⑸包涵体不溶可能由于分子间无活性的β2片层含量高于天然结构或盐沉淀蛋白.包涵体蛋白虽然不具有天然结构、没有活性,但在基因工程中生产重组蛋白,包涵体的形成有一定优势,主要表现在: ⑴重组蛋白高水平表达,有时候可达细胞总蛋白的30%;⑵包涵体密度高(约1. 3mg/m l)[ 12 ],重组蛋白相对较纯,很容易与细胞成分分离,可减少后续纯化步骤;⑶包涵体结构致密,因而在一定程度上避免了大肠杆菌蛋白酶的降解; ⑷易于毒性蛋白和膜蛋白表达;⑸包涵体的形成降低了重组蛋白在胞质中的浓度,有利于目的基因的进一步表达。

(整理)包涵体的分离纯化.

(整理)包涵体的分离纯化.

包涵体的纯化和复性总结(二)关于包涵体的纯化是一个令人头疼的问题,包涵体的复性已经成为生物制药的瓶颈,关于包涵体的处理一般包括这么几步:菌体的破碎、包涵体的洗涤、溶解、复性以及纯化,内容比较庞杂一、菌体的裂解1、怎样裂解细菌?细胞的破碎方法1.高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。

此法适用于动物内脏组织、植物肉质种子等。

2.玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。

3.超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG 频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施,时间以及超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮,如果不放心可以在显微镜下观察。

对超声波及热敏感的蛋白和核酸应慎用。

4.反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

5.化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好,我用的浓度一般为1mg/ml。

无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。

微生物纯培养—分离纯化方法汇总

微生物纯培养—分离纯化方法汇总

微生物纯培养—分离纯化方法汇总含有一种以上的微生物培养物称为混和培养物(mixed culture)。

如果在一个菌落中所有细胞均来自于一个亲代细胞,那么这个菌落称为纯培养(pureculture)。

在进行菌种鉴定时,所用的微生物一般均要求为纯的培养物。

得到纯培养的过程称为分离纯化,方法有许多种。

1、倾注平板法首先把微生物悬液通过一系列稀释,取一定量的稀释液与熔化好的保持在40-50°左右的营养琼脂培养基充分混合,然后把这混合液倾注到无菌的培养皿中,待凝固之后,把这平板倒置在恒箱中培养。

单一细胞经过多次增殖后形成一个菌落,取单个菌落制成悬液,重复上述步骤数次,便可得到纯培养物。

首先把微生物悬液通过适当的稀释,取一定量的稀释液放在无菌的已经凝固的营养琼脂平板上,然后用无菌的玻璃刮刀把稀释液均匀地涂布在培养基表面上,经恒温培养便可以得到单个菌落。

