自然语言处理
什么是自然语言处理?

什么是自然语言处理?
自然语言处理(Natural Language Processing,NLP)是一门人
工智能技术领域中的一个分支,其主要研究计算机与人类语言之间
的交互关系,即如何让计算机“理解”人类语言,并自己能够处理和
产生语言信息。
自然语言处理涉及语音识别、语音合成、文本分析、语言生成等方面,在信息检索、智能对话等领域具有广泛的应用,
能够帮助人们更加高效地处理语音和语言信息。
自然语言处理的难点在于人类语言的复杂性和多样性,不同的
语言、方言和语境中表达出的意思也会有所不同。
NLP技术要求具
备深厚的语言学、计算机科学、数学等多方面的知识,需要掌握文
本分析、机器研究、深度研究、神经网络等多种算法方法,以及大
量的数据支撑。
因此,目前实际应用场景仍然有限,但是随着技术
的不断迭代,自然语言处理的应用前景非常广阔。
近年来,随着互联网、智能移动设备等技术的发展,人们愈加
依赖于语音和文字交流,自然语言处理的意义也变得越来越重要。
可以预见,自然语言处理技术将会在金融、医疗、客服、智能家居
等领域得到广泛应用,带来颠覆性的变化和巨大的经济效益。
自然语言处理的基本原理

自然语言处理的基本原理自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的重要分支,致力于让计算机能够理解和处理人类语言。
它涵盖了多个学科领域,包括计算机科学、语言学和人工智能等。
本文将介绍自然语言处理的基本原理,包括文本预处理、分词、词性标注和句法分析等。
一、文本预处理在进行自然语言处理之前,首先需要对文本进行预处理。
文本预处理指的是对原始文本进行清洗、规范化和标准化,以便后续的处理和分析。
常见的文本预处理步骤包括去除标点符号、停用词和数字,转换为小写字母形式,去除多余的空格和特殊字符等。
二、分词分词是自然语言处理中的重要步骤,将一段连续的文本切分成独立的词语。
分词的结果可以作为后续处理的基础,如词频统计、语义分析等。
中文分词是一个相对复杂的任务,需要根据上下文来确定词语边界。
常见的分词算法包括基于规则的方法、基于统计的方法和基于深度学习的方法。
三、词性标注词性标注是将分词结果中的每个词语赋予一个预定义的词性标签,用于表示该词语在句子中的词性属性。
词性标注可以为后续的语义分析、句法分析和机器翻译等任务提供基础信息。
常见的词性标注方法包括基于规则的方法、基于统计的方法和基于深度学习的方法。
四、句法分析句法分析是自然语言处理中的一项重要任务,旨在分析句子的结构和语法关系。
句法分析可以帮助我们理解句子的语义,并从中提取出关键信息。
常见的句法分析方法包括基于规则的方法、基于统计的方法和基于依存关系的方法。
依存关系分析是一种常用的句法分析方法,它将句子中的词语之间的关系表示为一棵依存树。
五、语义分析语义分析是对文本进行深层次的语义理解和推理,目的是获取句子的语义信息。
常见的语义分析任务包括语义角色标注、实体识别和情感分析等。
语义角色标注是为句子中的谓词和论元赋予语义角色标签,表示它们在句子中的语义角色。
实体识别是从文本中识别出具有特定语义类别的实体,如人名、地名和组织机构名等。
自然语言处理

自然语言处理自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,主要研究如何使计算机能够理解和处理人类语言。
通过NLP技术,人们可以利用计算机自动处理、理解和生成自然语言,实现人机交互、文本挖掘、机器翻译、智能问答等应用。
1. NLP的背景和意义在信息时代,海量的文字信息需要进行处理和理解。
但由于语言的复杂性和多样性,传统的机器处理技术无法有效处理和分析自然语言。
因此,NLP应运而生,旨在解决这一问题。
2. NLP的基本任务NLP的基本任务可以分为以下几类:(1) 分词:将连续的文本切分为有意义的词语。
(2) 词性标注:为句子中的每个词语标注其词性,如动词、名词、形容词等。
(3) 句法分析:分析句子的结构和成分关系,如主谓宾等。
