反三角函数知识点总结

合集下载

反三角函数知识点总结

反三角函数知识点总结

反三角函数知识点总结一、反正弦函数反正弦函数记作y = arcsin x,其中x ∈ [–1,1],y ∈ [–π/2,π/2]。

1.定义域和值域反正弦函数的定义域是[-1,1],值域是[-π/2,π/2]。

即反正弦函数的输入值在[-1,1]之间,输出值在[-π/2,π/2]之间。

2.性质(1)y = arcsin x ⇔ sin y = x;(2)反正弦函数是奇函数,即arcsin(-x) = -arcsin x;(3)反正弦函数在[-1,1]上是单调递增的;(4)反正弦函数的图像在[-1,1]上是关于直线x=y对称的;(5)反正弦函数是周期函数,其最小正周期是2π;(6)反正弦函数的导数是1 / √(1 - x²),其中|x| < 1;(7)反正弦函数在x=0处的导数为1。

二、反余弦函数反余弦函数记作y = arccos x,其中x ∈ [–1,1],y ∈ [0,π]。

1.定义域和值域反余弦函数的定义域是[-1,1],值域是[0,π]。

即反余弦函数的输入值在[-1,1]之间,输出值在[0,π]之间。

2.性质(1)y = arccos x ⇔ cos y = x;(2)反余弦函数是偶函数,即arccos(-x) = arccos x;(3)反余弦函数在[-1,1]上是单调递减的;(4)反余弦函数的图像在[-1,1]上是关于直线x=y对称的;(5)反余弦函数是周期函数,其最小正周期是2π;(6)反余弦函数的导数是-1 / √(1 - x²),其中|x| < 1;(7)反余弦函数在x=1处的导数为0。

三、反正切函数反正切函数记作y = arctan x,其中x ∈ R,y ∈ (-π/2,π/2)。

1.定义域和值域反正切函数的定义域是R,值域是(-π/2,π/2)。

即反正切函数的输入值是实数,输出值在(-π/2,π/2)之间。

2.性质(1)y = arctan x ⇔ tan y = x;(2)反正切函数是奇函数,即arctan(-x) = -arctan x;(3)反正切函数在整个定义域上是单调递增的;(4)反正切函数的图像在整个定义域上是关于直线x=y对称的;(5)反正切函数是周期函数,其最小正周期是π;(6)反正切函数的导数是1 / (1 + x²);(7)反正切函数在x=0处的导数为1。

反三角函数知识点总结

反三角函数知识点总结

反三角函数知识点总结反三角函数知识点总结反三角函数并不难,关键是要理解反三角函数的意义,这是其一,第二要充分掌握诱导公式,反三角其实是考察由三角函数值表示非特殊角,所以经常要用到π+arcsin,π-arcsin,2π+,2π-等,欢迎阅读反三角函数知识点总结,了解清楚,大家要准确表示反三角函数一定要学好诱导公式哦。

反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1] ,值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx其他公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈[—π/2,π/2]时,有arcsin(sinx)=x当x∈[0,π],arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。

高三数学教案_第六章_6-3反三角函数

高三数学教案_第六章_6-3反三角函数

反三角函数[知识点归纳]例4 求函数2()lg arccos 84x x f x ⎡⎤⎛⎫=+⎢⎥⎪⎝⎭⎣⎦的定义域与值域 解:2arccos 0.84x x ⎛⎫+> ⎪⎝⎭21 1.84x x∴-≤+<解上述不等式,得4 2.x -<<2()lg arccos 84x x f x ⎡⎤⎛⎫∴=+⎢⎥⎪⎝⎭⎣⎦的定义域为(4,2).- 22211111(21)(1)8488888x x x x x +=++-=+-≥-210arccos arccos .848x x ⎛⎫⎛⎫∴<+≤- ⎪ ⎪⎝⎭⎝⎭所以函数2()lg arccos 84x x f x ⎡⎤⎛⎫=+⎢⎥⎪⎝⎭⎣⎦的值域为1(,lg arccos ].8⎛⎫-∞- ⎪⎝⎭例6 已知arcsin arcsin(1).x x >- 求x 的取值范围解:因为反正弦函数是增函数,由反三角函数的定义域可得不等式组11,111,1,x x x x -≤≤⎧⎪-≤-≤⎨⎪>-⎩解不等式组,得1 1.2x <≤例7计算:cos 3π⎛⎫⎪⎝⎭解:设α=则tan α且0.2πα<<cos sin αα∴==则25cos 22cos 1,sin 27ααα=-=-=原式=515cos 2cos sin 2sin33727214ππαα+-=-⋅-=-12.关于t 的方程2253172(23)0848t x t x x +++++=有两个不同的实数根,求函数sin y x =的反函数。

