湖北省黄冈市团风县实验中学2010-2011学年八年级下期中考试数学试题

合集下载

团风县八年级期中数学试卷

团风县八年级期中数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 3.14C. √2D. -52. 若x + 2 = 0,则x的值为()A. 2B. -2C. 0D. 无解3. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = |x|4. 已知一元二次方程x^2 - 5x + 6 = 0,下列选项中正确的是()A. 该方程有两个实数根B. 该方程有两个复数根C. 该方程没有实数根D. 无法确定5. 在直角坐标系中,点P(2,-3)关于y轴的对称点坐标为()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)6. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a - 2 > b - 2D. a + 2 < b + 27. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2 + 2abC. (a + b)^2 = a^2 + 2ab + b^2 - 2abD. (a - b)^2 = a^2 - 2ab + b^2 - 2ab8. 在△ABC中,若∠A = 90°,AB = 6cm,AC = 8cm,则BC的长度为()A. 10cmB. 12cmC. 14cmD. 16cm9. 若等差数列的前三项分别为2,5,8,则该数列的公差为()A. 3B. 4C. 5D. 610. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 矩形D. 非等腰梯形二、填空题(每题5分,共50分)11. 若x - 3 = 5,则x = _______。

12. 函数y = 3x - 2的图象与x轴的交点坐标为(_______,_______)。

【免费下载】黄冈中学秋季八年级期中考试

【免费下载】黄冈中学秋季八年级期中考试

B.
D.
的图象经过哪几个象限( )
A.一、二、三象限 B.一、二、四象限
C.一、三、四象限 D.二、三、四象限
4、某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无 水),在这三个过程中洗衣机内水量 y(L)与时间 x(min)之间的函数关系对应的图 象大致为( )
黄冈中学 2010 年秋季八年级期中考试 数学试题
命题人:黄冈中学高级教师 谢文晓 一、选择题(每小题 3 分,共 30 分) 1、下列图形中,轴对称图形有( )
A.1 个 B.2 个 C.3 个 D.4 个 2、下列式子中,正确的是( )
A.
C.
3、一次函数
交 AB 于
时,x=______.
13、若 x, y 为实数,且
,则
14、如图,正方形纸片 ABCD 的边长为 8,将其沿 EF 折叠,则图中①②③④四个三角 形的周长之和为_______________.
15、图 1 是长方形纸带,
3,则图 3 中
的度数是___________.
的值为_____________.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

黄冈市初中数学八年级下期中经典测试卷(含答案)

黄冈市初中数学八年级下期中经典测试卷(含答案)

