数列中的奇数项和偶数项问题

合集下载

高中数学:数列通项的奇偶项问题

高中数学:数列通项的奇偶项问题

中学数学:数列通项的奇偶项问题
在日常学习考试中,我们常常会遇到数列求和问题,通常的做法是先求出数列通项解析式,推断数列性质,再依据公式求和,这是大多数同学都能驾驭并娴熟运用的。

但也常常会遇到依据给出的条件,依据正常解题思路无法精确求出解析式的状况,这时,我们必需要学会巧用奇偶分析法求出通项解析式,或者选择放弃求通项解析式,采纳分类探讨法探讨,肯定会收到意想不到的效果。

同样的方法探讨偶数项的通项公式:
我们看到,不管n为奇数还是偶数,通项公式的形式是相同的。

在采纳奇偶分析法探讨数列的通项时,我们采纳了累加法.这个方法简洁易用,不简洁犯错。

当然,因为奇数项成等差,偶数项也成等差,你也可以利用等差数列的通项公式干脆写稀奇数项和偶数项的通项公式,前提是项数不要搞错。

下面,思索一个一般化的问题:
请思索2分钟,再往下看。

看下面的简图:
把等差数列的各项放在数轴上,那么等差数列可理解为随意相邻两项的距离为定值(假设入>0)。

可是,由题我们只能确定间隔一项的两项距离为定值,如何做到符合等差数列的要求呢?
其实也简洁,假如我们使得第1项和第2项的距离为入/2,自然地,第2项和第3项的距离就为入/2,第3项和第4项的距离
也为入/2,依次往下,多米诺骨牌效应......。

数列中的奇偶项问题

数列中的奇偶项问题

n n 1 2 2
2
n 1 n 3 2 2
3、相间两项之差为常数; 例 3:已知数列{an}中 a1=1,a2=4,an=an-2+2 (n≥3) ,Sn 为{an}前 n 项和,求 Sn
解:∵an-an-2=2 (n≥3) ∴a1,a3,a5,…,a2n-1 为等差数列;a2,a4,a6,…,a2n 为等差数列
1 1 1 1 n2 1 n2 ②n 为奇数时: an 2( ) 2( ) 3 3
n 1 n 1 11 * 2(2( ) 2) 2 n n2 k2 k 1( k 1( k N )N ) 33 a { n 则有:nan { n 11 1 1 * ( ( ) 2 ) 2 n n2 k (2 kk N )N ) ( k 2 3
作业:数列{an}满足 an+1+(﹣1)nan=2n﹣1,则{an}的前 60 项和为
方法五:当 为奇数时, ,

因 此 每 四 项 的 和 依 此 构 成 一 个 以 10 为 首 项 ,16 为 公 差 等 差 数 列 , 所 以
的前
项和为
1 n 2 * x C x ( ) 0 n N 练习:已知 an,an+1 为方程 的两根 ∈ , n 3 a1=2,Sn=C1+C2+…+Cn,求 an 及 S2n。
解:①当 n 为偶数时: S n a1 a2 a3 a4 … an 1 an
(a1 a2 ) (a3 a4 ) … (an 1 an )
②当 n 为奇数时: S n a1 (a2 a3 ) (a4 a5 ) … (an 1 an )
②n 为偶数时,n+1 为奇数: Cn an an 1

数列中的奇偶项通项与求和

数列中的奇偶项通项与求和

数列中的奇偶项通项与求和这个我之前也讲过,不过是以视频的形式。

今天我就一起来说说奇偶通项公式。

我们来看看求奇偶项的通项公式!如果考试考这个,那估计得死一批才行。

题目问的是bn的通项公式,而且告诉我们bn=a(2n-1)的关系,那我们这里就往后面走一个【注意项数问题】,如下因为2n+1一定是奇数啊,又因为所以就有这种问题就解决了,多训练就没问题了!接下来我讲一下奇偶项之和,分为四类。

