第1章《集合与常用逻辑用语》教师
《第一章-集合与常用逻辑用语》大单元整体教学设计

《第一章集合与常用逻辑用语》大单元整体教学设计一、内容分析与整合(一)教学内容分析《第一章集合与常用逻辑用语》是高中数学学习的起点,为学生后续学习函数、数列、不等式等数学内容提供了重要的逻辑基础。
本章内容主要分为五个部分:集合的概念、集合间的基本关系、集合的基本运算、充分条件与必要条件、以及全称量词与存在量词。
这些内容不仅在数学内部逻辑上紧密相连,而且在实际问题解决中也具有广泛的应用价值。
集合是现代数学的基本概念之一,它是描述事物群体及其相互关系的重要工具。
通过学习集合的概念,学生能够理解集合的确定性、互异性、无序性,并掌握集合的表示方法(如列举法、描述法等)。
集合的学习有助于学生形成分类讨论的数学思想,为后续学习打下坚实基础。
集合间的基本关系主要包括子集、真子集、相等关系等。
这些关系揭示了集合之间的层次结构和相互联系,是学习集合运算和逻辑推理的基础。
学生需要掌握判断集合间关系的方法,并能根据具体问题灵活应用。
集合的基本运算包括并集、交集、补集等。
这些运算是集合论中的重要内容,也是解决实际问题中常用的数学工具。
学生需要掌握集合运算的定义、性质及运算法则,并能够进行复杂的集合运算。
充分条件与必要条件是逻辑推理中的基本概念,它们描述了条件与结论之间的逻辑关系。
通过学习充分条件与必要条件,学生能够理解命题之间的逻辑关系,掌握推理的基本方法,提高逻辑思维能力。
全称量词与存在量词是数学语言中的重要组成部分,它们用于描述具有普遍性或特殊性的数学命题。
学生需要理解全称命题与特称命题的区别,掌握全称量词与存在量词的含义及用法,并能够运用量词进行逻辑推理和命题证明。
(二)单元内容分析本单元内容不仅涵盖了集合论和逻辑推理的基础知识,更在数学学科中占据着举足轻重的地位。
集合论,作为现代数学大厦的基石之一,为我们提供了一个描述和研究数学对象及其相互关系的强大框架。
它使我们能够更清晰地理解和表达数学中的基本概念,为深入学习更复杂的数学知识打下坚实的基础。
第一章 集合与常用逻辑用语

第一章集合与常用逻辑用语第一章集合与常用逻辑用语§1.1集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A的任意一个元素都是集合B的元素(若则),则称集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或BA.4.集合的相等:如果集合A、B同时满足AB、BA,则A=B.5.补集:设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为.6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作AB.8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并集,记作AB.9.空集:不含任何元素的集合称为空集,记作.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N,正整数集记作N+或N,整数集记作Z,有理数集记作Q,实数集记作R.二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n个元素的集合的所有子集个数为:,所有真子集个数为:-1三、经典例题导讲[例1] 已知集合M={y|y=x2+1,x∈R},N={y|y =x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}错解:求M∩N及解方程组得或∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.正解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1},∴应选D.注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x ∈R},这三个集合是不同的.[例2] 已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.错解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴BA又A={x|x2-3x+2=0}={1,2}∴B=或∴C={0,1,2}[例3]已知mA,nB, 且集合A=,B=,又C=,则有:()A.m+nA B. m+nB C.m+nC D.m+n不属于A,B,C中任意一个错解:∵mA,∴m=2a,a,同理n=2a+1,aZ,∴m+n=4a+1,故选C错因是上述解法缩小了m+n的取值范围.正解:∵mA,∴设m=2a1,a1Z, 又∵n,∴n=2a2+1,a2 Z ,∴m+n=2(a1+a2)+1,而a1+a2 Z , ∴m+nB, 故选B.[例4]已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.错解:由x2-3x-10≤0得-2≤x≤5.欲使BA,只须∴p的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设.正解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴2≤p≤3②当B=时,即p+1>2p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A是实数集,满足若a∈A,则A,且1?A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A ? -1∈A ? ∈A ? 2∈A∴A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A ? ∈A ? ∈A?A,即1-∈A⑷由⑶知a∈A时,∈A,1-∈A.现在证明a,1-, 三数互不相等.①若a=,即a2-a+1=0,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1-③若1-=,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. [例7] 设集合A={|=,∈N+},集合B={|=,∈N+},试证:AB.证明:任设∈A,则==(+2)2-4(+2)+5(∈N+),∵n∈N*,∴n+2∈N*∴a∈B故①显然,1,而由B={|=,∈N+}={|=,∈N+}知1∈B,于是A≠B②由①、②得AB.点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的非空真子集的个数为()A.16B.14C.15 D.322.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,-2 } B.{-2,-}C.{±2,±} D.{,-}3.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.QC.D.不知道4. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q=B.P Q C.P=QD.P Q5.若集合M={},N={|≤},则MN=()A.B.C.D.6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是_________.7.(06高考全国II卷)设,函数若的解集为A,,求实数的取值范围.8.已知集合A=和B=满足A∩B=,A∩B=,I=R,求实数a,b的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、“非”分别用符号“”“”“”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q;p且q;非p5.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p则q”“若q 则p ”.7.反证法:欲证“若p则q”,从“非q”出发,导出矛盾,从而知“若p则非q”为假,即“若p则q”为真.8.充分条件与必要条件:①pq:p是q的充分条件;q是p的必要条件;②pq:p是q的充要条件.9.常用的全称量词:“对所有的”、“对任意一个”“对一切”“对每一个”“任给”等;并用符号“”表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某个”;并用符号“”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的. (4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明的充要条件是;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多有一个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意。
集合与常用逻辑用语教案

