3-1-1行程问题基础_题库学生版
小学奥数—行程问题基础

【巩固】 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上 山以 30 千米/时的速度,到达山顶后以 60 千米/时的速度下山.求该车的平均速度.
【巩固】 某人上山速度为每小时 8 千米,下山的速度为每小时 12 千米,问此人上下山的平均速度是多少?
【例 14】 一辆汽车从甲地出发到 300 千米外的乙地去,前 120 千米的平均速度为 40 千米/时,要想使这 辆汽车从甲地到乙地的平均速度为 50 千米/时,剩下的路程应以什么速度行驶?
速度×时间=路程 路程÷速度=时间 路程÷时间=速度
可简记为: s vt 可简记为: t s v 可简记为: v s t
三、平均速度
平均速度的基本关系式为: 平均速度 总路程 总时间; 总时间 总路程 平均速度; 总路程 平均速度 总时间。
板块一、简单行程公式解题
【例 1】 韩雪的家距离学校 480 米,原计划 7 点 40 从家出发 8 点可到校,现在还是按原时间离开家,不 过每分钟比原来多走 16 米,那么韩雪几点就可到校?
【例 17】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。 某人骑自行车过桥时,上坡、走平路和下坡的速度分别为 4 米/秒、6 米/秒和 8 米/秒,求他过桥 的平均速度。
【巩固】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某 人骑电动车过桥时,上坡、走平路和下坡的速度分别为 11 米/秒、22 米/秒和 33 米/秒,求 他过桥的平均速度.
【巩固】 小明从甲地到乙地,去时每时走 2 千米,回来时每时走 3 千米,来回共用了 15 小时.小明去时 用了多长时间?
【例 16】 小王每天用每小时 15 千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每 小时 10 千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同
小升初典型应用题精练——行程问题(学生版)

领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
一元一次方程应用题专题——行程问题——学生版

例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
分析:这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。
1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
黑龙江省齐齐哈尔市小学数学小学奥数系列3-1-1行程问题(一)

黑龙江省齐齐哈尔市小学数学小学奥数系列3-1-1行程问题(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共23题;共115分)1. (5分) (2019三上·永福期中) 看图列式计算.(1)一共有多少个五角星?(2)2. (5分) (2019六上·福州期中) 甲、乙两地相距250km,一辆汽车从甲地开往乙地,行了5小时,行了全程的,这辆汽车行完全程一共需要多少小时?3. (5分) (2018四上·重庆期中) 商店运来苹果橘子各40筐.已知每筐苹果重15千克,每筐橘子重20千克.这两种水果共重多少千克?4. (5分)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?5. (5分) (2020四上·官渡期末) 埃及金字塔是世界七大奇迹之一,雄伟壮观。
经测算一座金字塔高106米,绕塔底一周近1000米,小明3分钟走了156米,照这样计算,21分钟能绕该金字塔走一周吗?6. (5分)商店运来500千克桔子,比香蕉多3箱,已知每箱桔子重20千克,每箱香蕉重26千克,运来的香蕉一共多少千克?7. (5分) (2016四下·甘肃月考) 在一次登山比赛中,王兵上山每分钟走50米,12分钟到达山顶,然后按原路下山,用了8分钟。
8. (5分)看图回答(1)小货车出发3时后,大约在什么位置?(用▲在图上作标记)(2)小货车8:00出发,走完一半路程是什么时间?(3)小货车要几时才能到达乙地?9. (5分) (四上·南浔期末) 甲、乙两车同时从A地出发开往B地。
甲车6小时到达,乙车8小时到达。
甲车比乙车每小时快24千米。
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
3-1-1行程问题基础_题库

3.1.1行程问题基础1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源 我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s = vt路程÷速度=时间 可简记为:t = s÷v路程÷时间=速度 可简记为:v = s÷t三、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【解析】 原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【巩固】 甲、乙两地相距100千米。
分式方程的实际应用(3)-行程问题(学生版)