第一类一共有2n项【最后一项一定是偶数项】,所以你这边就有n 个奇数项和n个偶数项,这时候只要简单的分一下就行,如下这种形式还是比较简单的。

第二类这里是有n项,这最后一项是奇数项还是偶数项呢?我们不知道,既然不知道那就得讨论讨论!怎么个讨论?我们一般是先讨论n为偶数的时候【其实讨论奇数也是可以,不过后续操作会有点繁琐罢了】,即这时候你把偶数项求出来再求奇数项就好求多了这时候最终的结果就得写成分段的形式了,如下所以这边得清楚了,在分类讨论的时候一般先讨论n为偶数的时候,然后再用an=Sn-Sn-1来求n为奇数的时候。

第三类这个是让求2n项的,一定是个偶数项,所以我们在裂项之后是可以直接操作的,如下那如果不是求前2n项呢?是求n项的话那还得分类讨论才行!比如下一题还是先讨论当n为偶数的时候此时再求n为奇数项的时候有所以最终的结果是第四类这一类和上面一类有点相同,不过不一样的点在于这个引入了三角函数sin和cos的形式,这里只需要各位掌握的是下面的两个恒等式至此关于数列奇偶问题就结束了,不过关于数列问题还是有很多题型的,这类的奇偶只是“沧海一粟”而已,之前新高考一卷解答题第一题考了数列的奇偶,学生们错的一塌糊涂,虽然往后可能不考,但是万一考什么插项,存在性,恒成立,绝对值问题怎么办呢?就比如绝对值问题,随便出一个这个怎么求?还是要分类讨论的!学生解决数列问题,常规的知识点总得知道吧,比如:等差等比数列的相关性质,错位相减法,裂项相消法,倒序相加法,待定系数法,相除法,倒数法,构造法,累加法,累乘法等等!。

数列中的奇偶项问题

数列中的奇偶项问题

1 1 1 3 3 2 1 1 3
n
n 6 n(n 1) 9n 1 3n 2 6n 1 2 3
(3)显然当 n N * 时, S 2 n 单调递减,
又 当 n 1 时 , S2
2
1 3 1 (1 ( ) k ) 1 (1 ( ) k ) 3 1 3 n 1 n 2 2 2[( ) k ( ) k ] 4 2[( ) 2 ( ) 2 ] 4 . 1 3 2 2 2 2 1 1 2 2
……6 分
②当 n 2k 1 时, Sn S2 k a2 k 2[( ) k ( ) k ] 4 ( ) k 1
a1 1, a 2 2 ,设 bn a 2 n 1 a 2 n .
(1)若数列 bn 是公比为 3 的等比数列,求 S 2 n ;
(2)若 S 2 n 3( 2 n 1) ,数列 a n a n 1 也为等比数列,求数列的 a n 通项公式.
解:(1) b1 a1 a2 1 2 3 , S2 n (a1 a2 ) (a3 a4 ) ...... (a2 n 1 a2 n )
7 8 0 , 当 n 2 时 , S 4 0 , 所 以 当 n≥ 2 时 , S 2 n 0 3 9
5
S 2 n 1 S 2 n a2 n
3 1 5 3n 2 6n , 2 3 2
n
同理,当且仅当 n 1 时, S 2 n 1 0 .
数列中的奇偶项问题
题型一、等差或等比奇偶项问题
(2). 等比数列 an 的首项为 1 ,项数为偶数,且奇数项和为 85 ,偶数项和为 170 ,则数列的 项数为____ 8 ___

