液压悬置的结构规范

合集下载

发动机液压悬置概要

发动机液压悬置概要

一个理想的动力悬置系统应具备以下两点特性: 在5~20Hz的低频范围内,为了有效衰减因路面不平 和发动机怠速燃气压力不均匀引起的低频大振幅的振 动,需具有高刚度、大阻尼的特性;而在20 Hz以上 的频带范围内,为了降低车内噪声,提高汽车的操纵 稳定性,需具有低刚度、小阻尼的特性。
液压悬置则克服了传统动力总成橡胶悬置阻尼偏 小的局限性,能够更好地满足汽车动力总成隔振的要 求。
(3)现存的液阻悬置集总参数辨识方法 主要有经验公式法、试验法和有限元方 法,由于各种各样的原因,这些参数辨 识方法均存在一定的局限性。 (4)目前对于悬置系统的优化设计研究 的比较多,而对悬置元件的优化设计还 没有成熟的理论,大多采用仿制或采用 类比的方法确定悬置的设计参数。
当液压悬置受到低频、大振幅激励时, 液体将经过惯 性通道在上下腔内往复流动。当液体流经惯性通道时, 由于惯性通道内液柱的运动产生较大的沿程能量损失 和惯性通道出、入口处为克服液柱惯性而产生的局部 能量损失, 液压悬置将产生大阻尼效应, 使振动能量尽 快耗散, 从而达到衰减振动的目的。
当液压悬置受到高频小振幅激励时,由于惯性通道 内液柱的惯性很大,液体几乎来不及流动,同时,由 于解耦膜在小变形时的低刚度特性,而使得解耦通道 内的液体随着解耦膜一起高速振动,从而降低液压悬 置的高频动刚度,消除动态硬化的效果。
6
2 发动机液压悬置的结构
液压悬置按控制方式可以分为被动悬置、 半主动悬置和主动悬置三种。半主动悬置和 主动悬置虽然在隔振降噪性能方面要优于被 动悬置,但由于它们的结构比较复杂、成本 较高、系统稳定性较差等问题,而使得它们 没有被广泛使用。现在的汽车上使用最广泛 的还是被动式液压悬置。
早期的液压悬置内部被分为上、下两个液室,两 液室之间通过一个简单的阻尼孔或者螺旋型的惯性 通道连通,如图1所示。

液压悬置性能与结构调整的关系

液压悬置性能与结构调整的关系

惯性通道的长度
• 惯性通道的长度即流道的长度,用L1表示。 • 下图是惯性通道与液压特性之间的关系。
4/10/2021 16
惯性通道的长度
4/10/2021 17
• 由上图可见,当惯性通道的长度增加时,动刚度、滞后角均增加,滞后 角出现峰值时的频率下降。对比上两图可见,惯性通道的长度对液阻悬 置性能的影响与横截面积对液阻悬置性能影响的规律是相反的。
4/10/2021 3
9 螺栓 8 支臂 7 限位块 6 液腔 5 橡胶衬
套 4 液压衬
套 3 铝芯子 2 骨架 1 支架
典型液压悬置产品
梯形液压悬置(惯性通道—解耦膜式)
4/10/2021 4
12 上液腔 10 底座 9 皮碗 8 流道盖
板 7 解耦片 6 上流道
板 5 骨架 4 主簧 3 支臂 2 骨架 1 上支架
时的频率。
• 由于这3中方案改进会引起其他变化,所以实际上很少予以采用。
其他因素与液压特性之间的关系
4/10/2021 19
• 除了上述几种结构与液压特性之间的关系,实际中还可以采用其他方式改 善产品液压特性。
• 1.皮碗倒吸。 皮碗倒吸通过在组装产品时,预压主簧来实现,预压越多,倒吸越厉害。
从下图是皮碗倒吸程度与液压特性之间的关系,
K*(N/mm) Phase Angle(Deg)
600
90
80
500
70
400
60
50
300
40
200
30
20
100
10
0
0
10
20
30
40
50
0
0
10 Freq20uency(H30z)

