数列中的奇偶项问题

合集下载

数列奇偶项练习题

数列奇偶项练习题

数列奇偶项练习题数列奇偶项练习题数列是数学中的一个基础概念,它是由一系列按照一定规律排列的数字组成的序列。

在解决数列问题时,我们常常需要观察数列中的规律,找出其中的特点,从而推导出数列的通项公式。

在这个过程中,奇偶项往往是一个重要的考察点。

本文将通过一些练习题,帮助读者更好地理解和掌握数列中奇偶项的特点。

题目一:一个数列的第一个项为1,从第二项开始,每一项都是前一项的2倍加1。

求这个数列的第10项。

解析:根据题目中给出的规律,我们可以列出数列的前几项:1,3,7,15,31,63,127,255,511。

观察数列中的奇偶项,我们可以发现奇数项都是2的幂次减1,而偶数项都是2的幂次加1。

因此,第10项应该是2的9次幂减1,即512-1=511。

题目二:一个数列的第一个项为3,从第二项开始,每一项都是前一项的3倍减2。

求这个数列的前10项中奇数项的和。

解析:根据题目中给出的规律,我们可以列出数列的前几项:3,7,19,55,163,487,1459,4375,13123,39367。

观察数列中的奇偶项,我们可以发现奇数项都是3的幂次减1,而偶数项都是3的幂次加1。

因此,我们只需要计算数列中奇数项的和即可。

根据等差数列求和公式,我们可以得到数列的第n项为(3^n-1)/2。

因此,前10项中奇数项的和为(3^1-1)/2+(3^3-1)/2+(3^5-1)/2+...+(3^9-1)/2=3^1+3^3+3^5+...+3^9-5=9841。

题目三:一个数列的第一个项为2,从第二项开始,每一项都是前一项的平方减1。

如果数列的第n项是一个质数,求n的取值范围。

解析:根据题目中给出的规律,我们可以列出数列的前几项:2,3,8,63,3968,1572863,...。

观察数列中的奇偶项,我们可以发现奇数项都是2的幂次加1,而偶数项都是2的幂次减1。

因此,我们只需要考察数列中奇数项的取值。

通过计算,我们可以发现数列的第2项和第3项都是质数。

数列中的奇偶项问题

数列中的奇偶项问题

n n 1 2 2
2
n 1 n 3 2 2
3、相间两项之差为常数; 例 3:已知数列{an}中 a1=1,a2=4,an=an-2+2 (n≥3) ,Sn 为{an}前 n 项和,求 Sn
解:∵an-an-2=2 (n≥3) ∴a1,a3,a5,…,a2n-1 为等差数列;a2,a4,a6,…,a2n 为等差数列
1 1 1 1 n2 1 n2 ②n 为奇数时: an 2( ) 2( ) 3 3
n 1 n 1 11 * 2(2( ) 2) 2 n n2 k2 k 1( k 1( k N )N ) 33 a { n 则有:nan { n 11 1 1 * ( ( ) 2 ) 2 n n2 k (2 kk N )N ) ( k 2 3
作业:数列{an}满足 an+1+(﹣1)nan=2n﹣1,则{an}的前 60 项和为
方法五:当 为奇数时, ,

因 此 每 四 项 的 和 依 此 构 成 一 个 以 10 为 首 项 ,16 为 公 差 等 差 数 列 , 所 以
的前
项和为
1 n 2 * x C x ( ) 0 n N 练习:已知 an,an+1 为方程 的两根 ∈ , n 3 a1=2,Sn=C1+C2+…+Cn,求 an 及 S2n。
解:①当 n 为偶数时: S n a1 a2 a3 a4 … an 1 an
(a1 a2 ) (a3 a4 ) … (an 1 an )
②当 n 为奇数时: S n a1 (a2 a3 ) (a4 a5 ) … (an 1 an )
②n 为偶数时,n+1 为奇数: Cn an an 1