第1讲集合与常用逻辑用语【知识导图】【知识讲解】知识点1 集合1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系3.={x |x ∈U 且例题1.1 (1)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A.2B.3C.4D.6(2)已知集合A ={2a -1,a 2,0},B ={1-a ,a -5,9},且A ∩B ={9},则a =( )A.±3,5B.3,5C.-3D.5(3)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5答案 (1)C ,(2)C ,(3)C解析 (1)A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,且y ≥x }={(1,7),(2,6),(3,5),(4,4)}. (2)易知a 2=9或2a -1=9,∴a =±3或a =5.当a =3时,则1-a =a -5=-2,不满足集合中元素的互异性,舍去. 当a =5时,则A ∩B ={9,0},与题设条件A ∩B ={9}矛盾,舍去.当a =-3时,A ={-7,9,0},B ={4,-8,9},满足A ∩B ={9},故a =-3.(3)∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.例题1.2 (1)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( )A.M =NB.M ⊆NC.M ∩N =∅D.N ⊆M(2)已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.答案 (1) D ,(2) 5(,2)[0,]2−∞− 解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .(2)A ={x |-1≤x ≤6}. ∵B ⊆A ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m <-2.符合题意.当B ≠∅时,⎩⎨⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m <-2或0≤m ≤52.例题1.3 (1)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-1,0,1,2},B ={-3,0,2,3},则A ∩(∁U B )=( )A.{-3,3}B.{0,2}C.{-1,1}D.{-3,-2,-1,1,3}(2)已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 中有三个元素,则实数m 的取值范围是( ) A.[3,6)B.[1,2)C.[2,4)D.(2,4](3)已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( ) A.(-∞,-3]∪[2,+∞) B.[-1,2] C.[-2,1]D.[2,+∞)答案 (1) C ,(2) C ,(3) C解析 (1) ∁U B ={-2,-1,1},∴A ∩(∁U B )={-1,1}.故选C.(2)因为x 2-4x -5<0,解得-1<x <5,则集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},易知集合B ={x ⎪⎪x >m 2}.又因为A ∩B 中有三个元素,所以1≤m2<2,解之得2≤m <4.故实数m 的取值范围是[2,4). (3)集合A ={x |y =4-x 2}={x |-2≤x ≤2}, 因A ∪B =A ,则B ⊆A .又B ≠∅,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1.例题1.4 (1) 对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={x |x ≥0},B ={x |-3≤x ≤3},则A *B =________.(2) 若一个集合是另一个集合的子集,称两个集合构成“全食”;若两个集合有公共元素,但互不为对方子集,则称两个集合构成“偏食”.对于集合A =⎩⎨⎧⎭⎬⎫-1,12,1,B ={x |ax 2=1,a ≥0},若两个集合构成“全食”或“偏食”,则a 的值为________.(3) 定义:设有限集合A ={x |x =a i ,i ≤n ,n ∈N *},S =a 1+a 2+…+a n -1+a n ,则S 叫做集合A 的模,记作|A |.若集合P ={x |x =2n -1,n ≤5,n ∈N *},集合P 含有四个元素的全体子集为P 1,P 2,…,P k ,k ∈N *,则|P 1|+|P 2|+…+|P k |=________.答案 (1) {x |-3≤x <0或x >3},(2) 0或1或4,(3) 100. 解析 (1) ∵A ={x |x ≥0},B ={x |-3≤x ≤3}, ∴A -B ={x |x >3},B -A ={x |-3≤x <0}. ∴A *B ={x |-3≤x <0或x >3}.(2) 因为B ={x |ax 2=1,a ≥0},若a =0,则B =∅,满足B 为A 的真子集,此时A 与B 构成“全食”, 若a >0,则B =⎩⎨⎧⎭⎬⎫x ⎪⎪x 2=1a =⎩⎨⎧⎭⎬⎫1a ,-1a . 若A 与B 构成“全食”或“偏食”,则1a =1或1a =12,解得a =1或a =4.综上a 的值为0或1或4. (3) 集合P ={1,3,5,7,9},依题意,集合P 含有四个元素的全体子集为{1,3,5,7},{1,3,5,9},{1,3,7,9},{3,5,7,9},{1,5,7,9},根据“模”的定义,|P 1|+|P 2|+…+|P k |=(1+3+5+7)+(1+3+5+9)+(1+3+7+9)+(3+5+7+9)+(1+5+7+9)=4×(1+3+5+7+9)=100.知识点2 常用逻辑用语 1. 命题及其关系(1)命题:用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题, 判断为假的语句叫做假命题. (2)四种命题及其关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.2.充分条件与必要条件3.存在量词与全称量词(1)全称量词和存在量词(3)常用逻辑连接词命题中的或、且、非叫做逻辑联结词,命题p∧q,p∨q,¬p的真假判断例题2.1 (1)命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1(2)下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题答案(1)D,(2)A解析(1)命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若¬q,则¬p”的形式,所以“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.故选D.(2)命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,是真命题,故A正确;命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,是假命题,故B错误;命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,是假命题,故C错误;命题“若x2>0,则x>1”的逆否命题为“若x≤1,则x2≤0”,是假命题,故D错误.故选A.例题2.2 (1)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求实数m的取值范围.答案 (1) B ,(2) A ,(3)[0,3]解析 (1)由m ,n ,l 在同一平面内,可能有m ,n ,l 两两平行,所以m ,n ,l 可能没有公共点,所以不能推出m ,n ,l 两两相交.由m ,n ,l 两两相交且m ,n ,l 不经过同一点,可设l ∩m =A ,l ∩n =B ,m ∩n =C ,且A ∉n ,所以点A 和直线n 确定平面α,而B ,C ∈n ,所以B ,C ∈α,所以l ,m ⊂α,所以m ,n ,l 在同一平面内.故选B.(2)因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以┐p :x +y =-2,┐q :x =-1且y =-1,因为┐q ⇒┐p ,但┐p ⇒┐q ,所以┐q 是┐p 的充分不必要条件,即p 是q 的充分不必要条件. (3)由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3.又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].例题2.3 (1)命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( )A .∃x 0∈(0,+∞),x 013=x 015B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 013=x 015 D .∀x ∈(-∞,0),x 13=x 15(2)下列命题中的假命题是( )A .∀x ∈R ,e x >0B .∀x ∈N ,x 2>0C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1(3)若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是____________. 答案 (1)A ,(2)B ,(3)(,1]−∞−解析 (1)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 013=x 015,故选A.(2)对于B.当x =0时,x 2=0,因此B 中命题是假命题.(3)因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t -a ≥0”为真命题,所以Δ=(-2)2-4×1×(-a )=4a +4≤0,即a ≤-1.例题2.4 设a,b,c是非零向量.已知命题p:a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中是真命题的是()A.p∨q B.p∧qC.(¬p)∧(¬q) D.p∧(¬q)答案A解析取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,∴p是假命题.又a,b,c是非零向量,由a∥b知a=x b;由b∥c知b=y c,∴a=xy c,∴a∥c,∴q是真命题.综上知p∨q是真命题,p∧q是假命题.又∵¬p为真命题,¬q为假命题.∴(¬p)∧(¬q),p∧(¬q)都是假命题.。
必修第一册第一章 集合与常用逻辑用语第2讲 集合的表示方法教师版