3、平板划线法最简单的分离微生物的方法是平板划线法。

用无菌的接种环取培养物少许在平板上进行划线。

划线的方法很多,常见的比较容易出现单个菌落的划线方法有斜线法、曲线法、方格法、放射法、四格法等。

当接种环在培养基表面上往后移动时,接种环上的菌液逐渐稀释,最后在所划的线上分散着单个细胞,经培养,每一个细胞长成一个菌落。

富集培养法的方法和原理非常简单。

我们可以创造一些条件只让所需的微生物生长,在这些条件下,所需要的微生物能有效地与其他微生物进行竞争,在生长能力方面远远超过其他微生物。

如果要分离一些专性寄生菌,就必须把样品接种到相应敏感宿主细胞群体中,使其大量生长。

通过多次重复移种便可以得到纯的寄生菌。

5、厌氧法在实验室中,为了分离某些厌氧菌,可以利用装有原培养基的试管作为培养容器,把这支试管放在沸水浴中加热数分钟,以便逐出培养基中的溶解氧。

然后快速冷却,并进行接种。

接种后,加入无菌的石蜡于培养基表面,使培养基与空气隔绝。

另一种方法是,在接种后,利用N2或CO2取代培养基中的气体,然后在火焰上把试管口密封。

分离简答题

分离简答题

1、基因工程包含体纯化的路线:答:要获得天然活性态的目标产物,必须要分离包含体,溶解包含体并使其中的目标蛋白恢复应有的天然活性。

一般纯化流程如下:收集菌体细胞→细胞破碎→包含体洗涤→目标蛋白的变性溶解→目标蛋白复性获得常见包含体的工艺路线:①机械破碎(高压匀浆、高速珠研磨)→离心获取包含体→加变性剂溶解→除变性剂复性特点:是利用了包含体与细胞碎片的密度差,用离心法将包含体与细胞碎片和可溶性蛋白质分开,获得了干净的包含体,再对包含体溶解复性优点:摆脱了大量的杂蛋白、核酸、热原、内毒素等杂志,使后面的分离纯化简单了。

从这个角度上讲,包含体的形成对分离纯化亦有好处。

缺点:要经过几次离心才能出去大部分的细胞碎片,加工时间较长②机械破碎→膜分离获得包含体→加变性剂溶解包含体→除变性剂复性③化学破碎(加变性剂)→离心除细胞碎片→除变性剂复性2、化学渗透法的特点?答:优点:对产物释放有一定的选择性,可使一些较小分子量的溶质,如多肽和小分子酶蛋白透过,而核酸等大分子量的物质仍滞留在细胞内;细胞外形完整,碎片少,浆液粘度低,易于固液分离和进一步提取。

缺点:①通用性差②时间长、效率低,一般胞内物质释放率不超过50% ③有些化学试剂有毒④化学试剂的加入会给随后产物的纯化带来困难,并影响最终产物浓度3、简述盐析的原理?答:盐析是在在高浓度中性盐存在下,蛋白质等生物大分子在水中的溶解度降低,进而产生沉淀的现象。

其原理是:向蛋白质的水溶液中加入电解质后,起初蛋白质的活度系数降低,蛋白质吸附盐离子后,带电表层使蛋白质分子间相互排斥,而蛋白质与水分子的相互作用却加强,因而蛋白质的溶解度增大出现盐溶现象。

继续加入电解质使得离子强度增大,蛋白质表明的双电层厚度降低,静电排斥作用减弱;同时由于盐离子的水化作用使蛋白质表明疏水区附近的水化层脱离蛋白质,暴露疏水区域,从而增大了蛋白质表明疏水区之间的疏水相互作用,容易发生凝集,进而沉淀。

包涵体的纯化和复性总结--最全的前人经验

包涵体的纯化和复性总结--最全的前人经验

<包涵体的纯化和复性总结二、包涵体的洗涤1、包涵体的洗涤问题通常的洗涤方法一般是洗不干净的,我以前是这么做的,先把包涵体用6M盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,你可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,我觉得比通常的直接洗脱效果好。

包涵体一般难溶解,所以你要注意未溶解的部分,你可以跑电泳对比,因为有时候难溶解的就是你的目标蛋白,所以每次处理都要把上清和沉淀跑电泳对比,免得把目标蛋白弄丢了。

此外刚处理完的包涵体好溶解。

冷冻后难溶解,溶解也需要长点时间,也需要大量的溶剂。

如果说是不少不溶解的不是你要的,那就不用管了。

2、如何得到比较纯的包涵体对于包涵体的纯化,包涵体的前处理是很重要的。

包涵体中主要含有重组蛋白,但也含有一些细菌成分,如一些外膜蛋白、质粒DNA和其它杂质。

洗涤常用1%以下的中性去垢剂,如Tween、Triton、Lubel和NP40等加EDTA和还原剂2-巯基苏糖醇(DTT)、β-巯基乙醇等反复多次进行,因去垢剂洗涤能力随溶液离子强度升高而加强,在洗涤包涵体时可加50 mM NaCL。