数列中的奇偶项通项与求和

数列中的奇偶项通项与求和

数列中的奇偶项通项与求和这个我之前也讲过,不过是以视频的形式。

今天我就一起来说说奇偶通项公式。

我们来看看求奇偶项的通项公式!如果考试考这个,那估计得死一批才行。

题目问的是bn的通项公式,而且告诉我们bn=a(2n-1)的关系,那我们这里就往后面走一个【注意项数问题】,如下因为2n+1一定是奇数啊,又因为所以就有这种问题就解决了,多训练就没问题了!接下来我讲一下奇偶项之和,分为四类。

第一类一共有2n项【最后一项一定是偶数项】,所以你这边就有n 个奇数项和n个偶数项,这时候只要简单的分一下就行,如下这种形式还是比较简单的。

第二类这里是有n项,这最后一项是奇数项还是偶数项呢?我们不知道,既然不知道那就得讨论讨论!怎么个讨论?我们一般是先讨论n为偶数的时候【其实讨论奇数也是可以,不过后续操作会有点繁琐罢了】,即这时候你把偶数项求出来再求奇数项就好求多了这时候最终的结果就得写成分段的形式了,如下所以这边得清楚了,在分类讨论的时候一般先讨论n为偶数的时候,然后再用an=Sn-Sn-1来求n为奇数的时候。

第三类这个是让求2n项的,一定是个偶数项,所以我们在裂项之后是可以直接操作的,如下那如果不是求前2n项呢?是求n项的话那还得分类讨论才行!比如下一题还是先讨论当n为偶数的时候此时再求n为奇数项的时候有所以最终的结果是第四类这一类和上面一类有点相同,不过不一样的点在于这个引入了三角函数sin和cos的形式,这里只需要各位掌握的是下面的两个恒等式至此关于数列奇偶问题就结束了,不过关于数列问题还是有很多题型的,这类的奇偶只是“沧海一粟”而已,之前新高考一卷解答题第一题考了数列的奇偶,学生们错的一塌糊涂,虽然往后可能不考,但是万一考什么插项,存在性,恒成立,绝对值问题怎么办呢?就比如绝对值问题,随便出一个这个怎么求?还是要分类讨论的!学生解决数列问题,常规的知识点总得知道吧,比如:等差等比数列的相关性质,错位相减法,裂项相消法,倒序相加法,待定系数法,相除法,倒数法,构造法,累加法,累乘法等等!。

数列中的奇偶项问题

数列中的奇偶项问题

1 1 1 3 3 2 1 1 3
n
n 6 n(n 1) 9n 1 3n 2 6n 1 2 3
(3)显然当 n N * 时, S 2 n 单调递减,
又 当 n 1 时 , S2
2
1 3 1 (1 ( ) k ) 1 (1 ( ) k ) 3 1 3 n 1 n 2 2 2[( ) k ( ) k ] 4 2[( ) 2 ( ) 2 ] 4 . 1 3 2 2 2 2 1 1 2 2
……6 分
②当 n 2k 1 时, Sn S2 k a2 k 2[( ) k ( ) k ] 4 ( ) k 1
a1 1, a 2 2 ,设 bn a 2 n 1 a 2 n .
(1)若数列 bn 是公比为 3 的等比数列,求 S 2 n ;
(2)若 S 2 n 3( 2 n 1) ,数列 a n a n 1 也为等比数列,求数列的 a n 通项公式.
解:(1) b1 a1 a2 1 2 3 , S2 n (a1 a2 ) (a3 a4 ) ...... (a2 n 1 a2 n )
7 8 0 , 当 n 2 时 , S 4 0 , 所 以 当 n≥ 2 时 , S 2 n 0 3 9
5
S 2 n 1 S 2 n a2 n
3 1 5 3n 2 6n , 2 3 2
n
同理,当且仅当 n 1 时, S 2 n 1 0 .
数列中的奇偶项问题
题型一、等差或等比奇偶项问题
(2). 等比数列 an 的首项为 1 ,项数为偶数,且奇数项和为 85 ,偶数项和为 170 ,则数列的 项数为____ 8 ___