一、选择题1.(0分)[ID:9927]如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.(0分)[ID:9914]下列函数中,是一次函数的是()A.11yx=+B.y=﹣2xC.y=x2+2 D.y=kx+b(k、b是常数)3.(0分)[ID:9887]李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是()A.众数是8B.中位数是3C.平均数是3D.方差是0.344.(0分)[ID:9883]如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.3B.2C.20D.255.(0分)[ID:9879]如图,一个梯子AB斜靠在一竖直的墙AO上,测得4AO=米.若梯子的顶端沿墙下滑1米,这时梯子的底端也恰好外移1米,则梯子AB的长度为()A .5米B .6米C .3米D .7米6.(0分)[ID :9876]△ABC 的三边分别是 a ,b ,c ,其对角分别是∠A ,∠B ,∠C ,下列条件不能判定△ABC 是直角三角形的是( )A .∠B = ∠A - ∠C B .a : b : c = 5 :12 :13 C .b 2- a 2= c 2D .∠A : ∠B : ∠C = 3 : 4 : 5 7.(0分)[ID :9864]如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .5 8.(0分)[ID :9859]下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2B .1,1,3C .4,5,6D .1,3,29.(0分)[ID :9854]如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm10.(0分)[ID :9853]如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°11.(0分)[ID :9849]若x < 02x x- )A .0B .-2C .0或-2D .212.(0分)[ID :9845]下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D .3 ,4,513.(0分)[ID :9834]下列运算正确的是( ) A .532-=B .822-=C .114293=D .()22525-=-14.(0分)[ID :9869]如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AB ,BC 边上的中点,连接EF.若3EF=,BD=4,则菱形ABCD 的周长为( )A .4B .46C .47D .2815.(0分)[ID :9866]已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 2二、填空题16.(0分)[ID :10022]一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为 _________.17.(0分)[ID :10018]一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.18.(0分)[ID :10005]如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.19.(0分)[ID :10003]已知51,x =-则226x x +-=____________________.20.(0分)[ID :9995]已知一个三角形的周长是48cm ,以这个三角形三边中点为顶点的三角形的周长为_______cm .21.(0分)[ID :9990]如图所示的网格是正方形网格,则BAC DAE ∠-∠=__________︒(点A ,B ,C ,D ,E 是网格线交点).22.(0分)[ID :9981]甲、乙两人分别从A ,B 两地相向而行,匀速行进甲先出发且先到达B 地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B 地到A 地用了______h .23.(0分)[ID :9968]化简()213-=_____________;24.(0分)[ID :9945]已知11510.724=,若 1.0724x =,则x 的值是__________. 25.(0分)[ID :9944]设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.三、解答题26.(0分)[ID :10132]如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E(1)证明:四边形ACDE 是平行四边形; (2)若AC=8,BD=6,求△ADE 的周长. 27.(0分)[ID :10131]计算:(1)|3-22-11()3-﹣0(20202) ; (2148312242(3) 253)11113)+ ;(4)132x y(2y x )÷162x y28.(0分)[ID :10101]12310101023429.(0分)[ID :10064]某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?30.(0分)[ID:10053]综合与探究一列快车从甲地匀速驶往乙地,同时一列慢车从乙地匀速驶往甲地.设慢车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的关系,根据图象解决以下问题:(1)甲、乙两地之间的距离为___________km;(2)求快车与慢车的速度;(3)求慢车行驶多少时间后,两车之间的距离为500km.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.B4.D5.A6.D7.C8.D9.A10.A11.D12.A13.B14.C15.A二、填空题16.1【解析】【分析】根据平均数求得a的值然后根据众数求得b的值后再确定新数据的中位数【详解】试题分析:∵一组数据12a的平均数为2∴1+2+a=3×2解得a=3∴数据﹣la12b的唯一众数为﹣l∴b=17.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<318.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB;最后Rt△BOC中根据勾股定理得OB的值则【详解】解:如图连接CE交AB于点O∵Rt△19.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型20.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=21.【解析】【分析】连接CGAG根据勾股定理的逆定理可得∠CAG=90°从而知△CAG是等腰直角三角形根据平行线的性质和三角形全等可知∠BAC-∠DAE=∠ACG即可得解【详解】解:如图连接CGAG由勾22.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B地到A地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B23.【解析】24.15【解析】【分析】根据得出将根号外的数化到根号里即可计算【详解】∵且∴∴∴故答案为:【点睛】本题考查二次根号的转化寻找倍数关系是解题关键25.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.B解析:B【解析】A、y=1x+1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,故选B.3.B解析:B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确; 故选B . 【点睛】本题考查方差;加权平均数;中位数;众数.4.D解析:D 【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB 的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.5.A解析:A 【解析】 【分析】设BO xm =,利用勾股定理依据AB 和CD 的长相等列方程,进而求出x 的值,即可求出AB 的长度. 【详解】解:设BO xm =,依题意,得1AC =,1BD =,4AO =. 在Rt AOB 中,根据勾股定理得222224AB AO OB x =+=+,在Rt COD 中,根据勾股定理22222(41)(1)CD CO OD x =+=-++, 22224(41)(1)x x ∴+=-++,解得3x =,22435AB ∴=+=,答:梯子AB 的长为5m . 故选:A . 【点睛】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =利用勾股定理列方程是解题的关键.6.D解析:D 【解析】 【分析】根据三角形内角和定理判断A 、D 即可;根据勾股定理的逆定理判断B 、C 即可. 【详解】A 、∵∠B=∠A-∠C , ∴∠B+∠C=∠A , ∵∠A+∠B+∠C=180°, ∴2∠A=180°,∴∠A=90°,即△ABC 是直角三角形,故本选项错误; B 、∵52+122=132,∴△ABC 是直角三角形,故本选项错误; C 、∵b 2-a 2=c 2, ∴b 2=a 2+c 2,∴△ABC 是直角三角形,故本选项错误;D 、∵∠A :∠B :∠C=3:4:5,∠A+∠B+∠C=180°, ∴∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故本选项正确; 故选D . 【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.7.C解析:C 【解析】 【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度. 【详解】如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==. 30B ∠=︒,60A ∴∠=︒,142AC AB ==. CD 是斜边上的高, 30ACD ∠=︒122AD AC ∴==2222∴=-=-=CD AC AD4223故选:C.【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+32=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.9.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,BC BC dm,AB dm,22222AC,22448AC dm,22∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.10.A解析:A【解析】【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A.【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.11.D解析:D【解析】=-,∵x < 02x x x∴()22 x x x x xx x x---===.故选D.12.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D2+22故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.13.