2012年IMO国际数学奥林匹克试题解答

合集下载

国际数学奥林匹克(IMO)竞赛试题(第33届)

国际数学奥林匹克(IMO)竞赛试题(第33届)
[注:一个点到一个平面上正交投影指的是该点到平面作垂线的垂足.]
6.对正整数n,S(n)是满足如下条件最大的整数:对每个正整数k<= S(n),n2都可写成k个完全平方数的和.
a.求证对每个n>=4有得S(n)=n2-14;
c.试证明有无穷多个整数n使得S(n)=n2-14.
国际数学奥林匹克(
1.试找出所有的整数a,b,c满足1<a<b<c并且(a-1)(b-1)(c-1)是abc-1的因子.
2.找出所有定义在实数上并且取值也是实数的函数f使得对所有x,y都有
f(x2+f(y))=y+f(x)2.
3.空间中有9个点,无4点共面,每两点之间连接一个被染上红色或蓝色或者不染色的线段,试找出最小的n使得,只要恰好有n条线段被染色,这些染色的线段一定包含一个同色三角形(即三角形的三边被染上相同的颜色).
4. L是圆Γ的一条切线,M是L上的一点,试找出所有这样的点P的轨迹:存在L上的关于M对称的两点Q,R,△PQR的内切圆是Γ.
5.设S是三维空间中的一个有限点集,集合Sx,Sy,Sz分别是S在平面yz,zx,xy上的投影,
求证:|S|2<=|Sx|·|Sy|·|Sz|.
其中|A|表示集合A的元素个数.

2012年全国高中数学联合竞赛试题及解答.(A卷)

2012年全国高中数学联合竞赛试题及解答.(A卷)

2012年全国高中数学联合竞赛(A 卷)一试一、填空题:本大题共8个小题,每小题8分,共64分。

2012A1、设P 是函数xx y 2+=(0>x )的图像上任意一点,过点P 分别向直线x y =和y 轴作垂线,垂足分别为B A ,,则PB PA ⋅的值是 ◆答案:1- ★解析:设0002(,),p x x x +则直线PA 的方程为0002()(),y x x x x -+=--即0022.y x x x =-++由00000011(,).22y xA x x y x x x x x=⎧⎪⇒++⎨=-++⎪⎩又002(0,),B x x +所以00011(,),(,0).PA PB x x x =-=-故001() 1.PA PB x x ⋅=⋅-=-2012A 2、设ABC ∆的内角C B A ,,的对边分别为c b a ,,,且满足c A b B a 53cos cos =-,则BAtan tan 的取值为◆答案:4★解析:由题设及余弦定理得222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=, 故222222222222228tan sin cos 2542tan sin cos 52a c b a c A A B c a b ac b c a B B A b c a c b bc+-⋅+-=====+-+-⋅2012A 3、设]1,0[,,∈z y x ,则||||||x z z y y x M -+-+-=的最大值为 ◆答案:12+★解析:不妨设01,x y z ≤≤≤≤则M ==所以 1.M ≤=≤当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 1.M =2012A 4、在平面直角坐标系xOy 中,抛物线x y 42=的焦点为F ,准线为l ,B A ,是抛物线上的两个动点,且满足3π=∠AFB ,设线段AB 的中点M 在准线l 上的投影为N ,则||||AB MN 的最大值 为 ◆答案:1★解析:由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +== 当且仅当AF BF =时等号成立.故MNAB的最大值为1.2012A 5、设同底的两个正三棱锥ABC P -和ABC Q -内接于同一个球.若正三棱锥ABC P -的侧面与底面所成角为045,则正三棱锥ABC Q -的侧面与底面所成角的正切值为◆答案:4★解析:如图.连结PQ ,则PQ ⊥平面ABC ,垂足H 为 正ABC ∆的中心,且PQ 过球心O ,连结CH 并延长交AB 于点M ,则M 为AB 的中点,且CM AB ⊥,易知,PMH QMH ∠∠分别为正三棱锥,P ABC Q ABC --的侧面与底面所成二角的平面角,则45PMH ∠= ,从而12PH MH AH ==,因为90,,PAQ AH PQ ∠=⊥所以2,AP PH QH =⋅即21.2AH AH QH =⋅所以24.QH AH MH ==, 故tan 4QHQMH MH∠==2012A 6、设函数)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =.若对任意的]2,[+∈a a x ,不等式)(2)(x f a x f ≥+恒成立,则实数a 的取值范围是◆答案:).+∞★解析:由题设知22(0)()(0)x x f x x x ⎧≥⎪=⎨-<⎪⎩,则2()).f x f =因此,原不等式等价于()).f x a f +≥因为()f x 在R 上是增函数,所以,x a +≥即1).a x ≥-又[,2],x a a ∈+所以当2x a =+时,1)x 取得最大值1)(2).a +因此,1)(2),a a ≥+解得a ≥故a 的取值范围是).+∞2012A 7、满足31sin 41<<n π的所有正整数n 的和为 ◆答案:33★解析:由正弦函数的凸性,有当(0,)6x π∈时,3sin ,x x x π<<由此得131sin,sin ,1313412124πππππ<<>⨯=131sin ,sin .10103993πππππ<<>⨯=所以11sinsin sin sin sin .134********πππππ<<<<<< 故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.2012A 8、某情报站有D C B A ,,,四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种。