(4) 语义分析:理解句子的语义,包括词义消歧、语义角色标注等。
(5) 机器翻译:将一种语言的文本转化为另一种语言的文本。
(6) 问答系统:根据用户提问,自动回答问题。
3. NLP的核心技术(1) 语言模型:用于计算一句话的概率,常用的方法有n-gram模型和神经网络模型。
(2) 词向量表示:将词语映射为向量形式,常用的方法有Word2Vec和GloVe等。
(3) 语义角色标注:标注句子中每个词语的语义角色,用于语义分析和问答系统。
(4) 命名实体识别:识别文本中的人名、地名、组织机构名等实体。
(5) 机器学习算法:包括支持向量机(SVM)、条件随机场(CRF)和深度学习等。
4. NLP在实际应用中的案例NLP技术在众多领域都有广泛应用,以下是几个典型的案例:(1) 机器翻译:将一种语言的文本翻译为另一种语言,如谷歌翻译等。
(2) 情感分析:分析文本中的情感倾向,用于产品评论、社交媒体舆情分析等。
(3) 文本分类:将文本划分为不同类别,如新闻分类、垃圾邮件过滤等。
(4) 自动摘要:提取文本中的关键信息,生成摘要。
(5) 问答系统:根据用户提问,自动回答问题,如智能客服等。
什么是“自然语言处理”

什么是“自然语言处理”自然语言处理(Natural Language Processing, NLP)是计算机科学与人工智能领域中的一个重要分支,它涉及将计算机与人类语言相结合,以实现对文本和语言数据的处理与分析。
NLP的定义NLP的目标是使计算机能够理解、处理和生成自然语言。
自然语言是人类日常交流和沟通的方式,包括例如中文、英文、法文等语言。
NLP利用基于统计和机器研究的算法,以及语言学和计算语言学的知识,使计算机能够理解语言的含义、推理逻辑、进行文本分类和信息提取等任务。
NLP的应用领域NLP在当今社会中有着广泛的应用。
以下是一些NLP的应用领域:1. 机器翻译:NLP可以用于将一种语言的文本翻译成另一种语言,例如将英文翻译成中文。
2. 文本分类:NLP可以用于将文本按照不同的类别进行分类。
例如,将新闻文章按照新闻类别进行分类。
3. 信息提取:NLP可以从非结构化文本中提取有用的信息。
例如,从新闻文章中提取关键人物、地点和事件等信息。
4. 情感分析:NLP可以分析文本中的情感倾向。
例如,分析社交媒体上用户对某个产品的评论是积极还是消极的。
5. 问答系统:NLP可以用于构建智能问答系统,根据用户提出的问题提供准确的答案。
例如,智能语音助手可以回答用户的问题。
NLP的挑战尽管NLP在许多领域中被广泛应用,但它仍面临一些挑战:1. 语义理解:计算机理解语言的含义是一个复杂的任务。
人类语言具有丰富的语义和上下文,而准确理解和表达这些语义对计算机来说是具有挑战性的。
2. 多样性和歧义:同一句话可以有多种解释和含义,这使得计算机在理解和处理自然语言时面临歧义和多样性的问题。
3. 数据稀缺性:由于人们使用语言的方式多种多样,获取足够的标注数据用于NLP算法的训练是一个挑战。
4. 文化差异:不同文化之间存在语言和表达方式上的差异,这给NLP的跨文化应用带来了困难。
总之,自然语言处理是一个有挑战性但潜力巨大的领域。
自然语言处理方法

自然语言处理方法自然语言处理(Natural Language Processing, NLP)是计算机科学与语言学领域交叉的研究领域,旨在让计算机能够理解、处理和生成人类语言。
随着机器学习和人工智能的不断发展,NLP在各个领域的应用越来越广泛。
本文将介绍几种常见的自然语言处理方法。
一、文本预处理在进行自然语言处理之前,通常需要对文本进行预处理,以便更好地应用各种NLP方法。
文本预处理的步骤可以包括去除标点符号、停用词、数字,进行词干提取或词形还原等。
通过预处理可以降低文本的维度,并去除一些干扰信息,帮助模型更好地理解文本。
二、词袋模型(Bag of Words)词袋模型是一种常见的NLP方法,它将文本表示为词汇表中词语的计数向量。
在词袋模型中,文本的顺序和语法结构被忽略,只关注词语的出现次数。
词袋模型可以作为文本分类、文本聚类等任务的基础。