解:225317(23)420848x x x ⎛⎫∆=+-⨯⨯++>⎪⎝⎭即,2680x x -+<,解得2 4.x <<,22x πππ⎡⎤-∈-⎢⎥⎣⎦,sin()sin .x x y π-==sin (24)y x x ∴=<<的反函数为arcsin ,(sin 4,sin 2).y x x π=-∈13.设方程240x ++=的2个实根为1x 、2x ,若1arctan x α=,2arctan x β=,求αβ+的值。

三角函数和反三角函数图像性质、知识点总结(精编文档).doc

三角函数和反三角函数图像性质、知识点总结(精编文档).doc

【最新整理,下载后即可编辑】三角函数1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值2. 角度制与弧度制设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S角a 的弧度数公式2π×(a /360°)角度与弧度的换算①360°=2π rad ②1°=π/180rad③1 rad=180°/π=57° 18′≈57.3°弧长公式 l a R =扇形的面积公式 12s lR =3.诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a )所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注:①:诱导公式应用原则:负化正、大化小,化到锐角为终了 4. 三角函数的图像和性质:(其中z k ∈) ①:三角函数 xy sin =x y cos = xy tan = cot y x=函 数 图 象定义域 R R 2x k ππ≠+x k π≠值域 [-1,1][-1,1]RR周期2π2πππ奇偶性 奇 偶奇非奇非偶单 调 性2,222k k ππππ⎡⎤-+↑⎢⎥⎣⎦2,222k k ππππ⎡⎤-+↑⎢⎥⎣⎦ []2,2k k πππ-↑ []2,2k k πππ+↓,22k k ππππ⎡⎤-+↑⎢⎥⎣⎦ [],k k πππ+↓对 称 性 :2x k ππ=+对称轴对称中心:(,0)k π :x k π=对称轴:对称中心(+,0)2k ππ:对称中心(,0)2k π零值点 πk x = 2ππ+=k xπk x =2ππ+=k x最 值 点2ππ+=k x ,1max=y2ππ-=k x ,1min -=yπk x 2=,1max =y ;2y k ππ=+,1min -=y)sin(ϕω+=x A y (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T5.三角函数尺度变换sin y x =经过变换变为sin y x ϖϕ=+A ()的步骤(先平移后伸缩):1sin sin sin sin y x y x y x y x ϖϕϖϖϖϕϖϕ=−−−−−−−→=−−−−−→=+−−−−−−−→=+横坐标变为原来的倍向左或向右纵坐标不变平移个单位纵坐标变为原来的A 倍横坐标不变()A ()6.三角函数的对称变换:① )()(x f y x f y -=→=) 将)(x f y =图像绕y 轴翻折180°(整体翻折) (对三角函数来说:图像关于x 轴对称)② )()(x f y x f y -=→=将)(x f y =图像绕x 轴翻折180°(整体翻折) (对三角函数来说:图像关于y 轴对称)③ )()(x f y x f y =→= 将)(x f y =图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④ )()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动)7.反三角函数的图像与性质:性质图像定义域 [-1,1] [-1,1] (-∞,+∞) (-∞,+∞) 值域 [-2π,2π][0,π](-2π,2π)(0,π)单调性 []1,1- 增函数 []1,1- 减函数 (),-∞+∞增函数 (),-∞+∞减函数 奇偶性arcsin()arcsin θθ-=-arccos()arccos θπθ-=-arctan()arctan θθ-=-arccot()arccot θπθ-=-周期性非周期函数非周期函数非周期函数非周期函数7.三角函数公式:(1)倒数关系: (2)平方关系:tan cot 1sin csc 1cos sec 1αααααα⋅=⋅=⋅= 222222sin cos 11tan sec 1cot csc αααααα+=+=+=(3)三角和与差公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβ+=++=-++=- sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβ-=--=+--=+(4)二倍角公式:()22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα==-=-=-=-升幂公式22221cos 2sin 1cos 22sin 2(1cos 21cos 22cos cos 2αααααααα-⎫=⎪⎧-=⎪⎪⇒⎬⎨++=⎪⎩⎪=⎪⎭降幂公式) (5)三角函数的和差化积公式 (6)三角函数的积化和差公式sin sin 2sin cos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+-- 六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