这样提取的包涵体纯度至少可达50%以上,而且可保持元结构。

也可用低浓度的盐酸胍或尿素/中性去垢剂/EDTA/还原剂等洗去包涵体表面吸附的大部分不溶性杂蛋白。

洗涤液pH以与工程菌生理条件相近为宜,使用的还原剂为0.1-5mM。

EDTA为0.1-0.3 mM。

去垢剂如Triton X-100、脱氧胆酸盐和低浓度的变性剂如尿素充分洗涤去除杂质,这一步很重要,因为大肠杆菌外膜蛋白Omp T(37 KDa)在4-8mol/L尿素中具有蛋白水解酶活性,在包涵体的溶解和复性过程中可导致重组蛋白质的降解。

对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。

它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。

包涵体产物的纯化工艺

包涵体产物的纯化工艺

包涵体产物的纯化工艺
纯化涉及从原料中分离和去除杂质以获得纯净化合物的工艺。

对于包含有机或无机物的体产物,其纯化工艺可以根据具体情况进行调整,但以下是一般常用的几种纯化工艺:
1. 结晶:通过温度控制和溶剂选择,使目标化合物从溶液中结晶出来,然后进行过滤、洗涤和干燥等步骤,以获得纯净的产物。

2. 蒸馏:利用成分之间的沸点差异来分离和纯化混合物。

通过加热混合物,使成分按照沸点的高低逐渐蒸发和冷凝,从而分离目标化合物。

3. 萃取:利用不同物质在不同溶剂中的溶解度差异,将目标化合物从混合物中分离提取出来。

常见的萃取方法包括溶剂萃取、液液萃取和固相萃取等。

4. 色谱:利用样品成分在移动相和固定相之间的差异,通过一系列分离和纯化步骤来分离和纯化产物。

常见的色谱方法包括薄层色谱、柱层析、高效液相色谱和气相色谱等。

5. 活性炭吸附:通过将目标化合物吸附在活性炭上,去除混合物中的杂质物质,从而纯化产物。

这种方法常用于水处理、空气净化和溶剂回收等领域。

6. 晶体化学:通过对化合物晶体结构的解析和再合成,消除晶体中的杂质,实
现产物纯化。

以上是一些常见的纯化工艺,具体选择哪种工艺取决于产物性质、目标纯度要求、经济性和实际应用等因素。

生物分离工程部分知识点

生物分离工程部分知识点

生物分离工程部分知识点生物分离效率三个指标:分离纯化浓缩程度,纯化倍数,回收率。

生物分离工程:从发酵液、酶反应液或动/植物细胞培养液中将目标产物提取、浓缩、分离、纯化和成品化的过程。

机械破碎法:固体剪切法(珠磨法、压榨法、撞击法) 液体剪切法(高压匀浆法、超声波破碎)工业常用方法:高压匀浆法、高速珠磨法。

优缺点:高压匀浆优点是细胞经历了高速造成的剪切、碰撞、高压到常压的变化,从而造成细胞破碎。

缺点是较容易造成堵塞的丝状真菌、放线菌以及较小的G+菌不适合用本法。

高压匀浆一般需多级循环操作,每次循环前需要进行级间冷却。

主要能耗是高压和维持低温操作能量消耗。

高速珠磨破碎法:破碎率与能耗成正比。

增加装珠量或延长破碎时间或增加转速均可提高破碎率,但同时能量消耗和产热增加,提高了制冷费和总能源消耗量。

当破碎率≥80%,能耗急剧增加。

超声波破碎:有效能量利用率低,冷却要求苛刻。

①常用的蛋白质沉淀方法有:盐析沉淀(硫酸铵,低温)、等电点沉淀、有机溶剂沉淀(丙酮/乙醇等有机溶剂)及热沉淀法等。

②有机溶剂沉淀蛋白质的机理是:向蛋白质溶液中加入有机溶剂,水的活度降低。

随着有机溶剂溶度的增大,水对蛋白质分子表面荷电基团的水化程度降低,液体的介电常数下降,蛋白质分子间的静电引力增大,从而凝聚和沉淀。

盐析的主要因素有无机盐的种类,浓度,温度和pH值。

lgS=-β—KsI。