数列中的奇偶项问题课件-2025届高三数学一轮复习

数列中的奇偶项问题课件-2025届高三数学一轮复习

(1)若数列{an}是等差数列,求数列{bn}的前100项和S100;
【解析】(1)因为{an}为等差数列,且a1=1,a2=2,
所以公差d=1,所以an=n.
+1 − = 1, 为奇数,
1, 为奇数,
所以bn=
即bn=
+1 + = 2 + 1, 为偶数,
2 + 1, 为偶数,
=3- ,
1 +
1
2
1−2
1−2
3 1
4
又2−1 =2 -2 =3- - =3- ,
2 2
2
3
3−
所以Sn=
3−

22
, 为偶数,
4
+1
2 2
, 为奇数.
谢谢观赏!!
所以2−1 =1,所以2 =4n-2,
1, 为奇数,
综上所述,an=
2 − 2, 为偶数.
视角二
已知条件明确的奇偶项问题
, 为奇数,
[例2]已知数列{an}的前n项和为Sn,an=
1
( ) 2 , 为偶数,
2
求Sn.
【解析】方法一:当n为偶数时,Sn=a1+a2+…+an=(a1+a3+…+−1 )+(a2+a4+…+an)
4
2
4
2
−1
(+1)2
1
+ 1 − ( ) 2 , 为奇数,
4
2
综上,Sn=
2
1
+ 1 − ( ) 2 , 为偶数.
4
2
2

高中数学数列中的奇偶项问题(经典题型归纳)

高中数学数列中的奇偶项问题(经典题型归纳)