2012年美国数学奥林匹克(USAMO)试题及其解答

2012年美国数学奥林匹克(USAMO)试题及其解答
杏 坛 孔 门
2012 年美国数学奥林匹克试题(USAMO)及其解答
田开斌 解答
1、求所有整数 n≥3,使得对于任意 n 个正实数a1 、a2 、a3 、 … … 、an ,如果满足 Max�a1 、a2 、a3 、 … … 、an � ≤ n · Min�a1 、a2 、a3 、 … … 、an �,则其中可以取出三个数, 它们能够构成一个锐角三角形的三条边的长度。 解:对于任意 n≤12,在序列 1、1、√2、√3、√5、√8、√13、√21、√34、√55、√89、12中取前 n 个数,都有 Max�a1 、a2 、a3 、 … … 、an � ≤ n · Min�a1 、a2 、a3 、 … … 、an �,但任意三个数都不能构成 锐角三角形的三条边。所以满足条件的 n≥13。 下面我们用反证法证明 n≥13 时,都满足条件。 我们给 n 个正实数从小到大排序为a1 ≤ a2 ≤ a3 ≤ ⋯ ≤ an ,若其中任意三个数,都不 能构成一个锐角三角形的三条边,则有a1 2 ≤ a2 2 ,ak 2 + ak+1 2 ≤ ak+2 2 ,其中 1≤k≤n-2。 于是知an 2 ≥ fn · a1 2 ,即an ≥ �fn · a1 ,其中fn 为斐波那契数列的第 n 项。又当 n≥13 时, 根据数学归纳法易知都有�fn >n,此时则有an ≥ �fn · a1 >na1 ,与 Max�a1 、a2 、a3 、 … … 、an � ≤ n · Min�a1 、a2 、a3 、 … … 、an �矛盾。所以当 n≥13 时,都 满足条件。 综上所述知,满足条件的 n 为所有不小于 13 的自然数。 2、一个圆被 432 个点等分为 432 段弧,将其中 108 个点染成红色,108 个点染成绿色, 108 个点染成蓝色,108 个点染成黄色。求证:可以在每种颜色的点中各选 3 个点,使得由 同色点构成的四个三角形都全等。 解:我们记 f(m)表示 m 除以 432 的余数,其中 0≤f(m)≤431。 我们从某点开始,按顺时针方向依次给 432 个点排序为 0、1、2、3、……431。设 108 个 红点所在位置依次为a1 、a2 、a3 、 … … 、a108 ,108 个绿点依次为b1 、b2 、b3 、 … … 、b108 , 108 个蓝点依次为c1 、c2 、c3 、 … … 、c108 ,108 个黄点依次为d1 、d2 、d3 、 … … 、d108 。 记Xi = �f(a1 + i)、f(a2 + i)、f(a3 + i)、 … … 、f(a108 + i)� ∩ �b1 、b2 、b3 、 … … 、b108 � b1、b2、b3、……、b108=108(j=1、2、3、……108),所以

2012亚洲国际数学奥林匹克总决赛真题(四年级)

2012亚洲国际数学奥林匹克总决赛真题(四年级)