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .15.A解析:A【解析】【分析】先根据直线y =﹣x+b 判断出函数图象,y 随x 的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y =﹣x+b ,k =﹣1<0,∴y 随x 的增大而减小,又∵﹣2<﹣1<1,∴y 1>y 2>y 3.故选:A .【点睛】本题考查一次函数的图象性质:当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.二、填空题16.1【解析】【分析】根据平均数求得a 的值然后根据众数求得b 的值后再确定新数据的中位数【详解】试题分析:∵一组数据12a 的平均数为2∴1+2+a=3×2解得a=3∴数据﹣la12b 的唯一众数为﹣l∴b=解析:1【解析】【分析】根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.【详解】试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2 解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.【点睛】本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值.17.-2<m <3【解析】【分析】【详解】解:由已知得:解得:-2<m <3故答案为:-2<m <3解析:-2<m <3【解析】【分析】【详解】解:由已知得:2030m m >>+⎧⎨-⎩, 解得:-2<m <3.故答案为:-2<m <3.18.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB ;最后Rt△BOC 中根据勾股定理得OB 的值则【详解】解:如图连接CE 交AB 于点O∵Rt△ 解析:75【解析】【分析】首先根据勾股定理求得AB =5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD =OB ,CD =CB ;最后Rt △BOC 中,根据勾股定理得,OB 的值,则2AD AB OB =-.【详解】解:如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3∴225AB AC BC =+= (勾股定理)若平行四边形CDEB 为菱形时,CE ⊥BD ,且OD =OB ,CD =CB .∵1122AB OC AC BC ⋅=⋅, ∴12.5OC =∴在Rt △BOC 中,根据勾股定理得,22129355OB ⎛⎫==-= ⎪⎝⎭, ∴725AD AB OB =-=故答案是:75. 【点睛】本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.19.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.【详解】解:当1x =时,原式21)1)6=+-5126=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB 根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF 分别是ABACBC 的中点∴DE=BCDF=ACEF=解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC ,DF=12AC ,EF=12AB ,根据三角形的周长公式计算,得到答案.【详解】解:根据题意,画出图形如图所示,点D、E、F分别是AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=12AB,∵原三角形的周长为48,∴AB+AC+BC=48,则新三角形的周长=DE+DF+EF=12×(AB+AC+BC)=24(cm)故答案为:24cm.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21.【解析】【分析】连接CGAG根据勾股定理的逆定理可得∠CAG=90°从而知△CAG是等腰直角三角形根据平行线的性质和三角形全等可知∠BAC-∠DAE=∠ACG即可得解【详解】解:如图连接CGAG由勾解析:45【解析】【分析】连接CG、AG,根据勾股定理的逆定理可得∠CAG=90°,从而知△CAG是等腰直角三角形,根据平行线的性质和三角形全等,可知,∠BAC-∠DAE=∠ACG,即可得解.【详解】解:如图,连接CG、AG,由勾股定理得:AC2=AG2=12+22=5,CG2=12+32=10,∴AC2+AG2=CG2,∴∠CAG=90°,∴△CAG是等腰直角三角形,∴∠ACG=45°,∵CF∥AB,∴∠ACF=∠BAC,在△CFG和△ADE中,∵CF=AD, ∠CFG=∠ADE=90°, FG=DE,∴△CFG≌△ADE(SAS),∴∠FCG=∠DAE,∴∠BAC-∠DAE=∠ACF-∠FCG=∠ACG=45°,故答案为:45.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质, 等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.22.10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度从而可以求得乙由B地到A地所用的时间【详解】解:由图可得甲的速度为:36÷6=6(km/h)则乙的速度为:=36(km/h)则乙由B解析:10【解析】【分析】根据函数图象中的数据可以求得甲的速度和乙的速度,从而可以求得乙由B地到A地所用的时间.【详解】解:由图可得,甲的速度为:36÷6=6(km/h),则乙的速度为:366 4.54.52-⨯-=3.6(km/h),则乙由B地到A地用时:36÷3.6=10(h),故答案为:10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.【解析】1【解析】11=-=24.15【解析】【分析】根据得出将根号外的数化到根号里即可计算【详解】∵且∴∴∴故答案为:【点睛】本题考查二次根号的转化寻找倍数关系是解题关键解析:15【解析】【分析】根据10.724=10 1.0724⨯,将根号外的数化到根号里即可计算.【详解】10.724= 1.0724=,且10.724=10 1.0724⨯100100x=∴100115x=∴ 1.15x=故答案为:1.15【点睛】本题考查二次根号的转化,寻找倍数关系是解题关键.25.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】化简后,代入a,b即可.【详解】====a=b=,301=ab故答案为:310ab.【点睛】化简变形,本题属于中等题型.三、解答题26.(1)证明见解析;(2)18.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE ∥AC ,∴四边形ACDE 是平行四边形;(2)解:∵四边形ABCD 是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE 是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE 的周长为AD+AE+DE=5+5+8=18.27.(1)1--;(2)43)16-4)8x -. 【解析】【分析】(1)先去绝对值、算负指数和零指数,然后再算减法;(2)先将二次根式化为最简形式,然后再按照运算规则计算;(3)先用乘法公式化简,然后合并同类项;(4)先化为最简二次根式,然后再进行乘除运算.【详解】(1)原式=3-1-(2)原式=44==+(3)原式=5911916-+-=-(4)原式=3x (-4·x )·4x -=8x- 【点睛】本题考查二次根式的计算,注意,我们通常先将二次根式化为最简形式,然后再进行后续计算.28.【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.29.(1)y =20x +16800 (10≤x ≤40,且x 为整数);(2)当0<a <20时,x =40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同; 当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.【解析】试题分析:(1)首先设调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱60-(70-x )=(x-10)台,列出不等式组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y 与a 的关系式,解出不等式方程后可得出使利润达到最大的分配方案.试题解析:(1)由题意可知,调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱为60-(70-x )=(x-10)台,则y=200x+170(70-x )+160(40-x )+150(x-10),即y=20x+16800.∵0700{400100x x x x ≥-≥-≥-≥ ∴10≤x≤40.∴y=20x+16800(10≤x≤40);(2)由题意得:y=(200-a )x+170(70-x )+160(40-x )+150(x-10),即y=(20-a )x+16800.∵200-a >170,∴a <30.当0<a <20时,20-a >0,函数y 随x 的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x 的取值在10≤x≤40内的所有方案利润相同;当20<a <30时,20-a <0,函数y 随x 的增大而减小,故当x=10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.30.(1)720(2)120/v km h =快,80/v km h =慢(3)1.1h 或6.25h .【解析】【分析】(1)根据题意结合图象即可得出结果.(2)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h ,快车的速度为bkm/h ,依此列出方程组,求解即可;(3)分相遇前相距500km 和相遇后相遇500km 两种情况求解即可.【详解】解:(1)甲、乙两地的距离为720km ,故答案为:720;(2)设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意,得3.6()720(9 3.6) 3.6a b a b +=⎧⎨-=⎩解得80120a b =⎧⎨=⎩故答案为120/v km h =快,80/v km h =慢(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km .即相遇前:()80120720500x +=-,解得 1.1x =,快车7201206h ÷=到乙地,∵慢车行驶20km 两车之间的距离为500km ,∵慢车行驶20km 需要的时间是()200.2580h =, ∴()60.25 6.25x h =+=,故 1.1x h =或6.25,两车之间的距离为500km .【点睛】本题考查了一次函数的应用.主要利用了路程、时间、速度三者之间的关系,第(3)问要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.。

