八年级数学上导学案全等三角形单元复习课教案教学设计

合集下载

(精)人教版数学八年级上册《全等三角形》全单元教案

(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教学分析1、内容分析:本章主要内容是学习全等三角形的概念、性质以及判定方法,应用全等三角形的性质和判定探索角平分线的性质,能够应用全等三等三角形的性质和判定以及角平分线的性质解决简单的几何总是,初步掌握推理证明的方法。

2、教材分析:学生已经学过线段、角、相交线、平行线、有关三角形的一些知识,通过本章的学习可以丰富和加深学生对已学图形的认识,同时为学习其它图形打好基础,教材力求创设与生活场景相近的、有趣的问题情境引入,使学生经历了从现实生活探索并抽象出几何模型,并应用几何模型解决实际问题的过程,在内容上重点探索三角形全等的判定方法经及应用,至于角平分线的改天换地的两上互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆定理的概念,通过结合具体问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培养学生的推理能力。

二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。

2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。

3.利用尺规作图作一个角等于已知角、作一个角的角平分线。

4、经历角平分线的性质和判定方法的探究过程,灵活应用角平分线的性质和判定解决问题.三、本章教学建议(一)注重探索结论(二)注重推理能力的培养1.注意减缓坡度,循序渐进。

2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。

3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。

(三)注重联系实际三、几个值得关注的问题(一)关于内容之间的联系(二)关于证明一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。

三角形全等(复习课)教学设计

三角形全等(复习课)教学设计

课题三角形全等(复习课)一、教学目标(1)通过对三角形全等判定的深入探讨,进一步熟悉分类讨论思想,系统感受全等三角形的各种情况。

(2)在与他人交流的过程中,合理清晰地表述自己的观点;在恰当的问题情境中,进一步体会三角形全等的有关知识。

二、教学内容分析教学重点:对“边边角”情况的探讨。

教学难点:三角形的四组元素分别相等时的反例。

三、学情分析用已有的知识探究一个新的问题———三角形全等,其内容本身有一定难度(没有直接的因果关系),对学生要求很高。

八年级学生已经具备了一定的学习能力,在这节课中,让学生主动参与,动手操作,合作交流,是教学所必需的,对此,教师宜适时点拨,引导。

四、教学过程设计(一)温故知新导言:前面我们已经研究了三角形的全等。

那么,在这一章中,你都学到了哪些知识?你有怎样的感受?[设计说明]在质疑中发现问题,在问题中展开教学,可以激活学生的数学思维,在解决问题中深化对知识的理解。

(二)问题引入1.教师“抛出”问题1同学们,在研究三角形全等的过程中,你是否存在一些疑问?对于“如果满足三组角相等,这两个三角形是不是也全等”,你是怎么思考的?你认为能全等吗?如果能,请说明原因;如果不全等,请举出反例。

(学生运用分类的思想,最先想到的是这样一种情形:如果满足三组角相等,这两个三角形是不是也全等。

)[设计说明]把问题抛给学生,对其养成独立思考、善于分析问题有所帮助;同时,恰当的反例可以起到激活思维、诱发探索新知的欲望,也可以让学生感受数学反例的重要作用。

2.抛出问题2请同学们接着思考:一对三角形共有六对元素,从中任取三对进行组合,能组合成多少种情况?[设计说明]本环节教学设计,在此明晰分类思想,学生会例举出的三组对应元素有以下五种不同的组合:①三边;②两边一夹角;③两边一邻角;④两角一边;⑤三角。