数列中的奇偶项问题

数列中的奇偶项问题

数列中的奇偶项问题例1、〔12一模〕数列{}n a 满足:111,1,2n n n a n a a a n ++⎧==⎨⎩奇,,偶为数为数*n N ∈,设21n n b a -=. 〔1〕求23,,b b 并证明:122;n n b b +=+〔2〕①证明:数列{}2n b +等比数列;②假设22122,,9k k k a a a +++成等比数列,求正整数k 的值. 解:〔1〕2321=22(1)4,b a a a ==+=3543=22(1)10,b a a a ==+= 121221=22(1)2(1)22,n n n n n n b a a a b b ++-==+=+=+〔2〕①因为111122(2)1,20,2,22n n n n b b b a b b b +++==+≠==++所以数列{}2n b +是以3为首项,2为公比的等比数列.②由数列{}2n b +可得,1121322,322n n n n b a ---=⨯-=⨯-即,那么12211321n n n a a --=+=⨯-,因为22122,,9k k k a a a +++成等比数列,所以21(322)(321)(328)k k k -⨯-=⨯-⨯+,令2=k t ,得23(32)(1)(38)2t t t ⨯-=-+,解得243t =或,得2k =. 例2、〔14二模〕设等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,n N *∈.〔I 〕求数列{}n a ,{}n b 的通项公式;〔II 〕设⎩⎨⎧=为偶数为奇数n b n a c nn n ,求数列{}n c 的前n 项和n P . 解:〔Ⅰ〕由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. …………3分 230n n T b -+=,113n b ∴==当时,,112230n n n b --≥-+=当时,T ,两式相减,得12,(2)n n b b n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. …………7分〔Ⅱ〕14 32n n n n c n -⎧=⎨⋅⎩为奇数为偶数.当n 为偶数时,13124()()n n n P a a a b b b -=+++++++=212(444)6(14)222214n n n n n ++-⋅-+=+--. ……………10分 当n 为奇数时,〔法一〕1n -为偶数,1n n n P P c -=+(1)1222(1)24221n n n n n n -+=+--+=++- ……………13分点评:根据结论1退而求之.〔法二〕132241()()n n n n P a a a a b b b --=++++++++1221(44)6(14)2221214n n n n n n -++⋅-=+=++-- . ……………13分 12222,221n n n n n P n n n +⎧+-∴=⎨++-⎩为偶数,为奇数……………14分 点评:分清项数,根据奇偶进展分组求和。