液压悬置性能及结构特点

液压悬置性能及结构特点
– 5、产品承受较大的侧向载荷时,需要注意结构件的强度是否能否满足要 求;
梯形液压悬置
• 梯形液压悬置性能特点
• 优点:
– 1、阻尼角峰值频率的调整比较容易,解耦效果比 较容易实现;
– 2、能够承受较大的纵向冲击载荷; – 3、容易在零件上搭载其他附件(如膨胀箱); – 4、能够在较小的Y向空间条件下实现零件布局;
• 液压衬套
Hydraulic Torque Link
零件结构特点:由橡胶主簧+外管+尼龙插片组成,橡胶主簧+ 外管构成两个流道及两个液压腔,从而得到一定的液压特性, 中间加尼龙插片控制零件的动态特性。
另:由于零件无解耦膜,所以零件所表现的液压特性均为流 道特性。
250
45
K* (N/mm) Phase (deg)
状态1:IDLE
上液室的液体直接从流道 板的入口通过阀杆进入皮 碗腔,悬置液压特性不作 体现,动刚度低,隔振性 能良好。
K* (N/mm) Phase (deg)
500
6
400
5
4 300
3 200
2
100
1
0
0
0
10
20
30
40
50
Axial Frequency (Hz)
状态2:ON ROAD
0 0
PP=1.0mm
50 40 30 20 10 0 10 20 30 40 50 (mm)
DYNAMIC STIFFNESS
LOSS ANGLE
K* (N/mm) Phase (deg)
高频、小振幅(普通液压悬置)
600 550 500 450 400 350 300 250 200 150 100

汽车新技术第7章 发动机液压悬置

汽车新技术第7章 发动机液压悬置

图7-21 形状记忆金属式主动悬置
谢谢观看!
(6)悬置失效时应考虑充足的保护措施。
7.2 发动机悬置的功能和基本要求 理想的动特性要求: (1)悬置具有较大静刚度,以支、高动刚度特性,以衰减汽车起动、制动、
换挡以及急加速、减速等过程中因发动机输出转矩波动引起的动力总成低频振 动。 (3)在7 ~12Hz范围内具有较大阻尼,以迅速衰减因路面激励引起的动力总
7.3 液压悬置结构和工作原理
图7-5 静刚度示意图
7.3 液压悬置结构和工作原理
图7-6 解耦式液压悬置的动特性曲线
7.4 液压悬置的发展方向
被动式液压悬置元件的研究主要集中在三个方面: (1)合理地设计橡胶主簧的结构和形状,以改善橡胶主簧内部的应力分布, 提高其疲劳寿命,或者获得合理的刚度特性组合(垂向刚度、体积刚度)。 (2)研究具有不同结构的液压悬置的动刚度和阻尼的频率特性,并研究结 构参数对其动特性的影响规律。 (3)针对不同车型和具有不同转速特性的发动机,以力传递率或位移传递
图7-16 压电式主动悬置
7.4 液压悬置的发展方向
(3)电致伸缩式主动悬置
电致伸缩作动器与压电作动器的原理相似,所不同的是电致伸缩材料的 特性是伸长的位移与施加的电压平方成正比,且电致伸缩材料几乎没用电致伸缩材料,结构如图7-17 所示。
会受到相应的吸引力或排斥力。常见的作动器有螺线管作动器和音圈作动器。
图7-12 两种类型的电磁作动器
7.4 液压悬置的发展方向
图7-13 电磁式主动悬置剖视图
图7-14 主动悬置控制系统
图7-15 奥迪S8 电磁式主动悬置
7.4 液压悬置的发展方向 (2)压电式主动悬置 压电式作动器是利用压电材料的逆压电效压,通过施加外部电场,将电 能转换成机械能的装置。压电作动器的突出优点是反应时间短,响应速度快, 频响可达几千赫兹或更高,驱动效率高,控制精度高,可在微米级或更低,可 以与压电传感器做成一体。

液压悬置的结构规范[技巧]

液压悬置的结构规范[技巧]

动力总成液压悬置的结构规范动力总成液压悬置的结构规范1 范围本标准适用于各系列车型动力总成液压悬置的结构规范;本标准主要说明了动力总成液压悬置的结构规范,并假设输入的布置边界条件满足布置要求;2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

无3 术语和定义无4 目标液压悬置的结构目标:在5~20Hz的低频范围内,需具有高刚度、大阻尼的特性,可有效衰减因路面不平和发动机怠速燃气压力不均匀引起的低频大振幅的振动;而在20 Hz以上的频带范围内,需具有低刚度、小阻尼的特性,可降低车内噪声,提高汽车的操纵稳定性。