3.抛出问题3这五种组合,是否都能判断两个三角形全等呢?我们已知:①,②,④符合全等三角形的判定定理,⑤刚才已举出反例。

人教版八年级数学上册第十二章全等三角形大单元教学设计

人教版八年级数学上册第十二章全等三角形大单元教学设计
(二)教学设想
1.采用情境导入法,通过生活中的实例引入全等三角形的概念,让学生体会数学与实际生活的联系,激发学习兴趣。
-例如:通过展示两个完全相同的三角形模型,让学生直观地认识全等三角形,并引导他们思考全等三角形在实际生活中的应用。
2.利用多媒体课件、教具等辅助教学,直观演示全等三角形的判定方法,帮助学生理解和记忆。
-例如:设置基础题、提高题和拓展题,让学生根据自己的实际情况选择练习,巩固所学知识。
5.注重启发式教学,引导学生通过观察、猜想、验证等过程,培养他们的逻辑思维和空间想象力。
-例如:在教学全等三角形的性质时,鼓励学生通过观察图形,猜想性质,并用已学知识进行验证。
6.定期进行课堂小结,帮助学生梳理所学知识,形成完整的知识体系。
教师讲解:“像这样形状和大小完全相同的三角形,我们称之为全等三角形。今天我们将学习全等三角形的性质和判定方法。”
(二)讲授新知
1.教学活动:教师通过多媒体课件,展示全等三角形的定义及判定方法。
2.教师讲解:
(1)全等三角形的定义:形状和大小完全相同的两个三角形。
(2)全等三角形的判定方法:SSS、SAS、ASA、AAS、HL。
2.练习内容:
(1)基础题:运用全等三角形的判定方法判断两个三角形是否全等;
(2)提高题:运用全等三角形的性质解决实际问题;
(3)拓展题:将全等三角形的性质与其他几何知识相结合,进行综合应用。
3.教师点评:教师对学生的练习进行点评,指出错误原因,引导学生总结经验教训。
(五)总结归纳
1.教学活动:教师引导学生对本节课的学习内容进行总结。
3.拓展思考题:设置一些富有挑战性的题目,引导学生深入思考全等三角形的性质及其与其他几何知识的联系。

八年级数学上册《全等三角形》复习课导教案

八年级数学上册《全等三角形》复习课导教案

《全等三角形》复习课
一、教材分析
本节课是在学生学完全等三角形这一章后进行的,是一节全等三角形的复习
课。

全等三角形是解决几何证明题重要数学模型.本节课是前面所学全等三角形
有关知识的系统学习,同时对于各个部分之间的联系更为明确。

在学生学习全等
三角形这部分内容时,经常会遇到依托于一对等角、一组等边甚至借助辅助线来
构建三角形全等,让学生探究解决问题并总结方法,掌握并灵活应用方法。

本节
课的知识有承上启下的作用,研究方法均为后面学习相似三角形奠定了基础。

.
二、学情分析
授课班级为八年级一班,该班多数同学的基础知识不够扎实,但是学生状态好,积极主动。

三、教学目标
知识与技能:复习全等三角形的相关内容,使知识系统化。

过程与方法:体会解题思路与规律总结。

情感与态度:引导学生共同参与,激发数学求知欲,并养成良好的数学学
习惯。

四、教学的重点和难点
教学重点:全等三角形的证明
教学难点:全等三角形的辅助线的构造
五、教学过程。

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

°.
【知识点】三角形全等的性质;三角形内角和定理. 【思路点拨】由△ABC≌△A′B′C′,其中∠C′=24°可得∠C=24°,所以∠ B=180°-∠A-∠C=180°-36°-24°=1200 【解答过程】解:∵△ABC≌△A′B′C′, ∴∠C=∠C′=24° ∵∠A+∠B+∠C=1800
∠A=36° ∴∠B=180°-∠A-∠C=180°-36°-24°=1200 【答案】1200 14.如图 BC=EF,AC=DF,要证明△ABC≌△DEF,还需添加一个条件: (1)若以“ ”为依据,需添加的条件是 ; (2)若以“ ”为依据,需添加的条件是 .
【考点】全等三角形的判定与性质. 【思路点拨】延长 BA 交 CE 的延长线于 F,证明△BCE≌△BFE,由全等可证 CE=EF, 再证△ACF≌△ABD,可得 BD=CF 【数学思想】截长补短. 【解答过程】 证明:延长 BA 交 CE 的延长线于 F, ∵BE 平分∠ABC,CE⊥BE, ∴△BCE≌△BFE, ∴CE=EF, ∵在△ABC 中,∠BAC=90°,CE⊥BE, ∴∠FCA=∠ABD, 又∵ AB=AC ∠FAC=∠BAD ∴△ACF≌△ABD, ∴BD=CF, ∴BD=2CE.
2
三、章末检测题
一、选择题 (每题 4 分,共 48 分)
1.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍
然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
B.BC=EF
C.∠ACB=∠F
D.AC=DF
【知识点】三角形全等的判定 【思路点拨】已知有一条边和相邻的一个角对应相等,可以添∠A=∠D(依据 ASA) 或∠ACB=∠F(依据 AAS),也可以添边 BC=EF(依据 SAS) 【解答过程】选项 A 的依据为 ASA; 选项 B 的依据为 SAS;选项 C 的依据为 AAS; 选项 D 不能判断两个三角形全等. 【答案】D 2.下列说法正确的是( ) A.周长相等的两个三角形全等; B.有两边和其中一边的对角对应相等的两个三角形全等; C.面积相等的两个三角形全等; D.有两角和其中一角的对边对应相等的两个三角形全等. 【知识点】三角形全等的判定和性质. 【思路点拨】三角形全等的判定方法有:SSS;SAS;AAS;ASA;HL. 【解答过程】选项 A 周长相等不能判断三角形全等;选项 B 两边和一个角对应相 等,只能是两边和两边的夹角对应相等才能判定三角形全等;选项 C 面积相等的 两个三角形不一定全等;选项 D 对,依据为 AAS.