甲部:每題 3 分 甲部:每题 3 分 Section A – each question carries 3 marks 1) 求 1 3 5 7 ... 37 39 的值。 求 1 3 5 7 ... 37 39 的值。 Evaluate 1 3 5 7 ... 37 39 . 2) 求 200 40 200 50 200 10 的值。 求 200 40 200 50 200 10 的值。 Evaluate 200 40 200 50 200 10 . 3) 求 (633 324) (30 73) (163 137) 的值。 求 (633 324) (30 73) (163 137) 的值。 Evaluate (633 324) (30 73) (163 137) . 定義符號「 」的程序計算有以下的結果:
(C) 2012 Asia International Mathematical Olympiad Union (AIMO) All Rights Reserved. No part of this publication maybe reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic mechanical, photocopying, recording or otherwise, without the prior permission of Asian International Mathematical Olympiad Union. 未经亚洲国际数学奥林匹克公开赛中国区组委会许可,任何单位或个人不得复制、流通及出售本试题集。 P.1

2012赛季世界奥林匹克数学竞赛

2012赛季世界奥林匹克数学竞赛

2012赛季世界奥林匹克数学竞赛(中国区)选拔赛地方晋级赛 A卷---------------------------------------------------------------------------------考生须知:每位考生将获得考题一份。

考试期间,不得使用计算工具或手机。

本卷共100分,填空题每小题5分,解答题每题10分。

请将答案写在本卷上。

考试完毕时,所有考题及草稿纸会被收回。

若计算结果是分数,请化至最简,并确保为真分数或带分数。

三年级试卷(本试卷满分100分,考试时间90分钟)一、填空题。

(每题5分,共60分)1、计算:1+2+3+…+98+99+98+…+3+2+1= 。

2、有一张边长为18厘米的正方形纸片,按图中虚线所示剪成两张小纸片,这两张小纸片的周长之和为厘米。

有一列数1、3、7、13、21……,第8个数是。

有一个数,比200小比150大,这个数被7除余3,被9除也余3,这个数是。

数一数,图中有个长方形。

6、2011年的国庆节是星期六,那么2012年的国庆节是星期。

7、将数字0、1、3、4、5、6填入下面的□内,使等式成立。

÷ = × = 28、欧欧、小美各有一些漫画书。

欧欧的漫画书比小美少18本,小美的漫画书是欧欧的3倍少14本,那么欧欧和小美一共有本。

9、3只猫在3天里抓3只老鼠,那么,只猫在30天里抓30只老鼠。

有一盒牛奶,奥斑马12天可以喝完,如果和欧欧一起喝,8天喝完。

那么,欧欧单独喝这盒牛奶可以喝天。

11、有14个连续自然数,前7个连续自然数的和是105。

那么,这14个连续自然数的和是。

12、黑白团队做换座位的游戏,开始时奥斑马、小泉、小美、欧欧分别坐在1、2、3、4号座位上(如图),第一次是前后排互换座位,第二次是左右列互换座位……按此规律交替进行下去,那么在第2011次互换座位后,欧欧的座位编号是号。

开始第一次第二次第三次二、解答题。

高中数学竞赛-历届IMO试题(1-46届)及答案

高中数学竞赛-历届IMO试题(1-46届)及答案

高中数学竞赛-历届IMO试题(1-46届)及答案1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。

2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。

3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于cos 2x的二次方程,使它的根与原来的方程一样。

当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。

4.试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。

5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。

6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。

试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q 上。

1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。

2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A点向中间的那一小段线段所张的锐角,从A到BC 边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。

5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。

国际数学奥林匹克(IMO)竞赛试题(第28届)

国际数学奥林匹克(IMO)竞赛试题(第28届)
[一个集合S的一个排列是从S到它自身的一一映射.元素i称为是f固定点如果
f(i) = i.]
2.锐角三角形ABC的内角A的角平分线交BC于L,交ABC的外接圆于N,从L点向AB,AC做垂线,垂足分别是K、M,求证四边形AKNM的面积与三角形ABC的面积相等.
3.x1,x2,...,xn是实数并且满足x12+ x22+ ... + xn2= 1,求证对每个正整数k≥2存在不全为0的整数a1,a2,...,an,使得对每个i有|ai|≤k - 1及
|a1x1+ a2x2+ ... + anxn|≤(k - 1)√n/(kn-1).
4.求证不存在从非负整数到非负整数的函数f满足对所有n有f(f(n)) = n + 1987成立.
5.n是大于或等于3的整数,求证存在一个由平面上n个点构成的集合满足任何两点的距离都是无理数并且任何三点构成一个面积为有理数的非退化的三角形.
是大于或等于3的整数求证存在一个由平面上n个点构成的集合满足任何两点的距离都是无理数并且任何三点构成一个面积为有理数的非退化的三角形
国际数学奥林匹克(IMO)竞赛试题(第28届)
1.设pn(k)是集合{1ቤተ መጻሕፍቲ ባይዱ2,3,...,n}上具有k个固定点的排列的个数,求证k从0到n对(k pn(k) )的求和是n!.
6.n是大于或等于2的整数,如果对所有0≤k≤√n/3都有k2+ k + n是素数,则
当0≤k≤n-2时,k2+ k + n都是素数.