第2讲 集合的表示【知识梳理】知识点一 列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.【要点讲解】使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a 1,a 2,…,a n };(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【知识精讲】例1 (1)设集合A ={1,2,3},B ={1,3,9},若x ∈A 且x ∉B ,则x =( )A .1B .2C .3D .9 (2)用列举法表示下列集合:①不大于10的非负偶数组成的集合;②方程x 2=x 的所有实数解组成的集合;③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1的解.【解】选B (1)∵x ∈A ,∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧ x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1的解集为{(0,1)}.【变式训练】1、已知集合A ={-2,-1,0,1,2,3},对任意a ∈A ,有|a |∈B ,且B 中只有4个元素,求集合B .解:对任意a ∈A ,有|a |∈B .因为集合A ={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A ,知0,1,2,3∈B .又因为B 中只有4个元素,所以B ={0,1,2,3}.2、 用列举法表示下列集合.(1)小于10的所有自然数组成的集合;(2)方程x 2=x 的所有实数根组成的集合.解:(1)设小于10的所有自然数组成的集合为A ,那么A ={0,1,2,3,4,5,6,7,8,9}.(2)设方程x 2=x 的所有实数根组成的集合为B ,那么B ={0,1}.3、用列举法表示下列集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由1~20以内的所有素数组成的集合.解:(1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.(2)设由1~20以内的所有素数组成的集合为C ,那么C ={2,3,5,7,11,13,17,19}.4、用列举法表示集合A ={(x ,y )|y =x 2,-1≤x ≤1,且x ∈Z}.解:由-1≤x ≤1,且x ∈Z ,得x =-1,0,1,当x =-1时,y =1;当x =0时,y =0;当x =1时,y =1.∴A ={(-1,1),(0,0),(1,1)}.【方法技巧总结】用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.【知识梳理】知识点二描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.【要点讲解】1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x的取值范围A需写明确,但若从上下文的关系看,x∈A是明确的,则x∈A可以省略,只写元素x.例1 (1)用符号“∈”或“∉”填空:①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.【解】(1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.【答案】(1)①∈∉②∈【变式训练】1、下列三个集合:①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A={x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}=R,即A=R;集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{y|y=x2+1}={y|y≥1}.集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对.可以认为集合C是坐标平面内满足y=x2+1的点(x,y)构成的集合,其实就是抛物线y=x2+1的图象.2、试用描述法表示下列集合.(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.解:(1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.3、用描述法表示函数y=x2-2图象上所有的点组成的集合.解:{(x,y)|y=x2-2}.4、用描述法表示下列集合.(1)方程x2+y2-4x+6y+13=0的解集;(2)平面直角坐标系中坐标轴上的点组成的集合.解:(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.所以方程的解集为{(x,y)|x=2,y=-3}.(2)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.5、集合A={1,-3,5,-7,9,…}用描述法可表示为( )A.{x|x=2n±1,n∈N}B.{x|x=(-1)n(2n-1),n∈N}C.{x|x=(-1)n(2n+1),n∈N}D.{x|x=(-1)n-1(2n+1),n∈N}【解】选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.【方法技巧总结】利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.(2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.知识点三集合表示的综合应用【知识梳理】用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.【知识精讲】题型1 选择适当的方法表示集合例1 用适当的方法表示下列集合.(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.解(1)列举法:{0,2,4};或描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.【变式训练】1、若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.【答案】{2 000,2 001,2 004}【解析】由A ={x ∈Z|-2≤x ≤2}={-2,-1,0,1,2},所以x 2∈{0,1,4},x 2+2 000的值为2 000,2001,2 004,所以B ={2 000,2 001,2 004}.2、设集合B =⎭⎬⎫⎩⎨⎧∈+∈N x N x 26|. ①试判断元素1,2与集合B 的关系;②用列举法表示集合B .【解】①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N. 所以1∈B,2∉B .②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}.【方法技巧总结】判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.题型2 新定义的集合例2 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={}5n +k |n ∈Z ,k =0,1,2,3,4,给出如下四个结论:①2 016∈[1];②-3∈[3];③若整数a ,b 属于同一“类”,则a -b ∈[0];④若a -b ∈[0],则整数a ,b 属于同一“类”.其中,正确结论的个数是( )A .1B .2C .3D .4答案 C解析 由于[k ]={ 5n +k |n ∈Z|,对于①,2 016除以5等于403余1,∴2 016∈[1],∴①正确;对于②,-3=-5+2,被5除余2,∴②错误;对于③,∵a ,b 是同一“类”,可设a =5n 1+k ,b =5n 2+k ,则a -b =5(n 1-n 2)能被5整除,∴a -b ∈[0],∴③正确;对于④,若a -b ∈[0],则可设a -b =5n ,n ∈Z ,即a =5n +b ,n ∈Z ,不妨令b =5m +k ,m ∈Z ,k =0,1,2,3,4,则a =5n +5m +k =5(m +n )+k ,m ∈Z ,n ∈Z ,∴a ,b 属于同一“类”,∴④正确,则正确的有①③④,共3个.【变式训练】1、 定义集合运算:A ※B ={t |t =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A ※B 中的所有元素之和为________.答案 6解析 由题意得t =0,2,4,即A ※B ={0,2,4},又0+2+4=6,故集合A ※B 中的所有元素之和为6.【易错题】[典例] 集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,求a 的取值范围.【解析】当a =0时,原方程变为2x +1=0,此时x =-12,符合题意; 当a ≠0时,方程ax 2+2x +1=0为一元二次方程,当Δ=4-4a =0,即a =1时,原方程的解为x =-1,符合题意.故当a =0或a =1时,原方程只有一个解,此时A 中只有一个元素.【易错点】解答上面例题时,a =0这种情况极易被忽视,对于方程“ax 2+2x +1=0”有两种情况:一是a =0,即它是一元一次方程;二是a ≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.【易错点训练】1、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,若A 中至多有一个元素,求a 的取值范围解:A 中至多有一个元素,即A 中有一个元素或没有元素.当A 中只有一个元素时,由例题可知,a =0或a =1.当A 中没有元素时,Δ=4-4a <0,即a >1.