湖北省黄冈市团风县实验中学2010-2011学年八年级下学期期中考试语文试题-掌门1对1

湖北省黄冈市团风县实验中学2010-2011学年八年级下学期期中考试语文试题-掌门1对1

湖北省黄冈市团风县实验中学2010-2011学年八年级下学期期中考试语文试题-掌门1对1(总分:120分时间:120分钟)亲爱的同学,又到了展示你才能的时刻了,别匆忙,别紧张,请你轻松下来,微笑着拿起语文试卷,愉快地接受检验,相信你平日的辛勤耕耘定会在这里收获到累累硕果。

一、古诗词名句填写(共7分)1.人生自古谁无死?。

(文天祥《过零丁洋》)2.念天地之悠悠,。

(陈子昂《登幽州台歌》)3.,,此事古难全。

(苏轼《水调歌头》)4.王勃的《送杜少府之任蜀州》中的“,”,与王维的“劝君更尽一杯酒,西出阳关无故人”两句格调截然相反。

5.《五柳先生传》中对五柳先生进行总结性评论的语句是:“,_________________。

”6.《酬乐天扬州初逢席上见赠》中表达诗人豁达的胸怀和奋发向上、努力进取的精神(或:蕴含新事物不断涌现的哲理)的诗句是:,。

7.“一年之季在于春”,春天是美好的,请你写出一句歌颂春天的古诗或词:,。

二、语言基础和语文实践活动(共19分)8.根据提示,在具体的语境中正确地运用四字短语,并将四字短语工整地写在田字格内。

(4分)①也有的解散辫子,盘得平的,除下帽来,。

(这里是说头发上抹油,梳得光亮,像镜子一样可以照人。

)②清晨,我在情人的耳边发出,于是他将我紧紧搂抱在怀中。

(多指男女相爱时立下的誓言,爱情要像山和海一样永恒不变。

)③我感到一种的恐惧,一种同亲人隔绝、同大地分离的孤独感油然而生。

(不能说出来的,比喻不能够用语言来形容,描绘的。

)④带着这么一张脸,你不管从事什么职业,不管穿什么服饰,也不管在俄国什么地方,都不会有一种、引人注目的可能。

(比喻一个人的才能或仪表在一群人里显得很突出。

)9.下列各组词语中,加点字的注音全都正确的一项是( )(2分)A.绯.红 (fěi) 璀璨.(càn) 酷肖.(xiào) 目光灼.灼(zhuó)B.伫.立(chù) 胆怯.(qiè) 鞭挞.(tà)彻夜不寐.(mèi)C.皓.月(hào) 炽.热(chì) 稽.首(jī) 脂粉奁.(1ián)D.驰骋.(chěng) 天穹.(qióng) 污秽.(huì) 千山万壑.(hè)10.下列各句中,标点符号的使用合乎规范的一项是( )(2分)A.从东京出发,不久便到一处驿站,写道:日暮里。

团风县实验中学年人教版八年级下期中考试试卷

团风县实验中学年人教版八年级下期中考试试卷

团风县实验中学2006年春期中考试八年级语文试题(总分:120分时间:120分钟)亲爱的同学,又到了展示你才能的时刻了,别匆忙,别慌张,请你轻松地走进考场,微笑着拿起语文试卷,愉快地接受检验,相信你平日的辛勤耕耘定会在这里收获到累累硕果。