三角函数及反三角函数图像性质、知识点总结

三角函数及反三角函数图像性质、知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值2.角度制与弧度制设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°)角度与弧度的换算①360°=2π rad ②1°=π/180rad③1 rad=180°/π=57° 18′≈57.3°弧长公式 l a R =扇形的面积公式 12s lR =3.诱导公式:(奇变偶不变,符号看象限)所谓奇偶指是整数k 的奇偶性(k ·π/2+a )所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注:①:诱导公式应用原则:负化正、大化小,化到锐角为终了4. 三角函数的图像和性质:(其中z k ∈)①:三角函数x y sin = x y cos =x y tan = cot y x=函 数 图 象定义域 R R 2x k ππ≠+x k π≠值域 [-1,1][-1,1]RR周期 2π2πππ奇偶性 奇偶奇非奇非偶单 调 性 2,222k k ππππ⎡⎤-+↑⎢⎥⎣⎦2,222k k ππππ⎡⎤-+↑⎢⎥⎣⎦[]2,2k k πππ-↑ []2,2k k πππ+↓,22k k ππππ⎡⎤-+↑⎢⎥⎣⎦[],k k πππ+↓对 称 性 :2x k ππ=+对称轴对称中心:(,0)k π:x k π=对称轴:对称中心(+,0)2k ππ:对称中心(,0)2k π零值点 πk x =2ππ+=k xπk x =2ππ+=k x最 值 点2ππ+=k x ,1max=y2ππ-=k x ,1min-=yπk x 2=,1max =y ;2y k ππ=+,1min -=y②:函数)sin(ϕω+=x A y 的图像与性质:(1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T5.三角函数尺度变换sin y x =经过变换变为sin y x ϖϕ=+A ()的步骤(先平移后伸缩): 1sin sin sin sin y x y x y x y x ϖϕϖϖϖϕϖϕ=−−−−−−−→=−−−−−→=+−−−−−−−→=+横坐标变为原来的倍向左或向右纵坐标不变平移个单位纵坐标变为原来的A 倍横坐标不变()A ()6.三角函数的对称变换:① )()(x f y x f y -=→=) 将)(x f y =图像绕y 轴翻折180°(整体翻折) (对三角函数来说:图像关于x 轴对称)② )()(x f y x f y -=→=将)(x f y =图像绕x 轴翻折180°(整体翻折) (对三角函数来说:图像关于y 轴对称)③ )()(x f y x f y =→= 将)(x f y =图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④ )()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动)7.反三角函数的图像与性质:名称y=arsinx y=arccosx y=arctanx y=arccotx定义y=sinx((,))22xππ∈-的反函数,叫做反正弦函数y=cosx((0,))xπ∈的反函数,叫做反余弦函数y=tanx((,))22xππ∈-的反函数,叫做反正切函数y=cotx((0,))xπ∈的反函数,叫做反余切函数性质图像定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π) 单调性[]1,1-增函数[]1,1-减函数(),-∞+∞增函数(),-∞+∞减函数奇偶性arcsin()arcsinθθ-=-arccos()arccosθπθ-=-arctan()arctanθθ-=-arccot()arccotθπθ-=-周期性非周期函数非周期函数非周期函数非周期函数7.三角函数公式:(1)倒数关系: (2)平方关系:tan cot 1sin csc 1cos sec 1αααααα⋅=⋅=⋅= 222222sin cos 11tan sec 1cot csc αααααα+=+=+=(3)三角和与差公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβ+=++=-++=- sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβ-=--=+--=+(4)二倍角公式:()22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα==-=-=-=-升幂公式 22221cos 2sin 1cos 22sin 2(1cos 21cos 22cos cos 2αααααααα-⎫=⎪⎧-=⎪⎪⇒⎬⎨++=⎪⎩⎪=⎪⎭降幂公式) (5)三角函数的和差化积公式 (6)三角函数的积化和差公式sin sin 2sin cos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅ [][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+-- 六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

反三角函数知识点总结

反三角函数知识点总结

《反三角函数知识点总结》一、引言三角函数是数学中一个重要的分支,在几何学、物理学、工程学等领域都有广泛的应用。

而反三角函数则是三角函数的反函数,它们为解决一些特定类型的问题提供了有力的工具。

本文将对反三角函数的知识点进行全面总结,帮助读者更好地理解和掌握这一重要概念。

二、反三角函数的定义1. 反正弦函数- 定义:对于任意实数\(x\),如果\(\sin y = x\),且\(-\frac{\pi}{2}\leq y\leq\frac{\pi}{2}\),那么\(y=\arcsin x\),反正弦函数\(\arcsin x\)的定义域是\([-1,1]\),值域是\([-\frac{\pi}{2},\frac{\pi}{2}]\)。

- 图像:反正弦函数的图像是一段在\([-\frac{\pi}{2},\frac{\pi}{2}]\)区间内的曲线,关于原点对称。

2. 反余弦函数- 定义:对于任意实数\(x\),如果\(\cos y = x\),且\(0\leq y\leq\pi\),那么\(y=\arccos x\),反余弦函数\(\arccos x\)的定义域是\([-1,1]\),值域是\([0,\pi]\)。

- 图像:反余弦函数的图像是一段在\([0,\pi]\)区间内的曲线,关于\(y\)轴对称。

3. 反正切函数- 定义:对于任意实数\(x\),如果\(\tan y = x\),且\(-\frac{\pi}{2}\lt y\lt\frac{\pi}{2}\),那么\(y=\arctan x\),反正切函数\(\arctan x\)的定义域是\(R\),值域是\((-\frac{\pi}{2},\frac{\pi}{2})\)。