故当A 中至多有一个元素时,a 的取值范围为{a |a =0或a ≥1}.2、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,若A 中至少有一个元素,求a 的取值范围解:A 中至少有一个元素,即A 中有一个或两个元素.由例题可知,当a =0或a =1时,A 中有一个元素;当A 中有两个元素时,Δ=4-4a >0,即a <1.∴A 中至少有一个元素时,a 的取值范围为{a |a ≤1}.3、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,若1∈A ,则a 为何值?解:∵1∈A ,∴a +2+1=0,即a =-3.4、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,是否存在实数a ,使A ={1},若存在,求出a 的值;若不存在,说明理由.解:∵A ={1},∴1∈A ,∴a +2+1=0,即a =-3.又当a =-3时,由-3x 2+2x +1=0,得x =-13或x =1, 即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾. 故不存在实数a ,使A ={1}.【课堂小测】1.方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)} 解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧ x =5,y =-4,故解集为{(5,-4)}.2.下列四个集合中,不同于另外三个的是( )A .{y |y =2}B .{x =2}C .{2}D .{x |x 2-4x +4=0} 解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2};③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的.其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧ x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎨⎧ x ,y ⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A ={-1,-2,0,1},B ={x |x =|y |,y ∈A },则B =________.解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性,∴B ={0,1,2}.答案:{0,1,2}5.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)大于-3.5小于12.8的整数的全体;(3)梯形的全体构成的集合;(4)所有能被3整除的数的集合;(5)方程(x -1)(x -2)=0的解集;(6)不等式2x -1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}.(2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}.(3){x |x 是梯形}或{梯形}.(4){x |x =3n ,n ∈Z}.(5){1,2}.(6){x |x >3}.【课后作业】一、选择题1.方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解集不可以表示为( ) A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧ x +y =3,x -y =-1 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =2 C .{1,2}D .{(1,2)} 考点 集合的表示综合题点 用适当的方法表示集合答案 C解析 方程组的集合中最多含有一个元素,且元素是一个有序实数对,故C 不符合.2.集合A ={x ∈Z|-2<x <3}的元素个数为( )A .1B .2C .3D .4考点 用描述法表示集合题点 用描述法表示有限数集答案 D解析 因为A ={x ∈Z|-2<x <3},所以x 的取值为-1,0,1,2,共4个.3.集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合考点 用描述法表示集合题点 用描述法表示点集答案 D解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4.已知x ,y 为非零实数,则集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m =x |x |+y |y |+xy |xy |为( ) A .{0,3}B .{1,3}C .{-1,3}D .{1,-3}考点 集合的表示综合题点 用另一种方法表示集合答案 C解析 当x >0,y >0时,m =3, 当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}.5.下列选项中,集合M ,N 相等的是( )A .M ={3,2},N ={2,3}B .M ={(3,2)},N ={(2,3)}C .M ={3,2},N ={(3,2)}D .M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2}考点 集合的表示综合题点 集合的表示综合问题答案 A解析 元素具有无序性,A 正确;点的横坐标、纵坐标是有序的,B 选项两集合中的元素不同;C 选项中集合M 中元素是两个数,N 中元素是一个点,不相等;D 选项中集合M 中元素是一个点(3,2),而N 中元素是两条直线x =3和y =2上所有的点,不相等.6.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A.{}x |x 是小于18的正奇数B.{}x |x =4k +1,k ∈Z ,且k <5C.{}x |x =4t -3,t ∈N ,且t ≤5D.{}x |x =4s -3,s ∈N *,且s ≤5 考点 集合的表示综合题点 用另一种方法表示集合答案 D解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.7.已知集合A ={}x |x =2m -1,m ∈Z ,B ={}x |x =2n ,n ∈Z ,且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 考点 用描述法表示集合题点 用描述法表示与余数有关的整数集合答案 D解析 ∵集合A 表示奇数集,集合B 表示偶数集,∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3为偶数,故D 错误.8.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn ,则在此定义下,集合M ={(a ,b )|a ※b =16}中的元素个数是( )A .18B .17C .16D .15答案 B解析 因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M 中的元素是有序数对(a ,b ),所以集合M 中的元素共有17个,故选B.二、填空题9.集合{x ∈N|x 2+x -2=0}用列举法可表示为________.考点 集合的表示综合题点 用另一种方法表示集合答案 {1}解析 由x 2+x -2=0,得x =-2或x =1.又x ∈N ,∴x =1.10.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________.考点 集合的表示综合题点 用适当的方法表示集合答案 3解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.11.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -23<0,则集合A -B =________.考点 集合的表示综合题点 集合的表示综合问题答案 {x |x ≥2}解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >-12且x ≥2={x |x ≥2}. 三、解答题12.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.考点 用描述法表示集合题点 用描述法表示集合的综合问题解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.13.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.考点 集合的表示综合题点 用适当的方法表示集合解 (1)用描述法表示为{x |2<x <5,且x ∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.四、探究与拓展14.已知集合A ={x |x =3m ,m ∈N *},B ={x |x =3m -1,m ∈N *},C ={x |x =3m -2,m ∈N *},若a ∈A ,b ∈B ,c ∈C ,则下列结论中可能成立的是( )A .2 006=a +b +cB .2 006=abcC .2 006=a +bcD .2 006=a (b +c ) 考点 用描述法表示集合题点用描述法表示与余数有关的整数集合答案 C解析由于2 006=3×669-1,不能被3整除,而a+b+c=3m1+3m2-1+3m3-2=3(m1+m2+m3-1)不满足;abc=3m1(3m2-1)(3m3-2)不满足;a+bc=3m1+(3m2-1)(3m3-2)=3m-1适合;a(b+c)=3m1(3m2-1+3m3-2)不满足.故选C.15.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a∈P,b∈Q},用列举法表示集合P+Q.考点集合的表示综合题点用另一种方法表示集合解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.∴P+Q={1,2,3,4,6,7,8,11}.。