人教版数学八年级上册《三角形全等的判定(复习)》教学设计

人教版数学八年级上册《三角形全等的判定(复习)》教学设计

人教版数学八年级上册《三角形全等的判定(复习)》教学设计一. 教材分析人教版数学八年级上册《三角形全等的判定(复习)》这一节的内容主要包括SSS、SAS、ASA、AAS四种三角形全等的判定方法,以及三角形全等的应用。

学生在学习这一节内容时,需要掌握三角形全等的判定方法,并能够灵活运用到实际问题中。

二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,掌握了三角形的基本性质和判定方法。

但是,部分学生对于三角形全等的判定方法理解不深,不能灵活运用到实际问题中。

因此,在教学过程中,需要引导学生深入理解三角形全等的判定方法,并通过实际例题让学生学会如何运用这些判定方法。

三. 教学目标1.让学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.培养学生灵活运用三角形全等的判定方法解决实际问题的能力。

3.培养学生合作交流、归纳总结的能力。

四. 教学重难点1.重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.难点:如何灵活运用三角形全等的判定方法解决实际问题。

五. 教学方法采用讲授法、案例分析法、小组合作法、归纳总结法等教学方法,引导学生通过自主学习、合作交流,深入理解三角形全等的判定方法,并能够灵活运用到实际问题中。

六. 教学准备1.教材、教案、PPT等教学资料。

2.三角板、直尺、圆规等几何作图工具。

3.练习题、案例分析题等教学素材。

七. 教学过程1.导入(5分钟)通过复习已学过的三角形性质和判定方法,引导学生回顾三角形全等的判定方法,为新课的学习做好铺垫。

2.呈现(10分钟)讲解SSS、SAS、ASA、AAS四种三角形全等的判定方法,并通过PPT展示相关例题,让学生直观地理解这些判定方法。

3.操练(10分钟)让学生分成小组,利用几何作图工具,根据四种全等判定方法,相互判断给出的三角形是否全等。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)出示一些判断题和应用题,让学生独立完成,检验学生对三角形全等判定方法的掌握程度。

初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1《全等三角形判定的复习》教学设计教学目标1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。

2、通过变式练习提高学生的分析能力和解题能力。

学情分析本节课是在学生已经学习完了全等三角形的几种判定方法的基础上进一步通过一题多解、变式教学的措施促使学生对全等三角形判定方法有一个整体的认识。

教学重点1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。

2、通过变式练习提高学生的分析能力和解题能力。

教学难点能根据题意灵活利用所学知识进行解题。

教学过程一、回顾全等三角形的判定方法全等三角形的判定方法有种,它们分别是(填简称),其中直角三角形专用的是(填简称)。

二、“全等三角形的判定”对应练习(一)小组讨论,活用方法例1、已知:如图,AD=BE,AC=BC,CD=CE,请你试用不同方法证明:△AEC≌△BDC(二)题组训练,总结经验1.(A组)如图1,△ABC中,AB=AC,AD平分∠BAC,则依据 (填简称)可得到__________≌__________。

反思:此题第一个空还有其它答案吗?23图1 图2 2. (B 组)已知:如图2, ∠C=∠E ,∠1=∠2,AC=AE ,求证:AB=AD反思:你从此题得到了什么解题经验?3.(B 组)已知:如图,AB =CD ,AB ∥DC .求证:AD ∥BC , AD =BC反思:你从此题得到了什么解题经验?4. (C 组)如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,求证:PD =PE反思:你从此题得到了什么解题经验?(三)随堂小测1、(A 组)如图,已知AB=AD ,试用四种不同方法添加适当条件使得三角形全等。

(1)添加条件 后, 可判定△ABC ≌△ADC ,依据是 (填简称);(2)添加条件 后,可判定△ABC ≌△ADC ,依据是 (填简称);(3)添加条件 后,A B CD可判定△ABC≌△ADC,依据是(填简称);(4)添加条件后,可判定△ABC≌△ADC,依据是(填简称)。