5 液压悬置的结构设计5.1液压悬置的研究分析因国内的液压悬置研究起步比较晚,目前液压悬置的设计方式主要以消化吸收国外同类轿车的悬置系统布置方式和研究现有悬置产品的动特性为主,然后根据参考样件进行参考设计;目前对参考样件的分析主要有以下两种方式:5.1.1试验分析液压悬置的试验包括悬置元件试验和内部组件试验。

悬置元件试验的目的是获得悬置在不同的激励频率和振幅下的三向动刚度和滞后角特性,为仿真分析的验证和悬置的优化设计提供数据参考。

组件试验的目的是分析单个组件在整个悬置元件中的作用,测试主要组件的特性参数值,如橡胶主簧的弹性系数kr,阻尼系数br,上、下液室体积刚度kv、kb和橡胶主簧的等效泵压面积Ap等。

5.1.2理论分析理论分析的是根据参考样件建立精确的仿真模型,在此基础上通过仿真计算分析液压悬置的动刚度、阻尼的频变特性和幅变特性,找出影响悬置动特性的关键设计参数,进而进行结构参数的优化匹配。

5.2液压悬置的分类液压悬置按控制方式可以分为被动悬置、半主动悬置和主动悬置三种。

半主动悬置和主动悬置在隔振降噪性能方面要优于被动悬置,但它们的结构比较复杂、成本较高、系统稳定性较差。

汽车新技术第7章 发动机液压悬置

汽车新技术第7章 发动机液压悬置

7.1 概述 7.2 发动机悬置的功能和基本要求
7.3 液压悬置结构和工作原理
7.4 液压悬置的发展方向
7.1 概述
发动机悬置:即是指连接发动机与车架间的支撑块(体)。 汽车的舒适性(即NVH性)是汽车,特别是轿车的主要性能指标。引起 汽车振动的振源主要有两个:一是汽车行驶时的路面随机激励;二是发动机工 作时的振动激励。
7.3 液压悬置结构和工作原理
图7-5 静刚度示意图
7.3 液压悬置结构和工作原理
图7-6 解耦式液压悬置的动特性曲线
7.4 液压悬置的发展方向
被动式液压悬置元件的研究主要集中在三个方面: (1)合理地设计橡胶主簧的结构和形状,以改善橡胶主簧内部的应力分布, 提高其疲劳寿命,或者获得合理的刚度特性组合(垂向刚度、体积刚度)。 (2)研究具有不同结构的液压悬置的动刚度和阻尼的频率特性,并研究结 构参数对其动特性的影响规律。 (3)针对不同车型和具有不同转速特性的发动机,以力传递率或位移传递
成低频振动。
(4)悬置应在25Hz附近具有较低的动刚度,以衰减怠速振动。 (5)悬置在高频范围内(>50Hz),具有小阻尼、低动刚度特性,以降低振 动传递率,衰减高频噪声,提高降噪效果。 (6)能够适应发动机舱的环境,造价合理。 从上述要求看到,对发动机悬置的要求很复杂,有些要求之间互相矛盾。 传统橡胶悬置是无法满足这一要求的,液压悬置较好地满足了这一要求。
7.3 液压悬置结构和工作原理
工作原理: 当液压悬置受到低频、大振幅的激励时,如果橡胶主簧被压缩,上腔体积 减小,压力升高,迫使液体流经惯性通道被压入下腔;如果橡胶主簧被拉伸,上
腔体积增大,压力减小,下腔内液体流经惯性通道被吸入上腔。这样,液体经
惯性通道在上、下腔之间往复流动。当液体流经惯性通道时,惯性通道内液柱 惯性很大,在惯性通道的出、入口处为克服惯性通道内液柱的惯性损失了大量 的能量,称之为“惯性能量损失”。它使得液压悬置能很好地耗散振动能量,

车辆动力总成悬置系统的结构及类型

车辆动力总成悬置系统的结构及类型

动力总成悬置系统的结构及类型一、悬置结构及发展历史常见的悬置类型按发展历程来分有橡胶悬置、液压悬置、半主动悬置、主动悬置。

见图1所示。

图1 悬置的结构、性能及发展历程二、橡胶悬置橡胶悬置按结构分,可以分为衬套型悬置,方块形橡胶悬置以及楔形橡胶悬置衬套型橡胶悬置的橡胶元件位于内外两个圆筒形的金属管(内芯和外管)之间,橡胶可以用于承受压力或剪力,或者二者兼而有之。