高中数学《第一章集合与常用逻辑用语复习课》教学设计

《第一章集合与常用逻辑用语复习课》教学设计一、内容和内容解析1.内容2.内容解析本章学习内容包括集合的有关概念,关系和运算,还有充分条件、必要条件、充要条件、全称量词、存在量词、全称量词命题与存在量词命题及其否定。
这些知识在后续学习中会得到大量应用,是进一步学习的重要基础。
复习本章所学知识,在知识的复习和再现的基础上,用联系的观点和递进的方式可以加深对本章内容的理解。
复习本章知识能有效总结和提升学习内涵,整理学习方法提高学习效率,对于全章知识的联系和整合也能有更好的效果。
在本章内容的复习中,首先应掌握集合语言的表述方式,学习了集合的含义,明确了集合中元素的确定性、无序性、互异性等特征;再学习了列举法、描述法等集合的表示法,其中描述法利用了研究对象的某种特征,需要先理解研究对象的性质;类比数与数的关系,我们研究了集合之间的包含关系与相等关系,这些关系是由元素与集合的关系决定的,其中集合的相等关系很重要;类比数的运算,我们学习了集合的交、并、补运算,通过这些运算可以得到与原有集合紧密关联的集合,由此可以表示研究对象的某些关系。
常用逻辑用语是数学语言的重要组成部分,是逻辑思维的基本语言,也是数学表达和交流的工具。
充分条件、必要条件和充要条件,全称量词命题,存在量词命题及它们的否定都能与许多已学过的内容进行融合,如初中学习过的数学定义、定理、命题及许多代数结论等都可以用常用逻辑用语表示。
利用常用逻辑用语表述数学内容,进行推理论证,可以大大提升表述的逻辑性和准确性,提升逻辑推理素养。
结合以上分析,确定本节课的教学重点是:引领复习全章重点内容。
二、目标和目标解析1.目标(1)理解集合的含义,表示法,明确元素与集合,集合与集合的关系;(2)理解并掌握集合的运算法,能解决集合的交、并、补运算问题;(3)能通过“若p,则q”形式命题的真假性,判断充分条件、必要条件、充要条件;(4)能辨别全称量词命题和存在量词命题的真假,并能写出否定形式。
听课记录:新2024秋季高一必修数学第一册人教A版第一章集合与常用逻辑用语《集合的概念》

听课记录:新2024秋季高一必修数学第一册人教A版第一章集合与常用逻辑用语《集合的概念》教学目标(核心素养)1.知识与技能:学生能够理解集合的基本概念,掌握集合的表示方法(列举法、描述法),以及集合中元素的性质(确定性、互异性、无序性)。
2.数学思维:通过实例分析,培养学生的抽象思维能力和分类讨论的能力,学会从具体情境中抽象出集合的概念。
3.问题解决:能够运用集合的概念解决简单的数学问题,如判断元素是否属于某个集合、求集合的交集、并集等。
4.学习态度:激发学生对数学基础概念的兴趣,培养严谨的科学态度和探究精神。
导入教师行为:•展示一组图片,包括一群学生、一本书、一个苹果等,引导学生观察并思考这些对象的共同点。
•提问:“这些看似不同的对象,我们能否找到一种方式将它们归类起来,以便更好地描述和研究它们呢?”•引出集合的概念,说明集合是用来表示具有某种共同性质的事物的全体。
学生活动:•观察图片,思考教师提出的问题。
•小组讨论,尝试提出自己的分类方式,并尝试用语言描述这些分类。
过程点评:•导入环节通过直观的图片和贴近生活的问题,有效激发了学生的学习兴趣和探究欲望。
•学生通过小组讨论,初步感受了集合思想的魅力,为后续学习奠定了良好的基础。
教学过程1.1 集合的基本概念教师行为:•正式给出集合的定义,强调集合中元素的三个基本性质:确定性、互异性、无序性。
•通过具体例子说明这些性质,如列举法表示的集合{1, 2, 3}中元素的互异性和无序性,以及描述法表示的集合{x | x > 0}中元素的确定性。
学生活动:•认真听讲,做好笔记,理解并记忆集合的基本概念和性质。
•通过教师给出的例子,尝试自己列举或描述一些集合,加深对集合概念的理解。
过程点评:•教师讲解清晰,例子生动,有助于学生理解集合的基本概念和性质。
•学生通过实践操作,进一步巩固了所学知识,提高了应用能力。
1.2 集合的表示方法教师行为:•详细介绍列举法和描述法两种集合的表示方法,并通过例题展示如何运用这两种方法表示集合。
第一章 集合与常用逻辑用语 教案

第一章集合与常用逻辑用语1.1 集合的概念第二课时集合的表示方法教学目标1.掌握集合的表示法——列举法和描述法,使学生正确把握集合的元素构成与集合的特征性质的关系,从而可以更准确地认识集合.2.能选择适当的方法表示给定的集合,提高学生分析问题和解决问题的能力.重点难点教学重点:集合的表示法.教学难点:集合的特征性质的概念以及运用特征性质描述法正确地表示一些简单的集合.课时安排1课时教学过程提出问题①上节所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,,100},自然数集N:n;区分a与{}a:{}a表示一个集合,该集合只有一个元素,a表示这{0,1,2,3,4,,,}个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序,相同的元素不能出现两次.又例如,不等式32x ->的解集,这个集合中的元素有无数个,不适合用列举法表示. 可以表示为{|32}x x ∈->R 或{|32}x x ->,这种表示集合的方法是描述法. ③让学生思考总结已经学习了的集合表示法.讨论结果:方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N 、Q ,所有的正方形组成的集合记为A 等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等. 方法三(列举法):把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法.方法四(描述法):在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只需去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{|x x 是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例例1.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程290x -=的解组成的集合;(4){15以内的质数};(5)6{|,}3x x x∈∈-Z Z . 活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数通常按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3x -是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程290x -=的解为3-、3,故用列举法表示为{3,3}-;(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};(5)满足63x∈-Z 的x 有31x -=±、2±、3±、6±,解之,得2x =、4、1、5、0、6、3-、9,故用列举法表示为{2,4,1,5,0,6,3,9}-.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.变式训练1用列举法表示下列集合:(1)24x -的一次因式组成的集合;(2)方程2690x x ++=的解集;(3){20以内的质数};(4)2{|5140}x x x ∈+-=R ;(5){(,)|6,,}x y x y x y +=∈∈N N .分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.【解析】(1)24(2)(2)x x x -=+-,故符合题意的集合为{2,2}x x +-;(2)由2690x x ++=,得123x x ==-,∴方程2690x x ++=的解集为{3}-;(3){20以内的质数}{2,3,5,7,11,13,17,19}=;(4)25140x x +-=的解为17x =-,22x =,则2{|5140}{7,2}x x x ∈+-==-R ;(5){(,)|6,,}{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}x y x y x y +=∈∈=N N . 例2.用描述法分别表示下列集合:(1)二次函数2y x =图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式73x -<的解集.活动:让学生思考用描述法的形式如何表示平面直角坐标系中的点,如何表示数轴上的点,如何表示不等式的解.学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(,)x y 来表示,其特征是满足2y x =;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x 来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x 来表示,把不等式化为x a <的形式,则这些实数的特征是满足x a <.【解析】(1)二次函数2y x =上的点(,)x y 的坐标满足2y x =,则二次函数2y x =图象上的点组成的集合表示为2{(,)|}x y y x =;(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合, 则数轴上离原点的距离大于6的点组成的集合表示为{|||6}x x ∈>R ;(3)不等式73x -<的解是10x <,则不等式73x -<的解集表示为{|10}x x <.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(,)x y ,数集的元素代表符号常用x .集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.