分式方程的实际问题(3)-行程问题1.小华早上从家出发到离家5千米的国际会展中心参观,实际每小时比原计划多走1千米,结果比原计划早到了15分钟,设小华原计划每小时行x千米,可列方程()A.55114x x-=+B.551+14x x-=C.5515+1x x-=D.55151x x-=+2.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时3.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+4.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山.乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15min.如果设甲组的攀登速度为m/minx,那么下面所列方程中正确的是()A.4504501.215x x=++B.450450151.2x x=-C.4504501.215x x=⨯+D.450450151.2x x=+5.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时6.甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前13h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A.1016433x x+=B.1016433x x-=C.1016334x x+=D.1016334x x-=7.某班学生周末乘汽车到外地参加活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车速度是慢车速度的2倍,如果设慢车的速度为/xkm h,那么可列方程为()A.1201212x x-=B.12012012x x-=+C.12012012x x-=D.12012012x x-=+8.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程4000400010x x--=20,…”根据答案,题中被墨汁污染条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成9.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.100a+100bB.200a b+C.100a b++100a b-D.100a b+﹣100a b-10.小王从甲地到相距50千米的乙地办事,乘出租车去,乘公共汽车回来.已知出租车的平均速度比公共汽车的平均速度快15千米/小时,去时路上所用的时间比返回时少了13.设公共汽车的平均速度为x千米/小时,则下面列出的方程中,正确的是()A.50250153x x=⨯+B.50250315x x=⨯+C.50150153x x+=+D.50501153x x=-+11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为_________.12.甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院,如果步行速度是骑自行车速度的13,求步行与骑自行车的速度各是________.13.一船在一条江里顺流航行100km,逆流航行64km,共用9h.如果逆流航行80km,所需时间仍为9h,则轮船在静水中的速度为________.14.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,则汽车先后行驶的速度分别是________.15.小王步行的速度比跑步的速度慢50%,跑步的速度比骑车的速度慢50%.如果他骑车从A城到B城,再步行返回A城共需要两小时,那么小王跑步从A城到B城需要__________分钟.16.智能时代引领铁路的高速发展,已知某铁路现阶段列车的平均速度是200千米/时,未来还将提速,在相同的时间内,列车现阶段行驶300千米,提速后列车比现阶段多行驶450千米,问列车平均提速多少千米/小时?17.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/小时,求船在静水中的速度18.从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至该市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?19.某校教师前往距离学校10千米的党史学习教育基地参观学习,一部分教师骑自行车先走,过了20分钟后,其余教师乘汽车出发,结果他们同时到达,已知汽车的速度是骑车教师速度的3倍,求骑车教师的速度.20.某校组织学生参加远足活动,前往校外15km处的某地,高年级与低年级同时出发,已知高年级的速度是低年级的1.2倍,高年级比低年级提前0.5h抵达目的地.设低年级的速度是x(km/h).(1)完成下表(用含x的代数式表示);(2)求x的值.21.阅读:甲、乙两地相距600km,提速前动车的速度为v km/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,(1)由以上阅读材料,则可列方程为()A.60016003 1.2-=v vB.60060011.23v v=-C.600600201.2v v-=D.600600201.2v v=-(2)若设提速前行车时间为x h ,请列出关于x 的方程,并求解.22.列方程解应用题:某校同学在“十一”黄金周到距学校15千米的平谷大溶洞游玩,一部分同学骑自行车先走,30分钟后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍.求骑车同学的速度?23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h ,水流速度是a km/h .(1)2h 后两船相距多远?(2)2h 后甲船比乙船多航行多少千米?(3)一艘小快艇送游客在甲、乙两个码头间往返,其中去程的时间是回程的时间3倍,则小快艇在静水中的速度v 与水流速度a 的关系是 .24.某次列车平均提速/vkm h .用相同的时间,列车提速前行驶km s ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?25.小李从A 地出发去相距4.5千米的B 地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?26.甲、乙两车从相距60千米的A ,B 两站同时出发相向而行.相遇后,甲车再过4小时到达B 站,乙车再过9小时到达A 站.求甲、乙两车的速度.27.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:大巴与小车的平均速度各是多少?28.一轮船往返于A 、B 两地之间,顺水比逆水快1小时到达.已知A 、B 两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.29.某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆,已知汽车的速度是自行车速度的3倍,求汽车的速度.30.列方程解应用题:初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)从学校到基地,张老师自驾车的时间比同学们乘坐大巴车的时间一共少________分钟;(2)大巴与小车的平均速度各是多少?(3)张老师追上大巴的地点到基地的路程有多远?。
行程问题讲义,学生版