衬套型橡胶悬置按主簧结构的形状还可以分为八字形,一字型以及X 型(见图2)。

每种类型的衬套型悬置三向刚度比例不一样,适应不同的整车要求。

图2 衬套型橡胶悬置结构图方块形橡胶悬置主要用在前置后驱车的左右悬置上,形成一对V型悬置组,可以通过调整安装角度获得更好的整车状态下的解耦及频率分布效果(见图3)。

具体计算过程的可以参照我发表的在汽车技术杂志上论文《基于动力总成质心位移及转角控制的悬置系统优化设计》。

图3 V型布置悬置系统及块状橡胶悬置结构图楔形橡胶悬置的橡胶元件硫化在金属两侧,主要用于承受剪切力,通常用在前置后驱车的变速器悬置上。

图4展示了两种楔形悬置的结构。

在分析中对于拉得比较开得悬置可以作为两个悬置来计算,相当于又形成了一对V型悬置组。

图4 楔形橡胶悬置结构图三、液压悬置液压悬置按结构分为筒形液压悬置以及梯形液压悬置,一般美系和日系车用筒形液压悬置的较多,欧系喜欢用梯形液压悬置。

液压悬置内部布置有解耦盘/膜,以及形成惯性通道的流道板。

流道板和橡胶主簧之间形成上夜室,底膜(皮碗)与流道板之间形成下液室,用于存储液体。

筒形液压悬置为了降低高频动刚度硬化还装有节流盘。

具体结构见图5所示。

而梯形液压悬置由于结构的限制一般不设节流盘。

被动式液压悬置的发展一共历经了三代,这一部分内容将在后续的文章中做具体的阐述。

图5 筒形液压悬置结构图四、半主动悬置半主动悬置的控体系统由电子控制单元、电磁阀、带有活动阀的悬置主体构成(可以是橡胶悬置或液阻悬置)(见图6),其工作原理为:电子电子控制单元监控发动机转速并在怠速时发出信号开启电磁阀;电磁阀开启后,发动机进气歧管内的负压力促使勾当阀开启,打开节流孔。

发动机悬置的结构、作用、设计要求

发动机悬置的结构、作用、设计要求

目录发动机悬置的结构、作用、设计要求 (2)1.1 悬置的作用 (2)1.2 悬置的设计要求 (2)1.3 悬置的设计结构 (2)1.4 悬置的布置 (5)1.5 悬置系统设计程序 (9)1.1 悬置系统安装要求 (10)发动机悬置的结构、作用、设计要求1.1 悬置的作用悬置元件既是弹性元件又是减振装置,其特性直接关系到发动机振动向车体的传递,并影响整车的振动与噪声。

1.2 悬置的设计要求1.2.1 能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。

同时在发动机大修前,不出现零部件损坏。

1.2.2 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。

1.2.3 能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。

1.2.4 保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。

1.3 悬置的设计结构1.3.1 发动机悬置软垫的设计-金属板件和橡胶组成1.3.1.1 悬置软垫的负荷通常前悬置位于发功饥机体前端或机体前部两侧,与后悬置相比、远离动力总成的质心,因此动力总成的垂直静负荷主要由后悬置承担,而前悬置主要承受扭转负荷。

对后悬置来说.距离动力总成的主惯性轴较近,承受较小的扭转负荷及振幅。

同时,由于它处于发动机动力输出端,受传动系不平衡力的严重干扰和外部轴向推力的冲击,当发动机输出最大转矩时.支承点出现的最大反作用力也应由后悬挂来承担。

所以后悬置的垂直刚度较大,也起着限制动力总成前后位移的作用。

悬置系统同样还承受了汽车行驶在平平道路上的颠簸、冲击、汽车制动及转向时所产生的动负荷。

1.3.1.2 悬置软垫的机构形式在设计发动机悬置时。

必须充分的考虑悬置的使用日的,例如支承的质量和限制的位移等,选择合理的形状。

悬置的基本形式有三中,即压缩式、剪切式和倾斜式。

给出了这二种悬置的基本特性及用途。

通常采用倾斜式的悬置结构,利用这种悬置的弹性特性,支点设定可以获得较大的自由度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力总成液压悬置的结构规范
动力总成液压悬置的结构规范
1 范围
本标准适用于各系列车型动力总成液压悬置的结构规范;
本标准主要说明了动力总成液压悬置的结构规范,并假设输入的布置边界条件满足布置要求;
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。