一、积累运用(27分)1.根据拼音写出恰当的汉字或给加点的字注音。

(4分) ①终于这流言消灭了,干事却又竭力运动,要收回那一封n ì()名信去。

②这对眼睛不会放过微不足道的细节,同样也能全面揭示广袤.()无限的宇宙。

③在即将亲眼见到大活人之前,他们对自己所想象的这位文坛泰斗形象h àn ()首低眉。

④鸢.()飞戾天者,望峰息心。

⑤其言兹若人之ch óu ()乎?⑥马之千里者,一食.()或尽粟一石。

食.()马者不知其能千里而食.()也。

2.根据提示,在具体的语境中正确地填写四字短语。

(4分)①也有的解散辫子,盘得平的,除下帽来,()[这里是说头发上抹油,梳得光亮,像镜子一样可以照人]。

②人类的智慧和大自然的智慧相比实在是()[跟另一人或事物比较起来显得远远不如]。

③大家七嘴八舌地商量着,众说纷纭,()[不能得出一致的结论]。

④带着这么一张脸,你不管从事什么职业,不管穿什么服饰,也不管在俄国什么地方,都不会有一种()[比喻一个人的才能或仪表在一群人里显得很突出]、引人注目的可能。

3.胡适《我的母亲》一文中写道:“我做的往往是诸葛亮、刘备一类的文角儿。

”请说说“诸葛亮、刘备”是哪部文学作品里的人物?并写出有关他们的两个成语或典故。

(3分)①“诸葛亮、刘备”是里的人物。

②成语或典故:4.根据要求默写。

(6分)①人生自古谁无死。

(文天祥《过零丁洋》)②,病树前头万木春。

(刘禹锡《酬乐天扬州初逢席上见赠》)③,,此事古难全。

(苏轼《水调歌头》)④王勃的《送杜少府之任蜀州》中的“,”,与王维的“劝君更尽一杯酒,西出阳关无故人”两句格调截然相反。

⑤赞曰:黔娄之妻有言:“,_________________。

【三套打包】黄冈市八年级下学期期中数学试题及答案

【三套打包】黄冈市八年级下学期期中数学试题及答案

DCBAMDCBA 最新八年级下学期期中考试数学试题及答案人教版八年级下学期期中数学试卷八年级数学试卷1、已知32552--+-=x x y ,则xy 2的值是( )A 、15B 、-15C 、215- D 、2152、计算2)12)(12(+-的结果是( )A 、12+B 、)12(3-C 、1D 、-1 3、下列根式中是最简二次根式的是( )A 、32B 、3C 、9D 、12 4、下列根式中,不能..与3合并的是( ) A 、31 B 、33 C 、12 D 、325、如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 边上,∠ADC=2∠B ,AD=5,则BC 的长为( )A 、13-B 、13+C 、15+D 、15-6、下列几组线段中,能组成直角三角形的是( )A 、2,3,4B 、3,4,6C 、5,12,13D 、2,4,57、如图为一个6×6的网格,在△ABC ,△A'B'C'和△A''B''C''中,直角三角形有( )个A 、0B 、1C 、2D 、3 8、若0<xy ,则y x 2化简后为( )A 、y x -B 、y xC 、y x -D 、y x --C ''B ''A ''C 'B 'A 'BC ABCA9、如图在□ABCD 中,BM 是∠ABC 的平分线,交CD 于点M , 若MC=2,□ABCD 的周长是14,则DM 的长是( )A 、1B 、2C 、3D 、410、在直角三角形中,自锐角顶点引的两条中线为10和35,则这个直角三角形的斜边长是( )A 、3B 、32C 、52D 、6二、填空题(6×3分=18分.)11、若式子x x +-11有意义,则实数x 的范围是_____________. 12、化简1012)32()32(-⋅+=_____________.13、如图,小正方形的边长为1,连接小正方形的三个格点 可得△ABC ,则AC 边上的高的长度是_____________.14、计算=+-22138_____________. 15、如图,在△ABC 中,AB=5,AC=13,边BC 上的中线AD=6,则BC 的长是_____________.16、已知四边形ABCD 的对角线AC=28,BD=36,P 、Q 、R 、S 分别是AB 、BC 、CD 、DA 的中点,则PR 2+QS 2的值是_____________.三、解答题(共72分)17、(8分)计算:6)273482(÷-18、(8分)已知32-=x,求代数式221x x -的值.CBAD CAB19、(8分)如图四边形ABCD 中,已知AD ⊥CD ,AB=13,BC=12,CD=3,AD=4,求△ABC 的面积.20、(8分)若三角形的边长分别是2,m ,5,化简49146922+--+-m m m m .21、(8分)如图,已知长方形内两相邻正方形的面积分别是2和6,求长方形内阴影部分的面积(结果保留根号).22、(10分)如图,在□ABCD 中,BC=2AB ,M 是AD 的中点,CE ⊥AB ,垂足为E ,求证:∠DME=3∠AEM.MEDC BA图2x23、(10分)如图1,在平面直角坐标系y x 0中,A (a ,0),B (0,b ),C (-a ,0),且04422=+-+-b b a .(1)求证:∠ABC=90°(2)∠ABO 的平分线交x 轴于点D ,求D 点的坐标. (3)如图2,在线段AB 上有两动点M 、N考试时间: 120分钟 试卷总分:120分 一、选择题(本大题共10小题,每小题3分,共301. 下列计算正确的是( )A.532=+B.632=⨯ C.2332=-D.2221= 2. 要使二次根式3-x 在实数范围内有意义,则x 的取值范围是( )A. x ≠3B. x ≤3C. x >3D. x ≥33. 三角形ABC 的三边长分别为a ,b ,c ,下列条件:①∠A =∠B -∠C②∠A ∶∠B ∶∠C = 3∶4∶5 ③ a 2=(b +c )(b -c ) ④ a ∶b ∶c =5∶12∶13 其中能判定三角形ABC 是直角三角形的有( )个。