数列中的奇偶项问题题型一、等差等比奇偶项问题(1)已知数列{}n a 为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为32/27,则这个数列的公差为________(2)等比数列{}n a 的首项为1,项数为偶数,且奇数项和为85,偶数项和为170,则数列的项数为_______(3)已知等差数列{}n a 的项数为奇数,且奇数项和为44,偶数项和为33,则数列的中间项为_________;项数为_____________题型二、数列中连续两项和或积的问题(()1n n a a f n ++=或()1n n a a f n +⋅=)1.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作数列的公和.已知数列{}n a 是等和数列,且12a =,公和为5,那么18a 的值为________,这个数列的前n 项和n S 的计算公式为___________________2.若数列{}n a 满足:11a =,14n n a a n ++=,则数列{}21n a -的前n 项和是_____________3.若数列{}n a 满足:11a =,14n n n a a +=,则{}n a 的前2n 项和是___________4.已知数列{}n a 中,11a =,11()2n n n a a +⋅=,记n S 为{}n a 的前n 项的和,221n n n b a a -=+,N n *∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)判断数列{}n b 是否为等比数列,并求出n b ; (Ⅲ)求n S .5.(2017年9月苏州高三暑假开学调研,19) 已知数列{}n a 满足()*143n n a a n n N ++=-∈.(1)若数列{}n a 是等差数列,求1a 的值;(2)当12a =时,求数列{}n a 的前n 项和n S ;6.(2015江苏无锡高三上学期期末,19)在数列{}n a ,{}n b 中,已知10a =,21a =,11b =,212b =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且满足21n n S S n ++=,2123n n n T T T ++=-,其中n 为正整数.(1)求数列{}n a 、{}n b 的通项公式; (2)问是否存在正整数m ,n ,使121n m n T mb T m++->+-成立?若存在,求出所有符合条件的有序实数对(),m n ,若不存在,请说明理由.题型三、含有()1n-类型1.已知()1123456..........1n n S n -=-+-+-+-,则173350S S S ++=_____________2.数列{}n a 满足1(1)21nn n a a n ++-=-,则的前60项和为________3.数列{}n a 前n 项和为n S ,11a =,22a =,()211nn n a a +-=+-,*n ∈N ,则100S =______ 4.已知数列{}n a 的前n 项和为n S ,()112nn n nS a =--,*n N ∈,则123100..........S S S S +++=____5.已知数列}{n a 满足11a =-,21a =,且*22(1)()2n n n a a n N ++-=∈.(1)求65a a +的值;(2)设n S 为数列}{n a 的前n 项的和,求n S ;题型四、含有{}2n a 、{}21n a-类型1.(2017.5盐城三模11).设数列{}n a 的首项11a =,且满足21212n n a a +-=与2211n n a a -=+,则20S = .2.(镇江市2017届高三上学期期末)已知*∈N n ,数列{}n a 的各项均为正数,前n 项和为n S ,且2121==a a ,,设n n n a a b 212+=-. (1)若数列{}n b 是公比为3的等比数列,求n S 2;(2)若)(1232-=nn S ,数列{}1+n n a a 也为等比数列,求数列的{}n a 通项公式.3.【2016年第二次全国大联考(江苏卷)】已知数列{}n a 满足*1221212221,2,2,3,()n n n n a a a a a a n N +-+===+=∈.数列{}n a 前n 项和为n S .(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值;4.(苏州市2018届高三第一学期期中质检,20)已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .(1)若33a =,求5a 的值;(2)证明:对任意正实数p ,{}221n n a pa ++成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.题型五、已知条件明确奇偶项问题1.(无锡市2018届高三第一学期期中质检,19)已知数列{}n a 满足1133,1,1,n n n a n n a a a n n ++ ⎧⎪==⎨---⎪⎩为奇数为偶数,记数列{}n a 的前n 项和为n S ,*2,n n b a n =∈N . (1)求证:数列{}n b 为等比数列,并求其通项n b ; (2)求n S ;(3)问是否存正整数n ,使得212n n n S b S +>>成立?说明理由.2.已知数列{}n a 中,11a =,()()1133n n n n n a n a a n ++=-⎧⎪⎨⎪⎩为奇数为偶数,设232n n b a -=(1)证明数列{}n b 是等比数列(2)若n S 是数列{}n a 的前n 项的和,求2n S (3)探求满足0n S >的所有正整数n3.(2015江苏省连云港、徐州、宿迁三模19).设正项数列{}n a 的前n 项和为n S ,且21122n n n S a a =+,*n N ∈n ∈N *.正项等比数列{}n b 满足:22b a =,46b a =,(1)求数列{}n a ,{}n b 的通项公式;(2)设()*,21,2n n na n k cb n k k N =-⎧⎪=⎨=∈⎪⎩,数列{}nc 的前n 项和为n T ,求所有正整数m 的值,使得221nn T T -恰好为数列{}n c 中的项.。