变式训练2用描述法表示下列集合:(1)方程25x y +=的解集;(2)小于10的所有非负整数的集合;(3)方程组11x y x y +=⎧⎨-=⎩的解的集合;(4){1,3,5,7,};(5)非负偶数;【解析】(1),25{()|}x y x y +=;(2){|010,}x x x ≤<∈Z ;(3)1{(,)|}1x y x y x y +=⎧⎨-=⎩; (4)*{|21,}x x k k =-∈N ;(5)*{|2,}x x k k =∈N .当堂检测1.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.【解析】(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.2.用列举法表示下列集合:(1)所有绝对值等于8的数的集合A ;(2)所有绝对值小于8的整数的集合B .【解析】(1){8,8}A =-;(2){7,6,5,4,3,2,1,0,1,2,3,4,5,6,7}B =-------.3.定义集合运算{|(,)}AB z z xy x y x A y B ==+∈∈,,设集合{}0,1A =,{}2,3B =,则集合A B 的所有元素之和为( ) A .0 B .6C .12D .18【解析】∵x ∈A ,∴x =0或x =1.当x =0,y ∈B 时,总有z =0.当x =1时,若x =1,y =2,有z =6;若x =1,y =3,有z =12.综上所得,集合A B 的所有元素之和为061218++=,故选D .4.分别用列举法、描述法表示方程组322327x yx y+=⎧⎨-=⎩的解集.【解析】322327x yx y+=⎧⎨-=⎩的解为37xy=⎧⎨=-⎩,用描述法表示该集合为32 {(,)|}2327x yx yx y+=⎧⎨-=⎩;用列举法表示该集合为{(3,7)}-.。
2023年高考数学总复习第一章 集合与常用逻辑用语 第3节:简单的逻辑联结词 (教师版)

2023年高考数学总复习第一章集合与常用逻辑用语第3节全称量词与存在量词、逻辑联结词“且”“或”“非”考试要求 1.了解逻辑联结词、“且”、“或”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)命题中的且、或、非叫作逻辑联结词.(2)命题p且q,p或q,非p的真假判断p q p且q p或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题和特称命题名称全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记任意x∈M,p(x)存在x0∈M,p(x0)否定存在x0∈M,非p(x0)任意x∈M,非p(x)1.含有逻辑联结词的命题真假判断口诀:p或q→见真即真,p且q→见假即假,p 与非p→真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.3.“p或q”的否定是“(非p)且(非q)”,“p且q”的否定是“(非p)或(非q)”.4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.1.思考辨析(在括号内打“√”或“×”)(1)命题“5>6或5>2”是假命题.()(2)命题非(p且q)是假命题,则命题p,q中至少有一个是假命题.()(3)“长方形的对角线相等”是特称命题.()(4)存在x0∈M,p(x0)与任意x∈M,非p(x)的真假性相反.()答案(1)×(2)×(3)×(4)√解析(1)错误.命题p或q中,p,q有一真则真.(2)错误.p且q是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.2.(2021·全国乙卷)已知命题p:存在x∈R,sin x<1;命题q:任意x∈R,e|x|≥1,则下列命题中为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.非(p或q)答案A解析由正弦函数的图象及性质可知,存在x∈R,使得sin x<1,所以命题p为真命题.对任意的x∈R,均有e|x|≥e0=1成立,故命题q为真命题,所以命题p 且q为真命题,故选A.3.(2017·山东卷)已知命题p:任意x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p且qB.p且(非q)C.(非p)且qD.(非p)且(非q)答案B解析由已知得p真,q假,故非q真,所以p且(非q)真,故选B.4.(易错题)命题p:“有些三角形是等腰三角形”,则非p是________.答案所有三角形都不是等腰三角形5.(易错题)命题“任意x∈R,ax2-ax+1>0”为真命题,则实数a的取值范围为________.答案[0,4)解析①当a=0时,1>0恒成立;②当a≠0a>0,Δ=a2-4a<0,∴0<a<4.综上0≤a<4.6.(2021·合肥调研)能说明命题“任意x∈R且x≠0,x+1x≥2”是假命题的x的值可以是________(写出一个即可).答案-1(任意负数)解析当x>0时,x+1x≥2,当且仅当x=1时取等号,当x<0时,x+1x≤-2,当且仅当x=-1时取等号,∴x的取值为负数即可,例如x=-1.考点一含有逻辑联结词的命题1.(2021·成都调研)已知命题p:函数y=2sin x+sin x,x∈(0,π)的最小值为22;命题q:若a·b=0,b·c=0,则a·c=0.下列命题为真命题的是()A.(非p)且qB.p或qC.p且(非q)D.(非p)且(非q)答案D解析命题p:函数y=2sin x+sin x,x∈(0,π),由基本不等式成立的条件可知,y>22sin x·sin x=22,等号取不到,所以命题p是假命题.命题q:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以命题q是假命题.所以非p为真,非q为真.因此,只有(非p)且(非q)为真命题.2.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(非p)或(非q)B.p且(非q)C.(非p)且(非q)D.p或q答案A解析命题p是“甲降落在指定范围”,则非p是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则非q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”.所以命题“至少有一位学员没有降落在指定范围”可表示为(非p)或(非q).3.(2022·洛阳质检)设a,b,c均为非零向量,已知命题p:a=b是a·c=b·c的必要不充分条件,命题q:x>1是|x|>1的充分不必要条件.则下列命题中为真命题的是()A.p且qB.p或qC.(非p)且(非q)D.p或(非q)答案B解析由a=b⇒a·c=b·c,但a·c=b·c⇒/a=b,故p为假命题.命题q:∵|x|>1,∴x>1或x<-1,∴由x>1⇒|x|>1,但|x|>1⇒/x>1,故q为真命题.故选B.4.(2020·全国Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1且p4②p1且p2③(非p2)或p3④(非p3)或(非p4)答案①③④解析p1是真命题,两两相交不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p1为真命题;p2是假命题,因为空间三点在一条直线上时,有无数个平面过这三个点;p3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知非p2,非p3,非p4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.感悟提升 1.“p或q”,“p且q”,“非p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p或q”“p且q”“非p”形式命题的真假.2.p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p与p的真假性相反.考点二全称量词与存在量词例1(1)(2021·江南十校联考)已知f(x)=sin x-tan x,命题p:存在x0∈0,π2f(x0)<0,则()A.p是假命题,非p:任意x 0π2,f(x)≥0B.p是假命题,非p:存在x0∈0,π2f(x0)≥0C.p是真命题,非p:任意x 0,π2,f(x)≥0D.p是真命题,非p:存在x0∈0,π2f(x0)≥0(2)已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.任意x∈R,f(-x)≠f(x)B.任意x∈R,f(-x)≠-f(x)C.存在x0∈R,f(-x0)≠f(x0)D.存在x0∈R,f(-x0)≠-f(x0)答案(1)C(2)C解析(1)当x π4,π2sin x<1,tan x>1.此时sin x-tan x<0,故命题p为真命题.由于命题p为特称命题,所以命题p 的否定为全称命题,则非p 为:任意x f (x )≥0.(2)∵定义域为R 的函数f (x )不是偶函数,∴任意x ∈R ,f (-x )=f (x )为假命题,∴存在x 0∈R ,f (-x 0)≠f (x 0)为真命题.感悟提升1.全称命题与特称命题的否定与一般命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“任意x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立即可.训练1(1)设命题p :所有正方形都是平行四边形,则非p 为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形(2)下列四个命题:p 1:存在x 0∈(0,+∞)00;p 2:存在x 0∈(0,π),sin x 0<cos x 0;p 3:任意x ∈R ,e x >x +1;p 4:任意x <log 13x .其中真命题是()A.p 1,p 3B.p 1,p 4C.p 2,p 3D.p 2,p 4答案(1)C(2)D解析(1)“所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即非p 为有的正方形不是平行四边形.