2010年湖北黄冈中考数学试题word版含答案

黄冈市2010年初中毕业生升学考试数学试题(考试时间120分钟 满分120分)一、填空题(共10道题,每小题3分,共30分) 1.2的平方根是_________. 2.分解因式:x 2-x =__________.3.函数1y x =+的自变量x 的取值范围是__________________. 4.如图,⊙O 中,MAN 的度数为320°,则圆周角∠MAN =____________.第4题图 第5题图5.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.6.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是 _______元.7.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图 左视图 俯视图 第7题 8.已知,1,2,_______.b aab a b a b=-==+则式子= 9.如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.10.将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm.第9题图第10题图二、选择题(A,B,C,D四个答案中,有且只有一个是正确的,每小题3分,共18分)11.下列运算正确的是()A.1331-÷= Ba=C.3.14 3.14ππ-=-D.326211()24a b a b=12.化简:211()(3)31xxx x+-∙---的结果是()A.2B.21x-C.23x-D.41xx--13.在△ABC中,∠C=90°,sinA=45,则tanB=()A.43B.34C.35D.4514.若函数22(2)2x xyx⎧+=⎨⎩ ≤ (x>2),则当函数值y=8时,自变量x的值是()AB.4C或4D.415.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA =CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定第15题图16.已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或-2B.2或-1C.3D.4三、解答题(共9道大题,共72分)17.(6分)解不等式组110334(1)1xx+⎧-⎪⎨⎪--<⎩≥18.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF ⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

湖北省团风县实验中学春八年级下数学期中试卷

数 学 试 题(时间:120分钟,满分 120分)一、单项选择题(每小题3分,共24分)1、下列式子一定是二次根式的是 ( )A.2--xB.xC.22+xD.22-x 2、小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a=•=112;④a a a =-23做错的题是 ( )A .①B .②C .③D .④ 3、下列命题中,真命题是 ( ) A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D .两条对角线互相平分的四边形是平行四边形4、在Rt △ABC 中,若AC =3,BC =13,AB =4,则下列结论中正确的是( )A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形 5、菱形具有而矩形不具有的性质是( ) A .对角相等B .四边相等C .对角线互相平分D .四角相等6、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 ( ) A 、450a 元B 、225a 元C 、150a 元D 、300a 元7、如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A1处,已知OA=3,AB=1,则点A 1的坐标是( )班级 姓名 考号………………………装………………………………订………………………线……………………………A 、(2323,)B 、(323,)C 、(2323,)D 、(2321,)8、如图,已知矩形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A 线段EF 的长逐渐增大B 线段EF 的长逐渐减少C 线段EF 的长不变。

2011年八年级数学下期中试卷

23.(本题7分)
如图,在△ABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.
24.(本题7分)
滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?
A.(2,-3)B.(-3,-3)C.(2,3)D.(-4,6)
5.若反比例函数 的图象经过点(m,3m),其中 ,则此反比例函数的图象在…………………………………………………………………………………【】
A.第一、三象限B.第一、二象限
C.第二、四象限D.第三、四象限
6.以下列各组数组为三角形的三边,能构成直角三角形的是………………【】
2010-2011学年度第二学期期中阶段检测
八年级数学试卷(人教版)2011.4
考生注意:1.本卷共6页,总分100分,考试时间90分钟.
2.答题前将密封线左侧的项目填写清楚.
题号



总分
19
20
21
22
23
24
25
26
得分
一、选择题(每小题2分,共20分)
1.下列根式中不是最简二次根式的是……………………………………………【】
(1)写出这个反比例函数的解析式;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