高中数学2轮15 第2部分 专题2 强基专题1 数列中的奇、偶项问题

高中数学2轮15 第2部分 专题2 强基专题1 数列中的奇、偶项问题

数列中的奇、偶项问题“分段函数的递推关系”属于数列奇偶项的问题,该类问题主要考查学生的综合运用知识能力与探究问题能力,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等,特别注意分类讨论等思想在解题中的灵活运用.【例1】 已知数列{a n }的前n 项和为S n ,a 1=1,a n =⎩⎨⎧a n -1+1,n =2k 2a n -1+1,n =2k +1(k ∈N *).则下列选项不正确的为( )A .a 6=14B .数列{a 2k -1+3}(k ∈N *)是以2为公比的等比数列C .对于任意的k ∈N *,a 2k =2k +1-3D .S n >1 000的最小正整数n 的值为15C [由题设可得a 2k -a 2k -1=1,a 2k +1-2a 2k =1, 因为a 1=1,a 2-a 1=1,故a 2=a 1+1=2,所以a 2k +2-a 2k +1=1,a 2k +1-2a 2k =1,所以a 2k +2-2a 2k =2, 所以a 2k +2+2=2(a 2k +2),因为a 2+2=4≠0,故a 2k +2≠0, 所以a 2k +2+2a 2k +2=2,所以{a 2k +2}为等比数列,所以a 2k +2=4×2k -1, 即a 2k =2k +1-2,故a 6=16-2=14,故A 正确,C 错误.又a 2k -1=2k +1-2-1=2k +1-3,故a 2k -1+3=2k +1,所以a 2k +1+3a 2k -1+3=2,即{a 2k -1+3}(k ∈N *)是以2为公比的等比数列,故B 正确.S14=a1+a2+…+a14=a1+(a1+1)+…+a13+(a13+1)=2(a1+a3+a5+a7+a9+a11+a13)+7=2×(22-3+23-3+…+28-3)+7=981,S15=S14+a15=981+509=1 490>1 000,故S n>1 000的最小正整数n的值为15,故D正确.故选C.]题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D项是否成立时注意先考虑S14的值.【例2】已知数列{a n}满足a n+1+a n=4n-3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n.[解](1)若数列{a n}是等差数列,则a n=a1+(n-1)d,a n+1=a1+nd.由a n+1+a n=4n-3,得(a1+nd)+[a1+(n-1)d]=2nd+2a1-d=4n-3,所以2d=4,2a1-d=-3,解得,d=2,a1=-12.(2)由a n+1+a n=4n-3,得a n+2+a n+1=4n+1(n∈N*).两式相减,得a n+2-a n=4.所以数列{a2n-1}是首项为a1,公差为4的等差数列,数列{a2n}是首项为a2,公差为4的等差数列,由a2+a1=1,a1=2,得a2=-1.所以a n =⎩⎪⎨⎪⎧2n , n 为奇数2n -5, n 为偶数.法一:①当n 为偶数时,S n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n )=2+2(n -1)2·n 2+-1+(2n -5)2·n 2=2n 2-3n 2.②当n 为奇数时,S n =2(n -1)2-3(n -1)2+2n =2n 2-3n +52,所以S n=⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n2,n 为偶数.法二:①当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n2;②当n 为奇数时,S n =a 1+a 2+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n =1+9+…+(4n -11)+2n =2n 2-3n +52. 所以S n=⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n2,n 为偶数.1.数列中连续两项和或积的问题(a n +a n +1=f (n )或a n ·a n +1 =f (n ))属于数列中的奇、偶项问题.2.对于通项公式分奇、偶不同的数列{a n }求S n 时,我们可以分别求出奇数项和偶数项的和,也可以把a 2k -1+a 2k 看作一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .[跟进训练]1.数列{a n }满足a n +1+a n =(-1)n (2n -1),则{a n }的 前60项和为( ) A .-1 710 B .-1 740 C .-1 770D .-1 880C [根据题意,数列{a n }满足a n +1+a n =(-1)n (2n -1), 当n 为奇数时,有a n +1+a n =-(2n -1), 其中当n =1时,有a 2+a 1=-1, 当n =3时, 有a 4+a 3=-5, 当n =5时,有a 6+a 5=-9, …当n =59时,有a 60+a 59=-(2×59-1)=-117, 则{a n }的前60项和S 60=(a 2+a 1)+(a 4+a 3)+…+(a 60+a 59)=(-1)+(-5)+…+(-117)=-(1+5+9+…+117)=-(1+117)×302=-1 770.故选C .]2.已知数列{a n }满足:a 1=1,a n +1=⎩⎪⎨⎪⎧12a n +n ,n 为正奇数a n -2n ,n 为正偶数,b n =a 2n -2.(1)求a 2,a 3,a 4;(2)求证:数列{b n }为等比数列,并求其通项公式; (3)求和T n =a 2+a 4+…+a 2n .[解](1)a 1=1,a n +1=⎩⎨⎧12a n +n ,n 为正奇数a n -2n ,n 为正偶数,可得a 2=1+12a 1=1+12=32;a 3=a 2-4=-52,a 4=3+12a 3=74.(2)证明:b n =a 2n -2=12a 2n -1+2n -1-2=12(a 2n -2-4n +4)+2n -1-2=12(a 2n -2-2)=12b n -1,又b 1=a 2-2=-12,可得数列{b n }为公比为12,首项为-12的等比数列,即b n =-⎝ ⎛⎭⎪⎫12n.(3)由(2)可得a 2n =2-⎝ ⎛⎭⎪⎫12n,T n =a 2+a 4+…+a 2n =2n -⎝ ⎛⎭⎪⎫12+14+ (12)=2n -12⎝ ⎛⎭⎪⎫1-12n 1-12=2n -1+⎝ ⎛⎭⎪⎫12n. 3.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记S n 为{a n }的前n 项和,b n=a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .[解] (1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n ,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n=12,即a n +2=12a n .因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列. 因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32, 所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以a 2n -1=⎝ ⎛⎭⎪⎫12n -1,a 2n =⎝ ⎛⎭⎪⎫12n,所以a n=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12 n +12-1,n 为奇数,⎝ ⎛⎭⎪⎫12n2,n 为偶数.(3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n=⎩⎪⎨⎪⎧3-32n 2,n 为偶数,3-42n +12,n 为奇数.4.已知数列{a n }的前n 项和为S n ,且S n =12n 2+12n . (1)求{a n }的通项公式;(2)设b n =⎩⎨⎧a n ,n =2k -1,k ∈N *,2a n ,n =2k ,k ∈N *,求数列{b n }的前2n 项和T 2n .[解] (1)因为S n =12n 2+12n , 所以当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=12n 2+12n -⎣⎢⎡⎦⎥⎤12(n -1)2+12(n -1)=n ,又n =1时符合上式,所以a n =n .(2)因为b n =⎩⎪⎨⎪⎧a n ,n =2k -1,k ∈N *,2a n ,n =2k ,k ∈N *,所以对任意的k ∈N *,b 2k +1-b 2k -1=(2k +1)-(2k -1)=2,则{b 2k +1}是以1为首项,2为公差的等差数列.又b 2k +2b 2k =22k +222k =4,所以{b 2k }是以4为首项,4为公比的等比数列.所以T 2n =(b 1+b 3+b 5+…+b 2n -1)+(b 2+b 4+b 6+…+b 2n )=(1+3+…+2n -1)+(4+42+43+…+4n )=n (1+2n -1)2+4(1-4n )1-4=n 2+4n +13-43.。