3 术语和定义

4 目标
液压悬置的结构目标:在5~20Hz的低频范围内,需具有高刚度、大阻尼的特性,可有效衰减因路面不平和发动机怠速燃气压力不均匀引起的低频大振幅的振动;而在20 Hz以上的频带范围内,需具有低刚度、小阻尼的特性,可降低车内噪声,提高汽车的操纵稳定性。

5 液压悬置的结构设计
5.1液压悬置的研究分析
因国内的液压悬置研究起步比较晚,目前液压悬置的设计方式主要以消化吸收国外同类轿车的悬置系统布置方式和研究现有悬置产品的动特性为主,然后根据参考样件进行参考设计;目前对参考样件的分析主要有以下两种方式:
5.1.1试验分析
液压悬置的试验包括悬置元件试验和内部组件试验。

悬置元件试验的目的是获得悬置在不同的激励频率和振幅下的三向动刚度和滞后角特性,为仿真分析的验证和悬置的优化设计提供数据参考。

组件试验的目的是分析单个组件在整个悬置元件中的作用,测试主要组件的特性参数值,如橡胶主簧的弹性系数kr,阻尼系数br,上、下液室体积刚度kv、kb和橡胶主簧的等效泵压面积Ap等。

5.1.2理论分析
理论分析的是根据参考样件建立精确的仿真模型,在此基础上通过仿真计算分析液压悬置的动刚度、阻尼的频变特性和幅变特性,找出影响悬置动特性的关键设计参数,进而进行结构参数的优化匹配。

5.2液压悬置的分类
液压悬置按控制方式可以分为被动悬置、半主动悬置和主动悬置三种。

半主动悬置和主动悬置在隔振降噪性能方面要优于被动悬置,但它们的结构比较复杂、成本较高、系统稳定性较差。

因此现在的汽车上使用最广泛的还是被动式液压悬置,目前陆风汽车上所采用的液压悬置也是被动式液压悬置。

5.3液压悬置的结构特点
典型的液压悬置结构具备以下几个特点:
a)具有橡胶主簧,以承受静载和动载荷;同时具有过载保护结构;
b)至少有两个独立的液室,能使液体在它们之间流动;
c)液室之间有能产生阻尼作用的孔或惯性通道;对于有解耦作用的液压悬置,还应有解耦盘或解耦膜;
d)液压悬置内部有液体工作介质,有多室式液压悬置内部还有气室;
2
Q/LF 45051—2003
e)液室与外部应有良好、可靠的密封。

研究表明,液压悬置主工作腔内部最高能达到3个大气压,任何泄露都将导致液压悬置的性能的降低甚至失效。

5.4被动式液压悬置的结构
早期的液压悬置内部被分为上、下两个液室,两液室之间通过一个简单的阻尼孔或者螺旋型的惯性通道连通,如图1所示。

为了改善液压悬置高频时的隔振性能可以在两液室之间加入解耦膜,这就是目前应用非常广泛的惯性通道-解耦膜式液压悬置,如图2所示。

图1 无解耦膜的液压悬置图图2 惯性通道-解耦膜式液压悬置图
典型的被动式液压悬置结构如图3所示。

图3 液压悬置结构示意图
1.联结螺栓;
2.金属骨架;
3.橡胶主簧;
4.缓冲限位盘;
5. 解耦盘;
6.惯性通道入口;
7.惯性通道上半部; 8.惯性通道; 9. 惯性通道下半部分; 10.下腔室底膜; 11.底座; 12.定位销;
13.联结螺栓; 14.空气室 15.气孔; 16.补偿孔
6 液压悬置的工作原理
当液压悬置受到低频、大振幅激励时, 液体将经过惯性通道在上下腔内往复流动。

当液体流经惯性通道时, 由于惯性通道内液柱的运动产生较大的沿程能量损失和惯性通道出、入口处为克服液柱惯性而产生的局部能量损失, 液压悬置将产生大阻尼效应, 使振动能量尽快耗散, 从而达到衰减振动的目的。

当液压悬置受到高频、小振幅激励时,由于惯性通道内液柱的惯性很大,液体几乎来不及流动,同时,由于解耦膜在小变形时的低刚度特性,而使得解耦通道内的液体随着解耦膜一起高速振动,从而降低液压
1
悬置的高频动刚度,消除动态硬化的效果。

液压悬置克服了传统动力总成橡胶悬置阻尼偏小的局限性,能够更好地满足汽车动力总成隔振的要求。

4。

相关文档
最新文档