湖北省黄冈市八年级(下)期中数学试卷

八年级(下)期中数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列二次根式中属于最简二次根式的是( )A. B. C. D.2.下列计算错误的是( )A. B.C. D.3.若成立,则a,b满足的条件是( )A. a<0且b>0B. a≤0且b≥0C. a<0且b≥0D. a,b异号4.下列各组数中,以a、b、c为边长的三角形不是直角三角形的是( )A. a=3,b=4,c=5B. a=5,b=12,c=13C. a=1,b=3,c=D. a=,b=,c=5.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于( )A. 1 cmB. 2 cmC. 3 cmD. 4 cm6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A. 6B. 8C. 10D. 127.将一根24cm的筷子置于底面直径为15cm,高为8cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是( )A. h≤17B. h≥8C. 15≤h≤16D. 7≤h≤168.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,对角线交于点O,连结AO,如果AB=4,AO=4,那么AC的长等于( )A. 12B. 16C. 4D. 8二、填空题(本大题共8小题,共24.0分)9.使有意义的x的取值范围是______.10.当时,=______.11.如果直角三角形两条边长分别为3和4,那么第三条边长为______.12.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为______.13.△ABC中,AC=6,AB=BC=5,则BC边上的高AD=______.14.在△ABC中,若三边长分别为9,12,15,则以两个这样的三角形拼成的长方形的面积为______.15.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为______cm.16.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为______.三、解答题(本大题共8小题,共72.0分)17.化简:(x>0)18.若a,b为实数,a=+3,求.19.如图,△ABC中,∠ACB=90°,,求斜边AB上的高CD.20.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.22.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.23.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm,当小红折叠时,顶点D落在BC边上的点F处(折痕为AE)(1)求BF的长;(2)求EC的长.24.如图,已知正方形ABCD和正方形AEFG,连结BE、DG.(1)求证:BE=DG,BE⊥DG;(2)连接BD、EG、DE,点M、N、P分别是BD、EG、DE的中点,连接MP,PN ,MN,求证:△MPN是等腰直角三角形;(3)若AB=4,EF=2,∠DAE=45°,直接写出MN=______.答案和解析1.【答案】A【解析】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.【答案】D【解析】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.根据二次根式的运算法则分别计算,再作判断.同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.3.【答案】B【解析】【分析】本题考查了二次根式的性质与化简,(a≥0).根据,可得b与0的关系,a与0的关系,可得答案.【解答】解:成立,-a≥0,b≥0,a≤0,b≥0,故选:B.4.【答案】D【解析】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、12+32=()2,符合勾股定理的逆定理,是直角三角形;D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.【答案】B【解析】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC-BE=5-3=2cm,故选:B.根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.6.【答案】C【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8-x,在Rt△AFD′中,(8-x)2=x2+42,解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=•AF•BC=10.故选:C.因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB-BF ,即可得到结果.本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.7.【答案】D【解析】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24-8=16(cm);当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB==17(cm),∴此时h=24-17=7(cm),所以h的取值范围是:7cm≤h≤16cm.故选:D.当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.本题考查了勾股定理的应用,能够读懂题意和求出h的值最大值与最小值是解题关键.8.【答案】A【解析】解:在AC上截取CG=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∴B、A、O、C四点共圆,∴∠ABO=∠ACO,在△BAO和△CGO中,∴△BAO≌△CGO(SAS),∴OA=OG=4,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG==8,即AC=AG+CG=8+4=12.故选:A.在AC上截取CG=AB=4,连接OG,根据B、A、O、C四点共圆,推出∠ABO=∠ACO,证△BAO≌△CGO,推出OA=OG=4,∠AOB=∠COG,得出等腰直角三角形AOG,根据勾股定理求出AG,即可求出AC.本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,能熟练地运用这些性质进行推理和计算是解此题的关键.9.【答案】x≥【解析】解:根据题意得:4x-1≥0,解得x≥.故答案为:x≥.本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.【答案】1+【解析】解:==当时,原式==1+,故答案为1+.二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.本题考查了二次根式化简求值,熟练进行分母有理化是解题的关键.11.【答案】【解析】解:当第三边为直角边时,4为斜边,第三边==;当第三边为斜边时,3和4为直角边,第三边==5,故答案为:5或.