三、词嵌入(Word Embedding)词嵌入是将词语映射为低维实数向量的方法。
通过词嵌入,可以将词语的语义信息编码为向量表示,从而方便计算机进行进一步的处理。
常见的词嵌入方法有Word2Vec、GloVe等,它们通过学习语料库中单词之间的关系,生成高质量的词嵌入模型。
四、文本分类文本分类是自然语言处理中的重要任务之一,它将文本分为不同的类别。
常见的文本分类方法包括朴素贝叶斯分类器、支持向量机(SVM)、深度学习模型等。
这些方法根据文本的特征进行分类,可以广泛应用于情感分析、垃圾邮件过滤等场景。
五、信息抽取信息抽取是从结构化或半结构化文本中提取特定信息的过程。
常见的信息抽取任务包括命名实体识别(Named Entity Recognition, NER)、关系抽取等。
信息抽取可以为后续的知识图谱构建、问答系统等任务提供基础。
六、机器翻译机器翻译是将一种语言的文本自动翻译为另一种语言的任务。
随着神经网络的发展,神经机器翻译(Neural Machine Translation, NMT)成为了机器翻译领域的主流方法。
自然语言处理过程的五个层次

自然语言处理过程的五个层次
自然语言处理过程的五个层次分别是:语音分析、词法分析、句法分析、语义分析和语用分析。
1.语音分析是根据音位规则,从语音流中区分出一个
个独立的音素,再根据音位形态规则找出音节及其对应的词素或词。
2.词法分析是找出词汇的各个词素,从中获得语言学
的信息。
3.句法分析是对句子和短语的结构进行分析,目的是
要找出词、短语等的相互关系以及各自在句中的作用。
4.语义分析是指运用各种机器学习方法,学习与理解
一段文本所表示的语义内容。
5.语用分析是研究语言所存在的外界环境对语言使
用者所产生的影响。
自然语言处理

自然语言处理自然语言处理(Natural Language Processing,简称NLP)是计算机科学领域的一个重要分支,旨在使计算机能够理解、分析和生成人类自然语言。
随着人工智能技术的不断发展,NLP在各个领域都得到了广泛应用,它不仅可以应用在智能机器人、智能助手、机器翻译等领域,还可以用于社交媒体分析、舆情监测以及信息检索等工作。
NLP主要涉及到自动语言识别、文本分类、信息抽取、机器翻译、语音识别和语音合成等关键技术。
下面将从不同的角度介绍NLP的应用和相关技术。
1. 自动语言识别自动语言识别(Automatic Speech Recognition,简称ASR)是NLP的重要子领域之一。
它致力于将语音信号转化为文本形式,使得计算机可以理解和处理人类语言。
ASR被广泛应用于语音助手、智能音箱等设备中,能够实现语音输入、语音交互等功能。
2. 文本分类文本分类是NLP中一项重要的技术,它可以根据文本的内容将其自动分类到不同的类别中。
例如,可以将新闻文章分类为政治、经济、娱乐等不同的类别,以便用户可以更方便地浏览和获取信息。
文本分类技术在新闻推荐、广告投放等应用中发挥着重要作用。
3. 信息抽取信息抽取是NLP中的一个关键任务,它旨在从非结构化文本中自动提取出所需的信息。
例如,在新闻报道中提取出具体的人名、地名、事件等信息,以便进一步的分析和利用。
信息抽取技术可以广泛应用于舆情监测、情报分析等领域。
4. 机器翻译机器翻译是指使用计算机对一种语言的文本进行自动翻译成另一种语言的技术。
随着全球化的推进,机器翻译在国际交流和跨文化交流中发挥着重要作用。
目前,机器翻译技术已经取得了显著的进展,但仍面临着挑战,如语义理解、文化差异等。
5. 语音识别和语音合成语音识别技术是将人类的语音信号转化为文本形式的技术,而语音合成则是将文本转化为语音的技术。
它们被广泛应用于语音助手、智能导航、语音识别设备等领域,方便了人与计算机之间的交流与操作。
第8章-自然语言处理

G=(N,T,S,P)
N={ROOT,IP,NP,VP,NR,VV,VE,NN}
Phrase
StructurTe={G俄r国a,m希望m,a伊r朗,没有,制造,核武器}
S=ROOT
由Chomsky提出产,生上式P下:文无关文法。
ROOT IP
IP NP VP PU