(2)对于p 1,当x 0∈(0,+∞)00成立,故p 1是假命题;对于p 2,当x0=π6时,sin x0<cos x0,故p2为真命题;对于p3,当x=0时,e x=x+1,故p3为假命题;对于p4,结合指数函数y=12与对数函数y=log13x0,13上的图象(图略)可以判断p4为真命题.考点三由命题的真假求参数例2(1)已知命题p:任意x∈[1,2],x2-a≥0;q:存在x0∈R,x20+2ax0+2-a =0,若(非p)且q是真命题,则实数a的取值范围是________________.(2)(经典母题)已知f(x)=ln(x2+1),g(x)12-m,若对任意x1∈[0,3],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________________.答案(1)(1,+∞)(2)14,+∞解析(1)∵(非p)且q是真命题,∴p假q真.p:任意x∈[1,2],x2-a≥0为假命题,∴存在x∈[1,2],x2-a<0为真命题,即a>x2成立,∴a>1.q:存在x0∈R,x20+2ax0+2-a=0为真命题,所以Δ=(2a)2-4(2-a)≥0,∴a≥1或a≤-2.综上,a>1.(2)当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)min=g(2)=14-m,由f(x)min≥g(x)min,得0≥14-m,所以m≥14.迁移本例(2)中,若将“存在x2∈[1,2]”改为“任意x2∈[1,2]”,其他条件不变,则实数m的取值范围是________________.答案12,+∞解析当x∈[1,2]时,g(x)max=g(1)=12-m,对任意x1∈[0,3],任意x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)max,得0≥1 2-m,∴m≥1 2 .感悟提升 1.由含逻辑联结词的命题真假求参数的方法步骤:(1)求出每个命题是真命题时参数的取值范围;(2)根据每个命题的真假情况,求出参数的取值范围.2.全称命题可转化为恒成立问题.3.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.训练2(2022·许昌质检)已知p:关于x的方程e x-a=0在(-∞,0)上有解;q:函数y=lg(ax2-x+a)的定义域为R,若p或q为真命题,p且q为假命题,则实数a的取值范围是________.答案,12∪[1,+∞)解析p真:a=e x在(-∞,0)上有解,∴0<a<1.q真:ax2-x+a>0在R上恒成立,当a=0时,显然不成立;当a≠0>0,=(-1)2-4a2<0,∴a>12.又p或q为真,p且q为假,∴p真q假或p假q真.当p真qa<1,≤12,∴0<a≤12,当p假q≤0或a≥1,>12,∴a≥1.∴0<a≤12或a≥1.1.(2021·成都诊断)已知命题p:对任意的x∈R,2x-x2≥1,则非p为()A.对任意的x∉R,2x-x2<1B.存在x∉R,2x-x2<1C.对任意的x∈R,2x-x2<1D.存在x∈R,2x-x2<1答案D解析p:任意x∈R,2x-x2≥1,∴非p:存在x∈R,2x-x2<1.2.“p且q是真命题”是“p或q是真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A3.下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案B4.命题“任意x∈R,f(x)·g(x)≠0”的否定是()A.任意x∈R,f(x)=0且g(x)=0B.任意x∈R,f(x)=0或g(x)=0C.存在x0∈R,f(x0)=0且g(x0)=0D.存在x0∈R,f(x0)=0或g(x0)=0答案D解析根据全称命题与特称命题的互为否定的关系可得:命题“任意x∈R,f(x)g(x)≠0”的否定是“存在x0∈R,f(x0)=0或g(x0)=0”.故选D.5.命题p:甲的数学成绩不低于100分,命题q:乙的数学成绩低于100分,则p 或(非q)表示()A.甲、乙两人的数学成绩都低于100分B.甲、乙两人至少有一人的数学成绩低于100分C.甲、乙两人的数学成绩都不低于100分D.甲、乙两人至少有一人的数学成绩不低于100分答案D解析由于命题q:乙的数学成绩低于100分,因此非q:乙的数学成绩不低于100分,所以p或(非q)表示甲、乙两人至少有一人的数学成绩不低于100分. 6.已知命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为()A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)答案D解析因为命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,所以其否定为“任意x∈R,4x2+(a-2)x+14>0”是真命题.则Δ=(a-2)2-4×4×14=a2-4a<0,解得0<a<4.7.(2021·衡水检测)命题p:若向量a·b<0,则a与b的夹角为钝角;命题q:若cosα·cosβ=1,则sin(α+β)=0.下列命题为真命题的是()A.pB.非qC.p且qD.p或q答案D解析当a,b方向相反时,a·b<0,但夹角是180°,不是钝角,命题p是假命题;若cosαcosβ=1,则cosα=cosβ=1或cosα=cosβ=-1,所以sinα=sinβ=0,从而sin(α+β)=0,命题q是真命题,所以p或q是真命题.8.已知命题p:“任意x∈[0,1],a≥e x”;命题q:“存在x0∈R,使得x20+4x0+a=0”.若命题“p且q”是真命题,则实数a的取值范围为()A.[e,4]B.(-∞,e]C.[e,4)D.[4,+∞)答案A解析若命题“p且q”是真命题,那么命题p,q都是真命题.由任意x∈[0,1],a≥e x,得a≥e;由存在x0∈R,使x20+4x0+a=0,得Δ=16-4a≥0,则a≤4,因此e≤a≤4.9.命题:存在x0∈R,1<f(x0)<2的否定是________________________.答案任意x∈R,f(x)≤1或f(x)≥210.若“任意x∈0,π4,tan x≤m”是真命题,则实数m的最小值为________.答案1解析∵函数y=tan x在0,π4上是增函数,∴y max=tan π4=1,依题意,m≥y max,即m≥1.∴m的最小值为1.11.下列命题为真命题的是________(填序号).①存在x0∈R,x20+x0+1≤0;②任意a∈R,f(x)=log(a2+2)x在定义域内是增函数;③若f(x)=2x-2-x,则任意x∈R,f(-x)=-f(x);④若f(x)=x+1x,则∃x0∈(0,+∞),f(x0)=1.答案②③解析x20+x0+10+34>0,故①错误;∵a2+2≥2>1,∴f(x)=log(a2+2)x在(0,+∞)上是增函数,故②正确;f(x)为奇函数,所以任意x∈R,都有f(-x)=-f(x),故③正确;x0∈(0,+∞)时,f(x0)=x0+1x0≥2,当且仅当x0=1时取“=”,故④错误.综上有②③正确.12.(2022·周口调研)已知p:函数f(x)=x2-(2a+4)x+6在(1,+∞)上是增函数,q:任意x∈R,x2+ax+2a-3>0,若p且(非q)是真命题,则实数a的取值范围为________.答案(-∞,-1]解析依题意,p为真命题,非q为真命题.若p为真命题,则2a+42≤1,解得a≤-1.①若非q为真命题,则存在x0∈R,x20+ax0+2a-3≤0成立.∴a2-4(2a-3)≥0,解之得a≥6或a≤2.②结合①②,知a≤-1,即实数a的取值范围是(-∞,-1].13.已知命题p:任意x>0,e x>x+1,命题q:存在x∈(0,+∞),ln x≥x,则下列命题为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.(非p)且(非q)答案C解析令f(x)=e x-x-1,则f′(x)=e x-1,当x>0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,∴f(x)>f(0)=0,即e x>x+1,则命题p真;令g(x)=ln x-x,x>0,则g′(x)=1x-1=1-xx,当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0,即当x=1时,g(x)取得极大值,也是最大值,所以g(x)max=g(1)=-1<0,∴g(x)<0在(0,+∞)上恒成立,则命题q假,因此非q为真,故p且(非q)为真.14.(2019·全国Ⅲ卷)+y≥6,x-y≥0表示的平面区域为D.命题p:存在(x,y)∈D,2x+y≥9;命题q:任意(x,y)∈D,2x+y≤12.下面给出了四个命题①p或q;②(非p)或q;③p且(非q);④(非p)且(非q).这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④答案A 解析由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知p 为真命题,非p 为假命题,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 为假命题;命题非q 为真命题;∴p 或q 为真,(非p )或q 为假,p 且(非q )为真,(非p )且(非q )为假.故真命题的编号为①③.15.已知函数f (x )的定义域为(a ,b ),若“存在x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案0解析“存在x ∈(a ,b ),f (x )+f (-x )≠0”的否定是任意x ∈(a ,b ),f (x )+f (-x )=0,依题意:命题任意x ∈(a ,b ),f (x )+f (-x )=0为真命题,故函数y =f (x ),x ∈(a ,b )为奇函数,∴a +b =0,∴f (a +b )=f (0)=0.16.