国际数学奥林匹克(IMO)竞赛试题(第26届)

国际数学奥林匹克(IMO)竞赛试题(第26届)
3.P(x) = a0+ a1x + ... + akxk是整系数多项式,设其中系数为奇数的个数为o(P).对于i = 0,1,2,...,记Qi(x) = (1 + x)i.求证如果i1,i2,...,in都是整数并满足0 <= i1< i2< ... < in,则有
o(Qi1+ Qi2+ ... + Qin)≥o(Qi1).
4.集合M由1985个不同的正整数组成,且每个数都有一个大于23的素因子,求证M中存在4个元素的积是某个整数的4次方.
5.圆心为O的一个圆经过三角形ABC的顶点A和C,并与AB,BC分别交于不同的两点K、N,三角形ABC的外接圆和三角形KBN的外接圆相交于两个不同的点B、M,求证角OMB是直角.
6.对于任何一个实数x1,可通过递推式
xn+1= xn(xn+ 1/n)
构造序列x1,x2,...,求证存在唯一的一个x1满足对所有的n都有0 < xn< xn+1< 1成立.
圆心为o的一个圆经过三角形abc的顶点a和c并与abbc分别交于不同的两点kn三角形abc的外接圆和三角形kbn的外接圆相交于两个不同的点bm求证角omb是直角
国际数学奥林匹克(
1.圆内接四边形ABCD,现有一圆其圆心在边AB上并于其他三边相切,求证AD + BC = AB.
2.设k<n时互素的两个正整数.将集合M = {1,2,3,...,n-1}中的每个数都染成蓝色或白色,保证i和n-i的颜色相同,对于不等于k的i其颜色又与ቤተ መጻሕፍቲ ባይዱi-k|的颜色相同.求证:M中所有数的颜色都相同.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年IMO国际数学奥林匹克试题解答第一题设J是三角形ABC顶点A所对旁切圆的圆心. 该旁切圆与边BC相切于点M, 与直线AB和AC分别相切于点K和L. 直线LM和BJ相交于点F, 直线KM与CJ相交于点G. 设S是直线AF和BC的交点, T是直线AG和BC的交点. 证明: M是线段ST的中点.2012年IMO国际数学奥林匹克试题第一题解答: 因为∠JFL=∠JBM−∠FMB=∠JBM−∠CML=12(∠A+∠C)−12∠C=12∠A=∠JAL,所以A、F、J、L四点共圆. 由此可得AF⊥FJ, 而BJ是∠ABS的角平分线, 于是三角形ABS的角平分线与高重合, 从而AB=BS; 同理可得AC=CT.综上, 有SM=SB+BM=AB+BK=AK=AL=AC+CL=CT+CM=MT,即M是线段ST的中点.第二题设n⩾3, 正实数a2,a3,⋯,a n满足a2⋅a3⋅⋯⋅a n=1, 证明:(a2+1)2(a3+1)3⋯(a n+1)n>n n.解答:由均值不等式, 我们有(a k+1)k=⩾(a k+1k−1+⋯+1k−1)k(ka k⋅(1k−1)k−1−− − − − − − − − − − −−√k)k=k k(k−1)k−1a k,当a k=1k−1时等号成立, 其中k=2,3,⋯,n. 于是(a2+1)2(a3+1)3⋯(a n+1)n⩾221a2⋅3322a3⋅⋯⋅n n(n−1)n−1a n=n n.当对任意的k=2,3,⋯,n时, 若恒有a k=1k−1, 此时由n⩾3知a2⋅a3⋅⋯⋅a n=1(n−1)!≠1,因此上述不等式等号不成立, 从而不等式得证.第三题"欺诈猜数游戏" 在两个玩家甲和乙之间进行, 游戏依赖于两个甲和乙都知道的正整数k和n.游戏开始时甲先选定两个整数x和N, 1⩽x⩽N. 甲如实告诉乙N的值, 但对x 守口如瓶. 乙现在试图通过如下方式的提问来获得关于x的信息: 每次提问, 乙任选一个由若干正整数组成的集合S(可以重复使用之前提问中使用过的集合), 问甲"x是否属于S?". 乙可以提任意数量的问题. 在乙每次提问之后, 家必须对乙的提问立刻回答"是" 或"否", 甲可以说谎话, 并且说谎的次数没有限制, 唯一的限制是甲在任意连续k+1次回答中至少又一次回答是真话.在乙问完所有想问的问题之后, 乙必须指出一个至多包含n个正整数的集合X, 若x属于X, 则乙获胜; 否则甲获胜. 