解答数列中分奇偶项求和问题的办法

解答数列中分奇偶项求和问题的办法

知识导航数列是高中数学中非常重要的一个知识点,也是高考必考的内容.与数列有关的题目类型较多,其中,分奇偶项求和问题比较常见.此类问题中奇数项和偶数项的通项公式一般会有所不同,要解答此类问题,我们需要灵活运用分类讨论思想和分组求和方法.解答此类问题的基本思路是:(1)结合题意寻找数列中奇数项和偶数项的规律,分别求出它们的通项公式.在求通项公式时,要注意把数列的项数间隔开.(2)将数列分成奇数项和偶数项两组,分组进行求和.(3)将所得的结果汇总、化简,便可求得数列的和.下面,我们结合实例来进行探讨.例1.设S n 为数列{}a n 的前n 项和,S n =()-1na n -12n ,n ∈N ∗,则⑴a 3=,⑵S 1+S 2+⋯+S 100=.解法一:∵S n =()-1n a n -12n ,∴当n ≥2时,S n -1=()-1n -1a n -1-12n -1,两式相减得S n -S n -1=()-1n a n -12n -()-1n -1a n -1+12n -1,即a n =()-1n a n -()-1n -1a n -1+12n -1,(1)当n 是偶数时,a n =a n +a n -1+12n ,所以a n -1=-12n ,即n 为奇数时,a n =-12n +1;(2)当n 是奇数时,2a n =-a n -1+12n ,a n -1=-2a n +12n =12n -1,即当n 时偶数时,a n =12n .∴S 1+S 2+⋯+S 100=æèçöø÷122+124+⋯+12100+æèçöø÷123+125+⋯+1299-12+122+⋯+12100=13æèçöø÷12100-1.我们知道,在给定S n 与a n 之间的关系时,可以利用a n =S n -S n -1()n ≥2来求出a n 的通项公式,但是这道题目所给的条件中含有()-1n,需要运用分类讨论思想分n 为奇数和偶数两种情况进行讨论..解法二:∵S n =()-1n a n -12n ,∴S n =()-1n ()S n -S n -1-12n ,(1)当n 是偶数时,S n =S n -S n -1-12n ,S n -1=-12n ,即当n 是奇数时,S n =-12n +1;(2)当n 是奇数时,S n =-S n +S n -1-12n,S n -1=2S n +12n =0,即当n 是偶数时,S n =0;这里直接讨论当n 为奇数和偶数时数列的和式的表达式,通过分组求和求得数列的和.例2.设数列{}a n 满足a 1=1,a 2=1,a 3=4,a 4=14,数列{}a n 前n 项和是S n ,对任意的n ∈N ∗,f ()x =a n +2a n x +()a n +a n +2-2a n +1cos x -a n +4a n +2e x ,因为f ′()0=0,当n 时偶数时,S n 的表达式是.解:对函数求导可得f ′()x =a n +2a n-(a n +a n +2-2)a n +1sin x -an +4a n +2e x ,因为f ′()0=0,所以a n +2a n =a n +4a n +2,所以数列{}a n 中所有的奇数项成等比数列,所有的偶数项成等比数列.由题目条件可知,a 1=1,a 2=1,a 3=4,a 4=14,则当n 为偶数时,数列是以首项为1、公比为14的等比数列.当n 为奇数时,数列是以首项为1、公比为4的等比数列.所以当n 是偶数时,S n =1∙æèçöø÷1-4n21-4+1∙éëêêùûúú1-æèöø14n21-14=2n3-43×2n +1.这道题中f ()x 的表达式较为复杂,我们首先对f ()x 进行求导,就能发现a n 与a n +1的联系,便可求出当n 为奇数和偶数时数列的通项公式,再运用等比数列的前n 项求和公式求出当n 是偶数时数列的和.分奇偶项求和问题较为复杂,解答此类问题的关键是运用分类讨论思想对数列中的奇数项和偶数项进行讨论,求得奇数项和偶数项的通项公式,再运用分组求和法求出数列的和.在解题的过程中,同学们要注意隔项进行分析,将奇数项或者偶数项单独列出,分别进行讨论、求和.(作者单位:广西贺州市贺州第一高级中学)梁敏S 1+S 2+⋯+S 100=-æèçöø÷122+124+⋯+12100=13æèçöø÷12100-1.39Copyright©博看网 . All Rights Reserved.。