NP NR
VP VV IP
Google Translate
源语言文本
目标语言文本
词法分析 句法分析 语义分析
词典 规则库 结构转换
形态生成 译词选择 句子生成
第二十四页,编辑于星期日:五点 五十四分。
自然语言处理的应用
信息检后裁制完毕,并呈送将军府中。 王府饭店的设施和服务是一流的。
VP VE VP
VP VV NN
NR 俄国
VV 希望
NR 伊朗
VE 没有
VV 制造
NN 核武器
PU 。
第十三页,编辑于星期日:五点 五十四分。
句法分析
依存语法
Dependency Grammar 由Tesniere于1959年提出。
第十四页,编辑于星期日:五点 五十四分。
语义分析
词性歧义
▪ 这只会测水温的鸭子,挺有用的。 ▪ 这只会测水温的鸭子,没什么用。
第六页,编辑于星期日:五点 五十四分。
概述
自然语言的特点
自然语言充满歧义,很难完全消解
句法结构歧义
▪ 咬死了猎人的狗。 ▪ 三个大学的老师。
词义歧义
▪ 他说:“ 她这个人真有意思” 。她说:“ 他这个人真怪有意思 的” 。于是人们以为他们有了那种意思,并让他向她意思意思。 他火了:“ 我根本没有那个意思” !她也生气了:“ 你们这么 说是什么意思” ?事后有人说,“ 真有意思” 。也有人说: “ 真没意思” 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。
它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理是一门融语言学、
计算机科学、数学于一体的科学。
因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,包括中文、英文、俄
文、日文、德文、法文等等,所以它与语言学的研究有着密切的联系,但又有重要的区别。
自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机
系统,特别是其中的软件系统。
因而它是计算机科学的一部分。
语言是人类区别其他动物的本质特性。
在所有生物中,只有人类才具有语言能力。
人类
的多种智能都与语言有着密切的关系。
人类的逻辑思维以语言为形式,人类的绝大部分知识
也是以语言文字的形式记载和流传下来的。
因而,它也是人工智能的一个重要,甚至核心部
分。
用自然语言与计算机进行通信,这是人们长期以来所追求的。
因为它既有明显的实际意
义,同时也有重要的理论意义:人们可以用自己最习惯的语言来使用计算机,而无需再花大
量的时间和精力去学习不很自然和习惯的各种计算机语言;人们也可通过它进一步了解人类
的语言能力和智能的机制。
实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然
语言文本来表达给定的意图、思想等。
前者称为自然语言理解,后者称为自然语言生成。
因
此,自然语言处理大体包括了自然语言理解和自然语言生成两个部分。
历史上对自然语言理
解研究得较多,而对自然语言生成研究得较少。
但这种状况近年来已有所改变。
无论实现自然语言理解,还是自然语言生成,都远不如人们原来想象的那么简单,而是
十分困难的。
从目前的理论和技术现状看,通用的、高质量的自然语言处理系统,仍然是较
长期的努力目标,但是针对一定应用,具有相当自然语言处理能力的实用系统已经出现,有
些已商品化,甚至开始产业化。
典型的例子有:多语种数据库和专家系统的自然语言接口、
各种机器翻译系统、全文信息检索系统、自动文摘系统等。
自然语言处理,即实现人机间自然语言通信,或实现自然语言理解和自然语言生成是十
分困难的。
造成困难的根本原因是自然语言文本和对话的各个层次上广泛存在的各种各样的
歧义性或多义性(ambiguity)。
一个中文文本从形式上看是由汉字(包括标点符号等)组成的一个字符串。
由字可组成
词,由词可组成词组,由词组可组成句子,进而由一些句子组成段、节、章、篇。
无论在上
述的各种层次:字(符)、词、词组、句子、段,……还是在下一层次向上一层次转变中都存