数列奇数项偶数项和问题公式

数列奇数项偶数项和问题公式

数列奇数项偶数项和问题公式
在数学中,数列是按照一定规律排列的一系列数字的集合。

奇数项和偶数项和
问题是指找出数列中所有奇数项和所有偶数项之和的问题。

为了解决这个问题,我们可以使用以下公式:
奇数项和:S_odd = (N_odd/2) * (a_1 + a_n_odd)
偶数项和:S_even = (N_even/2) * (a_2 + a_n_even)
其中,S_odd表示奇数项和,S_even表示偶数项和,N_odd表示奇数项的数量,N_even表示偶数项的数量,a_1表示数列的首项,a_n_odd表示数列的最后一个奇
数项,a_2表示数列的第二个项(也就是偶数项的首项),a_n_even表示数列的最
后一个偶数项。

这些公式的原理是利用数列的首项和末项求出数列的和,并且乘以项数的一半
来计算奇数项和和偶数项和。

在使用这些公式之前,我们需要先确定数列中奇数项和偶数项的数量。

举个例子,如果我们有一个数列:1, 2, 3, 4, 5, 6, 7, 8, 9, 10。

奇数项有5个(1, 3, 5, 7, 9),偶数项也有5个(2, 4, 6, 8, 10)。

奇数项和是:S_odd = (5/2) * (1 + 9) = 25
偶数项和是:S_even = (5/2) * (2 + 10) = 30
因此,对于该数列,奇数项的和为25,偶数项的和为30。

通过使用数列奇数项偶数项和问题公式,我们可以准确地计算出任意数列的奇
数项和和偶数项和,这在数学中有着广泛的应用。

数列中的奇、偶项问题

数列中的奇、偶项问题
=(-1+14)+(3+22)+(7+30)+…+[(2n-5)+(4n+6)]
(-1+2-5) (14+4+6)
32 +7
2
2
=[-1+3+…+(2n-5)]+[14+22+…+(4n+6)]=
+
=
.
2

2
时,Tn-Sn=
-(n +4n)=
2
2
综上可知,当 n>5 时,Tn>Sn.
− 2 -4,即+1
=(an+2)2,n≥2.
因为{an}的各项均为正数,所以 an+1=an+2,即 an+1-an=2,n≥2.
因为 a3=5,所以32 =4(a1+a2)+9,22 =4a1+5,解得 a2=3,a1=1.则 a2-a1=2,满足
an+1-an=2,
所以数列{an}是公差为 2 的等差数列,
=
(-1)
>0,所以
2
2
Tn>Sn.
2
[对点训练 2](2024·山东聊城模拟)已知数列{an}满足 a1+a3=2a2,
3 ,为奇数,
an+1=
数列{cn}满足 cn=a2n-1.
+ 2,为偶数,
(1)求数列{cn}和{an}的通项公式;
(2)求数列{an}的前n项和Sn.
解 (1)由 an+1=
探究二
奇、偶项通项不同的数列求和
-6,为奇数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1设数列{a n }的首项a 1=a ≠41,且11为偶数21为奇数4n n n a n a a n +⎧⎪⎪=⎨⎪+⎪⎩,记,n ==l ,2,3,…·. (I )求a 2,a 3;(II )判断数列{b n }是否为等比数列,并证明你的结论; 解:(I )a 2=a 1+41=a +41,a 3=21a 2=21a +81;(II )∵ a 4=a 3+41=21a +83, 所以a 5=21a 4=41a +316,所以b 1=a 1-41=a -41, b 2=a 3-41=21(a -41), b 3=a 5-41=41(a -41), 猜想:{b n }是公比为21的等比数列· 证明如下:因为b n +1=a 2n +1-41=21a 2n -41=21(a 2n -1-41)=21b n , (n ∈N *) 所以{b n }是首项为a -41, 公比为21的等比数列·2 在数列{}n a 中,1a =0,且对任意k *N ∈,2k 12k 2k+1a ,a ,a -成等差数列,其公差为2k.(Ⅰ)证明456a ,a ,a 成等比数列; (Ⅱ)求数列{}n a 的通项公式;(I )证明:由题设可知,2122a a =+=,3224a a =+=,4348a a =+=,54412a a =+=, 65618a a =+=。