证明:(1) 若n⩾2k, 则乙可保证获胜;(2) 对所有充分大的整数k, 存在正整数n⩾1.99k, 使得乙无法保证获胜.解答: (1)可以认为n=2k,N=n+1. 采用二进制.把1,2,…,2k都写成二进制: a1a2…a k+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯, 这里a i(i=1,2,…,k+1)是0或者1; 然后, 记T为这2k个二进制数组成的集合. 2 k+1的二进制表示是100…01¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ .令S1={100…0¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ },S i={a1a2…a k+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯¯ ¯ ¯ ¯∈T|a1=0,a i=1},i=2,3,…,k+1,也就是说, S i就是T中所有满足a i=1的元素组成的子集(i=1,2,…,k+1).乙采用如下问题, 可保证获胜: 第一次提问, 选择S1, 并且接下来也一直选取S 1, 甲的回答会出现两种情况:▪连续k+1次回答“否”, 则100…0¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯可以排除;▪在至多k+1次回答中, 一旦出现”是”, 乙接下来的k次提问, 依次选取S2,S3,…,S k+1, 就取得胜利. 事实上, 若甲最后的k次回答都是”是”, 则x∈T; 若甲最后的k次回答有一些是”否”, 则x绝对不可能是a1a2…ak+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯, 这里a1=0, a i=0还是1取决于甲对S i的答案: 若甲的回答是”是”, a i=0, 否则a i=1(i=2,3,…,k+1). (2). 先将问题转化成等价形式: 甲从集合S中取定一个元素x(|S|=N), 乙提出一系列的问题. 乙的第j个问题题就是取S的子集D j, 随后甲选取集合P j∈{D j,D c j}, 使得对任意的j⩾1都有x∈P j∪P j+1∪⋯∪P j+k,当乙提完他想问的一系列问题后, 如果乙能选取一个集合X满足|X|⩽n, 使得x∈X, 那么乙获胜; 否则甲获胜.解答1. 任取实数p使得2>p>1.99, 再选取正整数k0, 使得当k>k0时(2−p)p k+1−1.99k>1.设N使得(2−p)p k+1>N>1.99k. 我们来证明, 若|S|=N, 不妨S={1,2,…,N}, 甲有办法使乙无法胜利.记D j是乙的第j个问题展示的集合, 定义P j为D j或者D C j, 取决于甲对D j的答案: 若甲的回答是”是”, P j=D j, 否则P j=D C j; 再记P0=S. 定义A j如下:A j=A j(P j)=a0+pa1+p2a2+⋯+p j a j,这里a0=∣∣P j∣∣,a i=∣∣P j−i∖(P j∪P j−1∪⋯∪P j−i+1)∣∣(i=1,2,…,j).此时∑i=0j a i=N.注意A0=N.我们指出, 甲可以使得N2−p>A j成为事实: N2−p>A0=N.假设已有N2−p>A j, 甲可选取P j+1∈{D j+1,D C j+1}使得N2−p>A j+1. 事实上,A j+1(D j+1)=b0+pb1+p2b2+…+p j b j+p j+1b j+1,A j+1(D C j+1)=c0+pc1+p2c2+…+p j c j+p j+1c j+1.注意b0+c0=N,b i+c i=a i−1(i=1,2,…,j+1),于是A j+1(D j+1)+A j+1(D C j+1)=N+p(a0+pa1+p2a2+…+p j a j)<N+p⋅N2−p,因之min{A j+1(D j+1),A j+1(D C j+1)}<N2+p2⋅N2−p=N2−p.