行程问题知识点拨:发车问题( 1 )、一般间隔发车问题。
用 3 个公式迅速作答;汽车间距= (汽车速度+行人速度)×相遇事件时间间隔汽车间距= (汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列 3 个好使公式——结合 s 全程= v ×t-结合植树问题数数。
( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和 .⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和 .⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度 .对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行 .接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:( 1)车速不变 -班速不变-班数 2 个(最常见)(2)车速不变 -班速不变-班数多个(3)车速不变 -班速变-班数 2 个(4)车速变 -班速不变-班数 2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s = vt 路程÷速度=时间 可简记为:t = s÷v 路程÷时间=速度 可简记为:v = s÷t三、平均速度平均速度的基本关系式为: 平均速度=总路程÷总时间; 总时间=总路程÷平均速度; 总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【巩固】 甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【巩固】 两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?知识精讲教学目标3-1-1-行程问题基础【巩固】甲、乙两辆汽车分别从A、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B 两地间相距多少千米?【巩固】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【巩固】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【巩固】小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【例2】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例3】一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)【例4】龟兔赛跑,同时出发,全程6990米,龟每分钟爬30米,兔每分钟跑330米,兔跑了10分钟就停下来睡了215分钟,醒来后立即以原速往前跑,问龟和兔谁先到达终点?先到的比后到的快多少米?【例5】甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?【巩固】甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?【例6】四年级一班在划船比赛前讨论了两个比赛方案.第一个方案是在比赛中分别以2米/秒和3米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2米/秒和3米/秒的速度各划行比赛时间的一半.你认为这两个方案哪个好?模块二、平均速度问题【例7】如图,从A到B是12千米下坡路,从B到C是8千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小张从A到D的平均速度是多少?ADCB【巩固】如图,从A到B是6千米下坡路,从B到C是4千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问从A 到D的平均速度是多少?DACB【巩固】摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.【巩固】甲乙两地相距200千米,小强去时的速度是10千米/小时,回来的速度是40千米/小时,求小强往返的平均速度.【巩固】一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?【巩固】一个运动员进行爬山训练.从A地出发,上山路长30千米,每小时行3千米.爬到山顶后,沿原路下山,下山每小时行6千米.求这位运动员上山、下山的平均速度.【例8】一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?【巩固】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?【巩固】飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该车的平均速度.【巩固】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
【巩固】从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.【巩固】某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?【巩固】胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?【例9】小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。
小明往返一趟共行了多少千米?【巩固】小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?【例10】小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同【例11】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
【巩固】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.【巩固】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?【例12】(2007年4月“希望杯”四年级2试)赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?【例13】张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?【巩固】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D 全程为72千米,老王开车从A到D共需要多少时间?【例14】小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?模块三、假设法解行程题【例15】王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?【例16】解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?【巩固】某人要到60千米外的农场去,开始他以6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?【巩固】(第六届《小数报》数学竞赛初赛题第1题)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?模块四、综合题目【例17】张明和李军分别从甲、乙两地同时相向而行。
张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,……(连续奇数)。
两人恰好在甲、乙两地的中点相遇。
甲、乙两地相距多少千米?【例18】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例19】(华杯赛试题)某人由甲地去乙地,如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地,如果他从甲地先骑自行车21小时,再换骑摩托车行8小时,也恰好到达乙地,问:全程骑摩托车需要几小时到达乙地?【例20】一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?课后练习。