从而,所以4a ,5a ,6a 成等比数列。

(II )解:由题设可得21214,*k k a a k k N +--=∈ 所以()()()2112121212331...k k k k k a a a a a a a a ++----=-+-+- ()441...41k k =+-++⨯ ()21,*k k k N =+∈.由10a =,得()2121k a k k +=+ ,从而222122k k a a k k +=-=. 所以数列{}n a 的通项公式为或写为,*n N ∈。

设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值. 解析:(Ⅰ)当1,111+===k S a n ,12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*) 经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 422.=∴,即)18)(12()14(2+-+-=+-k km k km k km ,整理得:0)1(=-k mk , 对任意的*∈N m 成立, 10==∴k k 或(2009北京文)(本小题共13分)设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.(Ⅰ)若,求3b ;(Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p和q 的取值范围;如果不存在,请说明理由.【解析】本题主要考查数列的概念、数列的基本性质,考查运算能力、推理论证能力、分类讨论等数学思想方法.本题是数列及不等式综合的较难层次题.(Ⅰ)由题意,得,解,得. .∴成立的所有n 中的最小整数为7,即37b =. (Ⅱ)由题意,得21n a n =-, 对于正整数,由n a m ≥,得.根据m b 的定义可知当21m k =-时,()*m b k k N =∈;当2m k =时,()*1m b k k N =+∈.∴()()1221321242m m m b b b b b b b b b -+++=+++++++()()1232341m m =++++++++++⎡⎤⎣⎦()()213222m m m m m m ++=+=+. (Ⅲ)假设存在p 和q 满足条件,由不等式pn q m +≥及0p >得.∵32()m b m m N *=+∈,根据m b 的定义可知,对于任意的正整数m 都有3132m qm m p-+<≤+,即()231p q p m p q --≤-<--对任意的正整数m都成立.当310p ->(或310p -<)时,得(或),这及上述结论矛盾! 当310p -=,即时,得,解得.∴ 存在p 和q ,使得32()m b m m N *=+∈;p 和q 的取值范围分别是,. .已知数列{}n a 和{}n b 满足:1a λ=,124,(1)(321),3n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列;(Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;(Ⅲ)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b <<?若存在,求λ的取值范围;若不存在,说明理由.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14)=32(-1)n ·(a n -3n +21)=-32b n又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列:当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴(n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列.(Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ 要使a <S n <b 对任意正整数n 成立,即a <-53(λ+18)·[1-(-32)n ]〈b(n ∈N +),则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95, 于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ 当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求; 当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18).设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记。

(I )求数列{}n a 及数列{}n b 的通项公式;(II )设数列{}n b 的前n 项和为n R ,是否存在正整数k ,使得4n R k ≥成立?若存在,找出一个正整数k ;若不存在,请说明理由;(I )当1=n 时, 又1151,51++=+=+n n n n a S a S11115,4即+++∴-==-n n n n n a a a a a ∴数列{}n a 是首项为,公比为的等比数列,∴,*14()4()11()4+-=∈--nn nb n N …………………………………3分 (II )不存在正整数k ,使得4n R k ≥成立。