若f (x )=x 2-2x ,g (x )=ax +2(a >0),任意x 1∈[-1,2],存在x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案,12解析设f (x )=x 2-2x ,g (x )=ax +2(a >0)在[-1,2]上的值域分别为A ,B ,则A =[-1,3],B =[-a +2,2a +2],a +2≥-1,a +2≤3,∴a ≤12,又∵a >0,∴0<a ≤12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-1 第一章常用逻辑用语复习※典型例题()____________________小结:弄清四种命题之间的关系是解决此类问题的关键.例2 下列各小题中,p 是q的充要条件的是().A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)的必要不充分条件,求实数a的取值范围.小结:处理充分、必要条件的问题首先要分清条件和结论,有时利用逆否命题与原命题等价的性对解题很有帮助.例3 给出下列命题:若⌝p 是⌝q 的必要不充分条件,求实数a的取值范围.※ 动手试试练 1. 如果命题“p 且 q ”与命题“p 或 q ”都是假命题,那么 ( ) A.命题“非 p ”与命题“非 q ”的真值不同 B.命题 p 与命题“非 q ”的真值相同 C.命题 q 与命题“非 p ”的真值相同 D.命题“非 p 且非 q ”是真命题练 2. 若命题 p 的逆命题是 q , 命题 p 的否命题是r ,则 q 是 r 的 ( ) A.逆命题 B.否命题 C.逆否命题 D.以上结论都不正确 ※ 知识拓展区间[- 1,1] 的所有的 x,都有 f(x ) 0 恒成立,求 p 的取值范围.一、选择题1.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x>0解析:选C.对于A ,当x =1时,lg x =0,正确;对于B ,当x =π4时,tan x =1,正确;对于C ,当x <0时,x 3<0,错误;对于D ,∀x ∈R,2x>0,正确.2.(2011·高考北京卷)若p 是真命题,q 是假命题,则( ) A .p ∧q 是真命题 B .p ∨q 是假命题 C .綈p 是真命题 D .綈q 是真命题解析:选D.根据“且”“或”“非”命题的真假判定法则知D 正确.3.(2012·高考辽宁卷)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:选C.利用“全称命题的否定是存在性命题”求解.命题p 的否定为“∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0”.4.(2013·日照质检)下列命题中,真命题是( )A .∃x ∈R ,sin 2x 2+cos 2x 2=12B .∀x ∈(0,+∞),e x>x +1C .∃x ∈R ,x 2+x =-1D .∀x ∈(0,π),sin x >cos x解析:选B.∵sin 2x2+cos 2x2=1,∴A 错.∵x 2+x +1=(x +12)2+34≥34,∴C 错.又∵sin π6<cos π6,∴D 错.故选B.5.(2013·大连质检)已知命题p :∃a ,b ∈(0,+∞),当a +b =1时,1a +1b=3;命题q :∀x ∈R ,x 2-x +1≥0,则下列命题是假命题的是( )A .綈p ∨綈qB .綈p ∧綈qC .綈p ∨qD .綈p ∧q解析:选B.由基本不等式可得:1a +1b =(1a +1b )×(a +b )=2+b a +ab≥4,故命题p 为假命题,綈p 为真命题;∀x ∈R ,x 2-x +1=(x -12)2+34>0,故命题q 为真命题,綈q 为假命题,綈p ∧綈q 为假命题,故选B.二、填空题6.已知命题p :“∃x ∈R +,x >1x”,命题p 的否定为命题q ,则q 是“________________”;q 为________命题.(填“真”或“假”)解析:x >1时,x ≤1x为假命题.答案:∀x ∈R +,x ≤1x假7.命题“∀x ∈R ,∃m ∈Z ,m 2-m <x 2+x +1”是________命题.(填“真”或“假”)解析:由于∀x ∈R ,x 2+x +1=(x +12)2+34≥34,因此只需m 2-m <34,即-12<m <32,所以当m =0或m =1时,∀x ∈R ,m 2-m <x 2+x +1成立,因此命题是真命题.答案:真8.给定下列几个命题:①“x =π6”是“sin x =12”的充分不必要条件;②若“p ∨q ”为真,则“p ∧q ”为真;③“等底等高的三角形是全等三角形”的逆命题.其中为真命题的是________.(填上所有正确命题的序号)解析:①中,若x =π6,则sin x =12,但sin x =12时,x =π6+2k π或5π6+2k π(k ∈Z ).故“x =π6”是“sin x =12”的充分不必要条件,故①为真命题;②中,令p 为假命题,q 为真命题,有“p ∨q ”为真命题,而“p ∧q ”为假命题,故②为假命题;③为真命题.答案:①③ 三、解答题9.(2013·德州质检)写出下列命题的否定,并判断其真假. (1)q :所有的正方形都是矩形;(2)r :∃x ∈R ,x 2+2x +2≤0.解:(1)綈q :至少存在一个正方形不是矩形,是假命题.(2)綈r :∀x ∈R ,x 2+2x +2>0,是真命题.10.已知命题p :方程2x 2-2 6x +3=0的两根都是实数;q :方程2x 2-2 6x +3=0的两根不相等,试写出由这组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题,并指出其真假.解:“p 或q ”的形式:方程2x 2-2 6x +3=0的两根都是实数或不相等. “p 且q ”的形式:方程2x 2-2 6x +3=0的两根都是实数且不相等.“非p ”的形式:方程2x 2-2 6x +3=0无实根.∵Δ=24-24=0,∴方程有两相等的实根.∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假,“非p ”为假.一、选择题1. 已知命题p :∀x ∈[1,2],x 2≥a ,命题q :∃x ∈R ,x 2+2ax +2-a =0,若命题“p 且q ”是真命题,则实数a 的取值范围为( )A .(-∞,-2]B .(-2,1)C .(-∞,-2]∪{1}D .[1,+∞)解析:选C.因为命题“p 且q ”是真命题,故命题p 与命题q 均为真命题.由命题p 为真命题,可知a ≤1.由命题q 是真命题,可知Δ=4a 2-4(2-a )≥0,解得a ≤-2或a ≥1.综上可知a 的取值范围为(-∞,-2]∪{1}.2.(2013·抚顺六校第二次检测)下列命题中,真命题是( )A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2B .∀x ∈(3,+∞),x 2>2x +1C .∃x ∈R ,x 2+x =-1D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x 解析:选B.对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0,sin x >0,命题显然不成立.故选B.二、填空题3.设p :关于x 的不等式a x >1的解集为{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,若p ∨q 为真命题,p ∧q 为假命题,则a 的取值范围是________.解析:p 真时,0<a <1;q 真时,ax 2-x +a >0对x ∈R 恒成立,则⎩⎪⎨⎪⎧a >0Δ=1-4a 2<0,即a >12;p ∨q 为真,p ∧q 为假,则p 、q 应一真一假:①当p 真q 假时,⎩⎪⎨⎪⎧0<a <1a ≤12⇒0<a ≤12;②当p 假q 真时,⎩⎪⎨⎪⎧a ≤0或a ≥1a >12⇒a ≥1.综上,a ∈(0,12]∪[1,+∞).答案:(0,12]∪[1,+∞)4.已知m 、n 是不同的直线,α、β是不重合的平面. 命题p :若α∥β,m ⊂α,n ⊂β,则m ∥n ; 命题q :若m ⊥α,n ⊥β,m ∥n ,则α∥β.下面的命题中,①p ∨q ;②p ∧q ;③p ∨綈q ;④綈p ∧q . 真命题的序号是________(写出所有真命题的序号).解析:命题p 是假命题,命题q 是真命题,所以①④是真命题. 答案:①④ 三、解答题5.f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使得g (x 1)=f (x 0),求a 的取值范围.解:由于函数g (x )在定义域[-1,2]是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此该问题等价于函数g (x )的值域是函数f (x )值域的子集,又因函数f (x )的值域是[-1,3],函数g (x )的值域为[2-a,2+2a ],所以则有2-a ≥-1且2+2a ≤3,即a ≤12,又因a >0,所求a 的取值范围是(0,12].6.已知p :40x m +<,q :220x x -->,若p 是q 的一个充分不必要条件,求m 的取值范围.解:由p :40x m +<得4m x <-;由q :220x x -->得1x <-或2x > ∵p 是q 的一个充分不必要条件,∴只有p ⇒q 成立,∴14m-≤-,∴4m ≥7.命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立; 命题q :函数()a f x lag x =在(0,)+∞上递增.若p q ∨为真,而p q ∧为假,求实数a 的取值范围。
解:命题p :关于x 的不等式2240x ax ++>对一切x R ∈恒成立;pT ⇒()22240a ∆=-<,即22a -<<命题q :函数()a f x lag x =在(0,)+∞上递增;qT ⇒1a > ∵p q ∨为真,而p q ∧为假,∴pq 一真一假p 真q 假时,pT ⇒22a -<<;qF ⇒1a ≤;∴21a -<≤ p 假q 真时,pF ⇒22a a ≤-≥或;qF ⇒1a >;∴2a ≥。