- 图像:反正切函数的图像是一条在\((-\frac{\pi}{2},\frac{\pi}{2})\)区间内的曲线,关于原点对称。

三、反三角函数的性质1. 定义域和值域- 反正弦函数、反余弦函数和反正切函数的定义域都是有一定限制的,分别是\([-1,1]\)、\([-1,1]\)和\(R\)。

反三角函数知识点

反三角函数知识点

反三角函数知识点反三角函数是一类与三角函数相反的函数,它们在数学和工程领域有着广泛的应用。

反三角函数包括反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。

以下是反三角函数的知识点概述:1.反三角函数的定义:反三角函数是三角函数的反函数,定义为:反正弦函数(arcsin):y = arcsin(x) 表示一个角度x(弧度制),其正弦值为y。

反余弦函数(arccos):y = arccos(x) 表示一个角度x(弧度制),其余弦值为y。

反正切函数(arctan):y = arctan(x) 表示一个角度x(弧度制),其正切值为y。

2.反三角函数的性质:(1)定义域和值域:反三角函数的定义域和值域是有限的,并且在实数范围内是连续的。

例如,arcsin函数的定义域是[-1, 1],值域是[-π/2, π/2]。

(2)奇偶性:反三角函数中的反正弦函数和反余弦函数是奇函数,而反正切函数是偶函数。

(3)周期性:反三角函数不是周期函数,但它们可以在一定范围内表现出周期性。

例如,arctan函数在实数范围内是周期函数,其周期为π。

3.反三角函数的计算:(1)利用三角函数的性质计算:反三角函数可以通过三角函数的性质进行计算。

例如,利用三角恒等式和三角函数的单调性可以求解反三角函数的值。

(2)利用反三角函数的定义计算:反三角函数的定义可以用于求解反三角函数的值。

例如,对于arcsin(x),可以通过解方程sin(y) = x来求解y的值。

4.反三角函数的应用:(1)在几何学中的应用:反三角函数可以用于解决一些几何问题,例如计算角度、距离等。

(2)在物理学中的应用:反三角函数可以用于解决一些物理问题,例如振动、波动等。

(3)在工程学中的应用:反三角函数可以用于解决一些工程问题,例如信号处理、图像处理等。

5.反三角函数的图像和性质:反三角函数的图像和性质可以通过图像法和公式法进行描述。

反三角函数知识点总结

反三角函数知识点总结

千里之行,始于足下。

反三角函数知识点总结反三角函数是数学中的一个重要概念,用来求解三角函数的反函数。

在解决三角函数相关问题时,反三角函数能够帮助我们转化为求反三角函数的值,从而得到所需结果。

接下来,我将总结一下关于反三角函数的一些重要知识点。

一、反三角函数的定义1. 反正弦函数(arcsin)反正弦函数是指将给定值的正弦值(-1≤ sinx ≤ 1)作为自变量,输出对应的角度值(-π/2 ≤ x ≤π/2)的一个单值函数。

其函数表示为:y = arcsin(x)其中,x 的取值范围为 [-1, 1],y 的取值范围为 [-π/2, π/2]。

2. 反余弦函数(arccos)反余弦函数是指将给定值的余弦值(-1≤ cosx ≤ 1)作为自变量,输出对应的角度值(0≤ x ≤π)的一个单值函数。

其函数表示为:y = arccos(x)其中,x 的取值范围为 [-1, 1],y 的取值范围为 [0, π]。

3. 反正切函数(arctan)反正切函数是指将给定值的正切值作为自变量,输出对应的角度值(-π/2 < x < π/2)的一个单值函数。

其函数表示为:y = arctan(x)其中,x 的取值范围为 (-∞, +∞),y 的取值范围为 (-π/2, π/2)。

二、反三角函数的性质1. 定义域和值域:反正弦函数的定义域为 [-1, 1],值域为 [-π/2, π/2];第1页/共3页锲而不舍,金石可镂。

反余弦函数的定义域为 [-1, 1],值域为 [0, π];反正切函数的定义域为 (-∞, +∞),值域为 (-π/2, π/2)。

2. 关系:对于任意的实数 x,有 sin(arcsin(x)) = x,-1 ≤ x ≤ 1;对于任意的实数 x,有 cos(arccos(x)) = x,-1 ≤ x ≤ 1;对于任意的实数 x,有 tan(arctan(x)) = x。

3. 奇偶性:反正弦函数为奇函数,即 arcsin(-x) = -arcsin(x);反余弦函数为偶函数,即 arccos(-x) = arccos(x);反正切函数为奇函数,即 arctan(-x) = -arctan(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档