华师大版八年级上册第13章全等三角形复习课教学设计

华师大版八年级上册第13章全等三角形复习课教学设计
-邀请学生分享自己在学习全等三角形过程中的收获和感悟。
-对学生的表现进行点评,强调学习全等三角形的重要性。
2.教学目的:
-帮助学生巩固所学知识,形成知识体系。
-培养学生的归纳总结能力,提高学生的几何素养。
-激发学生学习数学的兴趣,增强学生的自信心。
五、作业布置
为了巩固学生对全等三角形知识的掌握,提高学生的应用能力和解题技巧,特布置以下作业:
1.强调作业完成的时间和质量,培养学生按时完成作业的良好习惯。
2.鼓励学生独立思考,遇到问题可以与同学讨论,培养合作学习能力。
3.注重作业反馈,教师应及时批改作业,给予评价和建议,帮助学生提高。
2.教学目的:
-激发学生的学习兴趣,引导学生关注全等三角形在实际生活中的应用。
-唤起学生对全等三角形相关知识点的回忆,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计:
-对全等三角形的定义进行复习,强调全等三角形的含义和性质。
-详细讲解全等三角形的判定方法,如SSS、SAS、ASA、AAS等,结合具体实例进行分析。
-鼓励学生在课后进行自主学习和拓展阅读,提高学生的自主学习能力,拓宽知识视野。
四、教学内与过程
(一)导入新课
1.教学活动设计:
-通过展示一些生活中常见的全等三角形图案,如风筝、自行车三角架等,引起学生对全等三角形的好奇心和兴趣。
-提问:“同学们,你们知道这些图案有什么共同特点吗?它们在几何学中有什么特别之处?”
-通过小组讨论、合作解题,培养学生的团队协作能力和交流表达能力,同时也能够在讨论中发现问题、解决问题。
4.创设问题情境,激发学生的探究欲望。
-教学中应设计具有挑战性的问题,引导学生主动探究,培养学生的创新思维和解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形 单元复习课
一、基础训练
1.根据下列已知条件,能画出唯一的△ABC 的是( )
A .A
B =3,B
C =4 B .AB =4,BC =3,△A =30°
C .△A =60°,△B =45°,AB =4
D .△C =60°,AB =6
2.(2020春•武侯区期末)如图,AB 平分△DAC ,增加下列一个条件,不能判定△ABC△△ABD 的是( )
A .AC =AD
B .B
C =B
D C .△CBA =△DBA D .△C =△D
第2题图
3.(2020•黑龙江)如图,Rt△ABC 和Rt△EDF 中,△B =△D ,在不添加任何辅助线的情况下,请你添加一个条件 ,使Rt△ABC 和Rt△EDF 全等.
第3题图 第4题图
4.如图,△A =90°,AB =BD ,过点D 作DE△BC 交AC 于点E ,量得AE =10 cm ,则DE 的长为________.
5.如图,已知AB△BD 于点B ,ED△BD 于点D ,AE 交BD 于点C ,且BC =DC.
求证:AB =ED.
第5题图
二、课堂探究
例1 直线l 1△l 2△l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3.把一块含有45°角的直 角三角板如图放置,顶
点A ,B ,C 恰好分别落在三条直线上,则△ABC 的面积为( )
A .254
B .252
C .12
D .25
例2(2020春•南岗区校级期中)如图,在△ABC中,AD为△BAC的平分线,DE△AB于点E,DF△AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为cm.
例3 如图,AC△CF于点C,DF△CF于点F,AB与DE交于点O,且EC=BF,AB=DE,求证:AE=BD.
例4 如图,已知△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于点F.请判断AE与BD的关系,并说明理由.
三、巩固训练
1.(2019·宜春二模)如图,在△ABC中,AB=8,AC=6,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为()
A.12B.15C.16D.18
2.(2018秋·龙湖区期末)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且△ACB=90°,CA=CB,则点C的坐标为_______ ___.
3.如图,在四边形ABCD中,AD△BC,△ABC=90°,DE△AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG.
4.如图,在四边形ABCD中,AD△BC,AP平分△DAB,BP平分△ABC,点P恰在DC上.(1)求证:AP△BP;
(2)若△D=90°,猜想AB,AD,BC之间有何数量关系?请说明理由.。

相关文档
最新文档