在着歧义和多义现象,即形式上一样的一段字符串,在不同的场景或不同的语境下,可以理
解成不同的词串、词组串等,并有不同的意义。
一般情况下,它们中的大多数都是可以根据
相应的语境和场景的规定而得到解决的。
也就是说,从总体上说,并不存在歧义。
这也就是
我们平时并不感到自然语言歧义,和能用自然语言进行正确交流的原因。
但是一方面,我们
也看到,为了消解歧义,是需要极其大量的知识和进行推理的。
如何将这些知识较完整地加
以收集和整理出来;又如何找到合适的形式,将它们存入计算机系统中去;以及如何有效地
利用它们来消除歧义,都是工作量极大且十分困难的工作。
这不是少数人短时期内可以完成
的,还有待长期的、系统的工作。
以上说的是,一个中文文本或一个汉字(含标点符号等)串可能有多个含义。
它是自然
语言理解中的主要困难和障碍。
反过来,一个相同或相近的意义同样可以用多个中文文本或
多个汉字串来表示。
因此,自然语言的形式(字符串)与其意义之间是一种多对多的关系。
其实这也正是自
然语言的魅力所在。
但从计算机处理的角度看,我们必须消除歧义,而且有人认为它正是自
然语言理解中的中心问题,即要把带有潜在歧义的自然语言输入转换成某种无歧义的计算机
内部表示。
歧义现象的广泛存在使得消除它们需要大量的知识和推理,这就给基于语言学的方法、
基于知识的方法带来了巨大的困难,因而以这些方法为主流的自然语言处理研究几十年来一
方面在理论和方法方面取得了很多成就,但在能处理大规模真实文本的系统研制方面,成绩
并不显著。
研制的一些系统大多数是小规模的、研究性的演示系统。
最早的自然语言理解方面的研究工作是机器翻译。
1949年,美国人威弗首先提出了机器翻译设计方案。
20世纪60年代,国外对机器翻译曾有大规模的研究工作,耗费了巨额费用,
但人们当时显然是低估了自然语言的复杂性,语言处理的理论和技术均不成热,所以进展不
大。
主要的做法是存储两种语言的单词、短语对应译法的大辞典,翻译时一一对应,技术上
只是调整语言的同条顺序。
但日常生活中语言的翻译远不是如此简单,很多时候还要参考某
句话前后的意思。
大约90年代开始,自然语言处理领域发生了巨大的变化。
这种变化的两个明显的特征是:
(1)对系统输入,要求研制的自然语言处理系统能处理大规模的真实文本,而不是如以
前的研究性系统那样,只能处理很少的词条和典型句子。
只有这样,研制的系统才有真正的
实用价值。
(2)对系统的输出,鉴于真实地理解自然语言是十分困难的,对系统并不要求能对自然
语言文本进行深层的理解,但要能从中抽取有用的信息。
例如,对自然语言文本进行自动地
提取索引词,过滤,检索,自动提取重要信息,进行自动摘要等等。
同时,由于强调了“大规模”,强调了“真实文本”,下面两方面的基础性工作也得到了
重视和加强。
(1)大规模真实语料库的研制。
大规模的经过不同深度加工的真实文本的语料库,是研
究自然语言统计性质的基础。
没有它们,统计方法只能是无源之水。
(2)大规模、信息丰富的词典的编制工作。
规模为几万,十几万,甚至几十万词,含有
丰富的信息(如包含词的搭配信息)的计算机可用词典对自然语言处理的重要性是很明显的。
虽然上述新趋势给自然语言处理领域带来了成果,但从理论方法的角度看,由于采集、
整理、表示和有效应用大量知识的困难,这些系统更依赖于统计学的方法和其他“简单”的
方法或技巧。
而这些统计学的方法和其他“简单”的方法似乎也快达到它们的极限了,因此,
目前在自然语言处理界广泛争论的一个问题便是:要取得新的更大的进展,主要有待于理论
上的突破呢,还是可由目前已有的方法的完善和优化实现?答案还不清楚。
大致上,更多的
语言学家倾向于前一种意见,而更多的工程师则倾向于后一种意见。
回答或许在“中间”,即
应将基于知识和推理的深层方法与基于统计等“浅层”方法结合起来。
基础理论
自动机形式逻辑统计机器学习汉语语言学形式语法理论
语言资源
语料库词典
关键技术
汉字编码词法分析句法分析语义分析文本生成语音识别
应用系统
文本分类和聚类信息检索和过滤信息抽取问答系统拼音汉字转换系统机器翻译新
信息检测。