于是, 可以选取P j+1∈{D j+1,D C j+1}达到我们的要求.既然p k+1>N2−p>A j, 那么, 只要i⩾k+1,必定a i=0,这导致乙无法排除S的任何一个元素, 不能取得胜利.解答2. 记p,q是满足2>q>p>1.99的实数, 选取正整数k0使得(p q)k0⩽2(1−q2),p k0−1.99k0>1.我们来指出, 对任意k⩾k0, 若|S|∈(1.99k,p k), 那么甲有策略, 通过回答”是”或者”否”, 使得下式对所有j∈N成立:P j∪P j+1∪⋯∪P j+k=S,这里P i是D i或者D C i, 取决于甲对D i的答案: 若甲的回答是”是”, P i=D i, 否则P i=D C i; D i是乙的第i个问题所问的集合(i∈N).假定S={1,2,…,N}. 定义(x)∞j=0=(x j1,x j2,…,x j N)如下: x01=x02=⋯=x0 N=1; P0=S, 在P j+1选定之后, 定义x j+1:x j+1i={1,qx j i,i∈P j+1,i∉P j+1.(1)只要甲使得成立x j i⩽q k(1⩽i⩽N,j⩾1), 那么乙就不能取得胜利. 记T(x)=∑i=1N x i, 甲只要使得T(x j)⩽q k(j⩾1)即可. 这是可以做到的: 显而易见的事情是, T(x0)=N⩽p k<q k. 假设已有T(x j)⩽q k, 甲可以就乙的D j+1选取P j+1∈{D j+1,D C j+1}使得T(x j+1)⩽q k. 假定甲回答”是”, 此时P j+1=D j+1, 记y是根据(1)得到的序列; 相应地, 记z是甲回答”否”, P j+1=D C j+1, 根据(1)得到的序列. 于是T(y)=∑i∈D C j+1qx j i+∣∣D j+1∣∣,T(z)=∑i∈D j+1qx j i+∣∣D C j+1∣∣.因此T(y)+T(z)=q⋅T(x j)+N⩽q k+1+p k,根据选取的k0的性质, 得min{T(y),T(z)}⩽q2⋅q k+p k2⩽q k.第四题求所有的函数f:Z→Z使得对任意满足a+b+c=0的整数a,b,c恒有f(a)2+f(b)2+f(c)2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).解答: 令a=b=c=0可得3f(0)2=6f(0)2, 这说明f(0)=0. 现在我们令b=−a, c=0可得到f(a)2+f(−a)2=2f(a)f(−a)即(f(a)−f(−a))2, 于是f(a)=f(−a), 即f(n)为偶函数.假设对某个整数a使得f(a)=0, 则对任意整数b我们有a+b+(−a−b)=0, 因此f(a)2+f(b)2+f(a+b)2=2f(b)f(a+b),这等价于(f(b)−f(a+b))2=0, 即f(a+b)=f(b). 因此对某个整数a使得f(a)=0时, f是一个以a为周期的函数.令b=a及c=−2a代入题目条件中的等式f(2a)⋅(f(2a)−4f(a))=0. 取a=1我们得到f(2)=0或f(2)=4f(1).如果f(2)=0, 那么f以 2 为周期, 对任意奇数n有f(n)=f(1). 容易验证对任意的c∈Z函数f(x)={0,c,2∣n,2∤n满足题目条件.现在假设f(2)=4f(1)并且f(1)≠0. 如果对任意的整数n都有f(n)=n2⋅f(1)成立,那么此时问题解决了. 如果存在整数n使得f(n)≠n2f(1), 由于f是偶函数, 不妨将n看做自然数, 那么显然n⩾3, 我们设n是使得f(n)≠n2f(1)的最小的正整数.令a=1, b=n−1, c=−n代入可得f(1)2+(n−1)4f(1)2+f(n)2=2(n−1)2f(1)2+2((n−1)2+1)f(n)f(1)即(f(n)−(n)2f(1))⋅(f(n)−(n−2)2f(1))=0,由假设可得此时f(n)=(n−2)2f(1).令a=n, b=2−n, c=−2代入可得2(n−2)4f(1)2+16f(1)2=2⋅4⋅2(n−2)2f(1)2+2⋅(n−2)4f(1),这说明(n−2)2=1即n=3. 