奇偶项数列题解题技巧

奇偶项数列题解题技巧

奇偶项数列题解题技巧
在解题过程中,奇偶项数列是一类常见的题型,需要根据规律找出数列中奇数项和偶数项的特点。

下面列举几种解题技巧,帮助我们更好地解答奇偶项数列题目。

1. 观察数列规律:首先要观察数列的前几项,寻找规律。

有时候可以通过列出数列的前几项,找到奇数项和偶数项之间的关系。

例如,数列的奇数项可能是等差数列,而偶数项可能是等比数列。

2. 利用递推关系:有时候数列的奇偶项之间存在递推关系。

可以通过观察数列的差值或倍数关系,找到奇偶项之间的递推规律。

例如,奇数项可能是前一项加上一个固定的数,而偶数项可能是前一项乘以一个固定的数。

3. 利用数学公式:有时候数列的奇偶项可以表示为数学公式。

可以通过观察数列的特点,建立起奇数项和偶数项之间的数学关系。

例如,数列的奇数项可以表示为2n-1,而偶数项可以表示为2n。

4. 奇偶项分别求和:有时候需要计算数列中奇数项和偶数项的和。

可以将数列分成奇数项和偶数项两个数列,然后分别求和。

这样可以简化计算过程,提高解题效率。

5. 利用数学归纳法:有时候可以利用数学归纳法证明数列中奇数项和偶数项的
性质。

通过证明数列的前几项成立,再假设对于第n项成立,最后证明对于第n+1项也成立。

这样可以得到奇数项和偶数项之间的关系,进而解题。

总之,解答奇偶项数列题目需要观察数列的规律,寻找奇数项和偶数项之间的关系。

通过运用递推关系、数学公式、数学归纳法等技巧,可以更好地解答这类题目。

同时,需要进行举一反三,多做练习,提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列中的奇偶项问题数列中的奇偶项问题例1、(12宁波一模)已知数列{}na 满足:111,1,2n n na n a a a n ++⎧==⎨⎩奇,,偶为数为数*n N ∈,设21nn ba -=. (1)求23,,b b 并证明:122;n n bb +=+(2)①证明:数列{}2nb +等比数列;②若22122,,9kk k aa a +++成等比数列,求正整数k 的值. 解:(1)2321=22(1)4,b aa a ==+=3543=22(1)10,b a a a ==+=121221=22(1)2(1)22,n n n n n n ba a ab b ++-==+=+=+(2)①因为111122(2)1,20,2,22n nnnb b b a b b b +++==+≠==++所以数列{}2nb +是以3为首项,2为公比的等比数列. ②由数列{}2nb +可得,1121322,322n n nn ba ---=⨯-=⨯-即,则12211321n n n a a --=+=⨯-,因为22122,,9kk k aa a +++成等比数列,所以21(322)(321)(328)k k k -⨯-=⨯-⨯+,令2=kt ,得23(32)(1)(38)2t t t ⨯-=-+,解得243t =或,得2k =.例2、(14宁波二模)设等差数列{}na 的前n 项和为nS ,且248,40aS ==.数列{}nb 的前n 项和为nT ,且230n n T b -+=,n N *∈.(I )求数列{}na ,{}nb 的通项公式; (II )设⎩⎨⎧=为偶数为奇数n b n a cn nn, 求数列{}nc 的前n 项和nP .解:(Ⅰ)由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. …………3分230n n T b -+=,113n b ∴==当时,,112230n n n b --≥-+=当时,T ,两式相减,得12,(2)nn bb n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. …………7分(Ⅱ)14 32nn nn cn -⎧=⎨⋅⎩为奇数为偶数.当n 为偶数时,13124()()n n n P a a a b b b -=+++++++=212(444)6(14)222214nn n n n ++-⋅-+=+--. (10)分当n 为奇数时,(1) 等差数列的奇数项、偶数项各自组成一个新的等差数列。

(2)项数为奇数21n -的等差数列有:1s n s n =-奇偶;n s s a a -==奇偶中;21(21)n ns n a -=-=a ⋅中项数(3)项数为偶数2n 的等差数列有:1n n s a s a +=奇偶;ss nd-=偶奇;21()n n n s n a a +=+(4) 等比数列的奇数项、偶数项各自组成一个新的等比数列,公比都是2q 。