证明:由(I )知14()5441(4)11()4+-==+----nn nn b 212212555201516408888.(4)1(4)1161164(161)(164)--⨯-+=++=+-=-<-----+-+k k k k k k k k k b b∴当n 为偶数时,设2()n m m N *=∈ ∴1234212()()()84n m m R b b b b b b m n -=++++++<=当n 为奇数时,设21()n m m N *=-∈ ∴1234232221()()()8(1)4844n m m m R b b b b b b b m m n ---=+++++++<-+=-=∴对于一切的正整数n ,都有4n R k < ∴不存在正整数k,使得4n R k≥成立。

…………………………………8分数列{}221221,2,(1cos )sin ,1,2,3,.22n n n n n a a a a a n ππ+===++=满足(Ⅰ)求34,,a a 并求数列{}n a 的通项公式; (Ⅱ)设21122,.n n n n na b S b b b a -==+++证明:当解: (Ⅰ)因为121,2,a a ==所以22311(1cos )sin 12,22a a a ππ=++=+=22422(1cos )sin 2 4.a a a ππ=++== 一般地,当*21(N )n k k =-∈时,222121(21)21[1cos ]sin 22k k k k a a ππ+---=++ =211k a -+,即2121 1.k k a a +--=所以数列{}21k a -是首项为1、公差为1的等差数列,因此21.k a k -= 当*2(N )n k k =∈时,22222222(1cos )sin 2.22k k k k k a a a ππ+=++= 所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.k k a =故数列{}n a 的通项公式为**21,21(N ),22,2(N ).n n n n k k a n k k +⎧=-∈⎪=⎨⎪=∈⎩(Ⅱ)由(Ⅰ)知,23123,2222n n nS =++++ ①2241112322222n n nS +=++++ ② ①-②得,23111111.222222n n n nS +=++++-21111[1()]1221.122212n n n n n ++-=-=--- 所以11222.222n n n n n n S -+=--=-要证明当6n ≥时,成立,只需证明当6n ≥时,成立. 证法一(1)当n = 6时,成立.(2)假设当(6)n k k =≥时不等式成立,即则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k kk k k k k k k k k k k k++++++++=⨯<<++ 由(1)、(2)所述,当n ≥6时,.即当n ≥6时, 证法二令,则21121(1)(3)(2)30.222n n n n n n n n n c c ++++++--=-=< 所以当6n ≥时,1n n c c +<.因此当6n ≥时,于是当6n ≥时, 综上所述,当6n ≥时,设n S 是数列{}n a (n ∈N*)的前n 项和,1a a =,且22213n n n S n a S -=+,0n a ≠,234n =,,,.(I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N*)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项.20.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …………………………① 于是213(1)n n S S n ++=+. …………………………………………………②由②-①得:163n n a a n ++=+.……………………………………………③于是2169n n a a n +++=+.……………………………………………………④由④-③得:26n n a a +-=.…………………………………………………⑤即数列2{}n n a a +-(2n ≥)是常数数列. (II )由①有2112S S +=,所以2122a a =-. 由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列.所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N*.由题设知,1187n n b -=⨯.当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项.若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N*,从而n b 是数列{}n a 中的第167n -⨯项.等差数列{}n a 的前n 项和为1319n S a S ==+, (Ⅰ)求数列{}n a 的通项n a 及前n 项和n S ;(Ⅱ)设,求证:数列{}n b 中任意不同的三项都不可能成为等比数列. 本小题考查数列的基本知识,考查等差数列的概念、通项公式及前n 项和公式,考查等比数列的概念及性质,考查化归的数学思想方法以及推理和运算能力.满分12分 解:(Ⅰ)由已知得,2d ∴=, 故212(2)n n a n S n n =-+=+,. (Ⅱ)由(Ⅰ)得.假设数列{}n b 中存在三项p q r b b b ,,(p q r ,,互不相等)成等比数列,则2q p r b b b =.即2(2)(2)(2)q p r +=++. 2()(2)20q pr q p r ∴-+--= p q r *∈N ,,,22()02p r pr p r p r +⎛⎫∴=-=∴= ⎪⎝⎭,,. 及p r ≠矛盾.所以数列{}n b 中任意不同的三项都不可能成等比数列.。

相关文档
最新文档