因此f(3)=f(1). 令a=1, b=3, c=4(因为f为偶函数, 所以条件改成c=a+b时仍然成立)代入可得f(4)2=4f(4)f(1), 即f(4)=0或f(4)=4f(1)=f(2).如果f(4)≠0, 令a=2, b=2, c=4代入可得f(2)2+f(2)2+f(4)2=2f(2)2+4f(2)f(4),即f(4)=4f(2). 又因为我们已经推得f(4)=f(2), 这说明f(2)=0, 矛盾. 因此f(4)=0, 从而f以4 为周期. 于是f(4k)=0, f(4k+1)=f(4k+3)=c, 以及f(4k+2)=4c, 容易验证这个解满足题目条件.综上所述, 函数方程的解为: f(x)=cx2, 其中c∈Z; f(x)={0,c,2∣n,2∤n其中c ∈Z; 以及f(x)=⎧⎩⎨⎪⎪ 0,c,4c,4∣n,2∤n,n≡2 (mod 4)其中c∈Z.第五题已知三角形ABC中, ∠BAC=90∘, D是过顶点C的高的垂足. 设X是线段CD内部一点. K是线段AX上一点, 使得BK=BC. L是线段BX上一点, 使得AL=AC. 设M是AL与BK的交点. 证明: MK=ML.2012年IMO国际数学奥林匹克试题第五题解答: 因为AL2=AC2=AD⋅AB, 所以△ALD和△ABL相似, 因此∠ALD=∠XBA.设R是射线DC上一点, 使得DX⋅DR=BD⋅AD. 由于∠BDX=∠RDA=90∘我们可以推得△RAD∼△BXD, 因此∠XBD=∠ARD, 从而∠ALD=∠ARD 即R, A, D, 和L四点共圆. 这说明∠RLA=90∘, 于是RL2=AR2−AL2=AR2−AC2. 类似地, 我们可以得到RK2=BR2−BC2和∠RKB=90∘. 因为RC⊥AB我们有AR2−AC2=BR2−BC2, 因此RL2=RK2即RL=RK.又因为∠RLM=∠RKM=90∘我们可以推得MK2=RM2−RK2=RM2−RL2=ML2,从而MK=ML.第六题求所有正整数n, 使得存在非负整数a1,a2,⋯,a n, 满足12a1+12a2+⋯+12a n=13a1+23a2+⋯+n3a n=1.解答: 所求n≡1,2(mod4). 设M=max{a1,a2,⋯,a n}, 则有3M=∑k=1n k⋅3M−a k≡∑k=1n k=n(n+1)2(mod2),所以n(n+1)2是奇数, 从而n≡1,2(mod4).若对奇数n=2m+1, 此时存在非负整数序列(a1,a2,⋯,a n)使得12a1+12a2+⋯+12a n=13a1+23a2+⋯+n3a n=1.注意到12a m+1=12a m+1+1+12a m+1+1,m+13a m+1=m+13a m+1+1+2(m+1)3a m+1+1=m+13a m+1+1+n+13a m+1+1.因此此时对n+1, 可以验证(a1,a2,⋯,a m,a m+1+1,a m+2,⋯,a n,a m+1+1)为满足题意的序列. 这说明对奇数n若满足题目条件, 则n+1也满足题目条件.剩下的问题只要解决n=4m+1时的构造问题即可.设序列(a1,a2,⋯,a2k+1)是(1,2,⋯,2k+1)的一个排列, 设G=(1,2,⋯,2k,2k), 用g i表示它的分量.定义D(X)=∑i=12k+1a i3g i, 由于∑i=12k+112g i=1, 所以我们只要求出一个排列X使得D(X)=1, 问题就解决了. 令X=(2,1,4,3,6,5,...,2k,2k−1,2k+1), 用归纳法可算得此时D(X)=1+k32k.现在假设上面的k是正偶数, 即k=2m, 则X=(2,1,4,3,...,2m,2m−1,2m+2,2m+1,...,4m,4m−1,4m+1),定义Y=(2,1,4,3,...,2m,2m−1,2m+1,...,4m,4m−1,4m+1,2m+2),即将X的第2m+1个分量移动到最后形成的. 简单计算可得D(X)−D(Y)=2m3 4m, 所以D(Y)=1. 当k=0时, 此时取a1=0时即可. 这说明n=4m+1时的构造问题已经解决.综上所述, 要求的为满足n≡1,2(mod4)的正整数.。

相关文档
最新文档