练习:1.已知数列{a n }满足a n+1=⎩⎨⎧a n 2(a n 为偶数),a n -2n (a n 为奇数).若a 3=1,则a 1的所有可能取值为________.解析:当a 2为奇数时,a 3=a 2-4=1,a 2=5; 当a 2为偶数时,a 3=12a 2=1,a 2=2;当a 1为奇数时,a 2=a 1-2=5,a 1=7或a 2=a 1-2=2,a 1=4(舍去); 当a 1为偶数时,a 2=12a 1=5,a 1=10或a 2=12a 1=2,a 1=4.综上,a 1的可能取值为4,7,10. 答案:4,7,102. 一个数列{a n },当n 是奇数时,a n =5n +1;当n 为偶数时,a n =22n ,则这个数列的前2m 项的和是________.解析:当n 为奇数时,{a n }是以6为首项,以10为公差的等差数列;当n 为偶数时,{a n }是以2为首项,以2为公比的等比数列.所以,S 2m =S 奇+S 偶=ma 1+m (m -1)2×10+a 2(1-2m )1-2=6m +5m (m -1)+2(2m -1)=6m +5m 2-5m +2m +1-2=2m +1+5m 2+m -2.参考题目:1.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40解析:选A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10. 2、等比数列的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为 (C )(A )4 (B )6 (C )8 (D )103、已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10=________.解析:∵a n +a n +1=b n ,a n ·a n +1=2n ,∴a n +1·a n +2=2n +1,∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2,∴a 2n =2n ,a 2n -1=2n -1(n ∈N *),∴b 10=a 10+a 11=64.4、已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( )A .2B .4C .5 D.52解析:选B 依题意得a n +1a n +2a n a n +1=2n +12n =2,即a n +2an =2,故数列a 1,a 3,a 5,a 7,…是一个以5为首项、2为公比的等比数列,因此a 7a 3=4.5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),设S n 是数列{a n }的前n 项和,则S 2 014=( )A .22 014-1B .3×21 007-3C .3×21 007-1D .3×21 007-2解析:选B 由a n +2a n +1a n +1a n=a n +2a n =2n +12n =2,且a 2=2,得数列{a n }的奇数项构成以1为首项,2为公比的等比数列,偶数项构成以2为首项,2为公比的等比数列,故S 2 014=(a 1+a 3+a 5+…+a 2 013)+(a 2+a 4+a 6+…+a 2 014)=1-21 0071-2+2(1-21 007)1-2=3×21 007-3.对比: a n +1/a n =2n 则用累乘法,6. 数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.解析:由a n +2-a n =1+(-1)n ,知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k .∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=50+(2+4+6+ (100)=50+(100+2)×502=2 600.点评:分奇偶项求和,实质分组法求和,注意公差和公比。

对比练习:(2014·衢州模拟)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2 =2-2n 1-2+2=2n -2+2=2n . ∴S n =2-2n +11-2=2n +1-2.7、(2013·天津高考)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1S n≤136(n ∈N *).[解题指导] (1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明. [解] (1)设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎪⎫-12n -1=(-1)n -1·32n .(2)证明:S n =1-⎝ ⎛⎭⎪⎪⎫-12n , S n +1S n =1-⎝ ⎛⎭⎪⎪⎫-12n+11-⎝⎛⎭⎪⎪⎫-12n =⎩⎪⎨⎪⎧2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n≤S 1+1S 1=136. 当n 为偶数时,S n +1S n随n 的增大而减小, 所以S n +1S n≤S 2+1S 2=2512. 故对于n ∈N *,有S n +1S n≤136. 变式:(2013·湖北高考)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.①求数列{a n }的通项公式; ②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由. 解析:①设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎨⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎨⎧ -a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎨⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.②由①有S n =3×[1-(-2)n ]1-(-2)=1-(-2)n . 若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n为偶数时,(-2)n>0,上式不成立;当n为奇数时,(-2)n=-2n≤-2 012,即2n≥2 012,则n≥11.综上,存在符合条件的正整数n,且所有这样的n的集合为{n|n=2k+1,k∈N,k≥5}.点评:当数列涉及底数是负数时,要对指数n分奇偶讨论。

相关文档
最新文档