盐的种类影响KS值,离子半径小而带电荷较多的阴离子盐析效果好。

温度和pH值影响β,在高离子强度溶液中,温度上升,有利于某些蛋白质失水,因此温度升高,蛋白质溶解度下降。

pH值接近蛋白质等电点有利于提高盐析效果。

水相pH值对弱电解质分配系数具有显著影响。

物理萃取时,弱酸性电解质的分配系数随pH值降低而增大,弱碱性电解质随pH值降低而减少。

弱电解质在水相中发生不完全解离,仅仅是游离酸或游离碱在两相产生分配平衡,而酸根或碱基不能进入有机相,所以萃取达到平衡状态时,一方面弱电解质在水相中达到解离平衡,另一方面,未解离的游离电解质在两相中达到分配平衡。

包涵体蛋白纯化步骤

包涵体蛋白纯化步骤

包涵体蛋白纯化步骤引言:包涵体蛋白纯化是生物技术和生物制药领域中重要的工艺步骤之一。

通过纯化包涵体蛋白,可以获得高纯度的目标蛋白,为后续的研究和应用提供了基础。

本文将介绍包涵体蛋白纯化的一般步骤,包括细胞破碎、包涵体回收、包涵体溶解、亲和层析和蛋白质再折叠等。

一、细胞破碎:细胞破碎是包涵体蛋白纯化的第一步。

通常使用机械方法(如超声波破碎或高压均质)或化学方法(如洗涤剂破碎)来破碎细胞,释放包涵体蛋白。

需要注意的是,破碎条件应该使得包涵体蛋白能够充分溶解而不会发生蛋白质降解。

二、包涵体回收:包涵体蛋白通常以包涵体的形式存在于细胞裂解液中。

包涵体回收是将包涵体从其他细胞成分中分离出来的过程。

一种常用的方法是通过离心将细胞碎片和其他细胞成分与包涵体分离。

此外,还可以使用过滤、沉淀或超滤等技术来实现包涵体的回收。

三、包涵体溶解:包涵体蛋白在还原条件下通常以不溶性的形式存在。

为了使包涵体蛋白能够溶解,通常需要添加变性剂(如尿素或胍氯酸)和还原剂(如二硫醇)。

通过调节溶解条件,可以使得包涵体蛋白迅速溶解为可溶性蛋白。

四、亲和层析:亲和层析是包涵体蛋白纯化的关键步骤之一。

通过将目标蛋白与亲和层析介质上的亲和配体结合,可以实现目标蛋白的富集和纯化。

亲和配体可以是金属离子、抗体或亲和标签等。

在亲和层析过程中,需要注意选择合适的亲和配体和适宜的洗脱条件,以实现对目标蛋白的高效纯化。

五、蛋白质再折叠:由于包涵体蛋白在还原条件下溶解,其折叠状态通常不完整。

为了使得目标蛋白具有正确的结构和功能,需要对其进行再折叠。

常用的再折叠方法包括逐渐降低变性剂浓度、添加折叠辅助剂和调节pH 值等。

通过适当的再折叠条件,可以使得目标蛋白恢复到天然的折叠状态。

结论:包涵体蛋白纯化是一项复杂的工艺步骤,需要经过细胞破碎、包涵体回收、包涵体溶解、亲和层析和蛋白质再折叠等步骤。

通过这些步骤的有序进行,可以得到高纯度和高活性的包涵体蛋白。

随着生物技术和生物制药的不断发展,对包涵体蛋白纯化技术的要求也越来越高,希望通过不断的研究和创新,能够进一步提高包涵体蛋白纯化的效率和纯度,为生物医药领域的研究和应用提供更好的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性梯度洗脱:0~1 mol/L NaCl 、20mmol/LTris-HCL、pH 8.3 0.1 mol/L NaCl 洗脱杂蛋白 0.2 mol/L NaCl 洗脱目的蛋白 1.0 mol/L NaCl 再生柱子浓度
最终选定
收集的样品对pH7.0的PBS于4℃透析,15%SDS-PAGE纯度分析和活性测定。
STEP 3 包含体中rGM-CSF的抽提
包含体由蛋白质分子之间相互作用形成共价或非共价缔合而成。 包含体溶解:加入变性剂破坏分子内或分子间的相互作用。 包含体中有各种错配的二硫键,需加入还原剂以解开二硫键。 还原剂:二硫苏糖醇(DTT) 变性剂:尿素、盐酸胍、SDS

价格低 适合各种色谱纯化
6mol/L尿素
pH 8.3
稀释蛋白样品至100μg/mL(缓冲液:20mmol/L Tris-HCL ,pH8.3)
用谷胱甘肽氧化还原系统促进二硫键正确配对 还原型 1 mmol/L 氧化型 0.1mmol/L 4℃
静置复性12h
活性检测
STEP 6 离子交换色谱纯化
用 20mmol/L Tris-HCL ,pH8.3 平衡DEAE Sepharose Fast Flow 柱 上样流速:10mL/min
含有重组蛋白的沉 淀
STEP 3 包含体中rGM-CSF的抽提 STEP 4 凝胶过滤色谱分离
凝胶过滤
离子交换层析
STEP 5 rGM-CSF的复性
吸附层析 STEP 6 离子交换色谱纯化
重组蛋白质的复性
图 1 纯化大肠杆菌包含体中的重组蛋白质的一般步骤
STEP 1 超声波破菌
发酵完毕,以4000r/min于4℃离心10min收集菌体。使用超 声波仪破菌,选择一系列菌体浓度、超声强度和超声时间。镜 检评价其破碎效果。 破菌原则:使大肠杆菌菌体破碎率尽可能高,又要保持包含体 的完整性。
注意事项:
Leabharlann 超声破碎具体条件可根据实验情况而定,要掌握好功率和每次超声时 间,降低蛋白被降解的可能。 功率大时,每次超声时间可缩短,不能让温度升高,应保持在4℃左右, 超声时保持冰浴。 菌体破碎后总蛋白浓度的测定可用Bradford法或者紫外吸收法。 可通过SDS-PAGE电泳观察菌体破碎程度及目标条带占总蛋白的含量。
以包含体形式表 达的rGM-CSF分 离纯化
Extraction and purification of inclusion body
含有从组蛋白质包 含体的宿主细胞
以包含体形式表达的rGM-CSF分离纯化
搜集菌体细胞,并 破碎细胞 离心,弃上清液
STEP 1 超声波破菌
①以缓冲液充分洗涤 ②加入强变性剂 STEP 2 包含体的洗涤 ③加入还原剂 溶解的重组蛋白质 不溶物质 ④离心
STEP 2 包含体的洗涤
液固分离
去除沉淀包含体中 的可溶性杂蛋白
去除细胞碎 片等杂质
为进一步纯 化提供有利 条件
以 10000r/ min于 4℃离心 30min
用pH 8.3的TE 缓冲液 反复洗 涤
用0.5% 的表面 活性剂 Triton X-100的 TE缓冲 液,悬 浮洗涤 30min
除去大 部分杂 质,目 的蛋白 的纯度 达到 85%
THANKS~
选择Sephacry-200HR作色 谱填料填装柱子
洗脱缓冲液:6mol/L 尿素 & 1mmol/L DTT的ET缓冲液 注意! 上样前需要将包含体抽提物于37℃温育30min。
Why?
STEP 5 rGM-CSF的复性
收集的样品+5mmol/L DTT
42℃
15min
上样至脱盐柱
缓 冲 液
60mmol/L Tris-HCL
具体步骤:将抽提液与包含体混匀(100mL:1g),室温下搅 拌30min后,以15000r/min于4℃离心26min,上清液即为 rGM-CSF抽提液,于4℃存放。
STEP 4 凝胶过滤色谱分离
凝胶过滤是分离包含体抽提物种变性蛋白的有效方法。
目的蛋白:1.5×104
相对分子质量
杂质蛋白:3.0×104
相关文档
最新文档