分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.12.【答案】4.8【解析】解:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,由折叠的性质可知△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6-x,DG=x,∴CG=8-x,BG=8-(6-x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8-x)2=(x+2)2,解得:x=4.8,∴AP=4.8,故答案为:4.8.设AP=x,证明△ODP≌△OEG,根据全等三角形的性质得到OP=OG,PD=GE,根据翻折变换的性质用x表示出PD、OP,根据勾股定理列出方程,解方程即可.本题考查的是翻折变换的性质和勾股定理的应用,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】【解析】解:如图所示:过点B作BE⊥AC于点E,∵AC=6,AB=BC=5,∴AE=AC=3,∴在Rt△ABE中,BE===4,∴AC•BE=BC•AD,即AD===.故答案为:.先根据题意画出图形,由等腰三角形的性质可求出AE的长,根据勾股定理求出BE的长,由三角形的面积公式即可得出AD的长.本题考查的是勾股定理及等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.14.【答案】108【解析】解:∵在△ABC中,三条边的长度分别为9、12、15,92+122=152,∴△ABC是直角三角形,∴用两个这样的三角形所拼成的长方形的面积是2××9×12=108.故答案为:108.根据三条边的长度分别为9、12、15,得出△ABC是直角三角形,再根据长方形的面积是两个直角三角形的面积之和,列式计算即可.此题考查了勾股定理的逆定理,用到的知识点是勾股定理的逆定理、三角形、长方形的面积公式,关键是判断出长方形的面积是两个直角三角形的面积之和.15.【答案】4.8【解析】解:设斜边上的高为hcm,由勾股定理得:=10cm,直角三角形的面积=×10×h=×6×8,解得:h=4.8.故答案为:4.8cm.设斜边上的高为hcm,由勾股定理求出斜边长,再由直角三角形面积的计算方法即可得出斜边上的高.本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由直角三角形面积的计算方法得出结果是解决问题的关键.16.【答案】【解析】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用.17.【答案】解:原式=×3+6×-2x×,=2+3-2,=3.【解析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.此题主要考查了二次根式的加减,同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.18.【答案】解:由题意得,2b-14≥0且7-b≥0,解得b≥7且b≤7,a=3,所以,==4.【解析】根据被开方数大于等于0列式求出b,再求出a,然后代入代数式进行计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.19.【答案】解:AC===,∵S△ABC=AC•BC=CD•AB,∴CD===.【解析】根据直角三角形的性质利用面积法、勾股定理计算.本题考查的是勾股定理的运用,二次根式的混合运算.属较简单题目.20.【答案】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【解析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.【答案】证明:连接BD,交AC于O,∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OA-AE=OC-CF,∴OE=OF,∴四边形BFDE是平行四边形.【解析】先连接BD,交AC于O,由于四边形ABCD是平行四边形,易知OB=OD,OA=OC,而AE=CF,根据等式性质易得OE=OF,再根据两组对角线互相平分的四边形是平行四边形可证之.本题考查了平行四边形的判定和性质,解题的关键是作辅助线,使其中出现对角线相交的情况.22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CF.∴∠1=∠2,∠3=∠4∵E是AD的中点,∴AE=DE.∴△ABE≌△DFE.(2)解:四边形ABDF是平行四边形.∵△ABE≌△DFE,∴AB=DF又∵AB∥DF∴四边形ABDF是平行四边形.【解析】(1)可用AAS证明△ABE≌△DFE;(2)四边形ABDF是平行四边形,可用对角线互相平分的四边形是平行四边形证明.此题主要考查平行四边形的判定和全等三角形的判定.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.【答案】解:(1)由折叠得:AF=AD=BC=10,在Rt△ABF中,AB=8,AF=10,∴BF==6,答:BF的长为6cm;(2)FC=BC-BF=10-6=4,设EC=x,则EF=DE=8-x,在在Rt△EFC中,由勾股定理得:x2+42=(8-x)2,解得:x=3,答:EC的长为3cm.【解析】(1)由折叠可得AF=AD=10,在直角三角形ABF中,由勾股定理可求BF,(2)再由折叠得到DE=EF,将问题转化到直角三角形EFC中,设未知数,建立方程,求出结果.考查矩形的性质、折叠轴对称的性质、直角三角形的勾股定理等知识,切实理解折叠得性质和转化到某一个直角三角形中解决问题是常用的方法.24.【答案】(1)见解析(2)见解析(3)2【解析】(1)证明:∵正方形ABCD和正方形AEFG,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAD+∠DAE=∠EAG+∠DAE,∴∠BAE=∠DAG,∵在△BEA与△DGA中,,∴△BEA≌△DGA(SAS),∴BE=DG,∠ADG=∠ABE,∴∠BOD=∠BAD=90°,∴BE⊥DG;(2)证明:如图,由三角形中位线定理可得:MP∥BE,MP=BE,PN∥DG,PN=DG,∴PM=PN,∠MPN=∠BOD=90°,即△MPN是等腰直角三角形;(3)解:如图,过点G作GH垂直于DA的延长线于点H,∵∠DAE=45°,∠EAG=90°,∴∠HAG=45°,∵EF=2,∴AH=HG=2,∵AB=4,∴DH=6,∴DG==2,∴NP=MP=,∴MN=2.故答案为2.(1)根据SAS证明△BEA与△DGA全等,再利用全等三角形的性质证明即可;(2)利用三角形中位线定理证得△MPN是等腰直角三角形;(3)过点G作GH垂直于DA的延长线于点H,利用勾股定理得出DG,进一步得出PN ,利用勾股定理得出结果.此题考查三角形全等的判定与性质,三角形的中位线定理,勾股定理,等腰直角三角形的性质,结合图形和数据,灵活作出辅助线解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共6页
A
B
C
P 第8题图
湖北省黄冈市团风县实验中学2010-2011年八年级下学期期中考试
数学试题
一、填空题(3分×10=30分)
1、当x 时,分式1
1
+x 有意义.
2、当m 时,函数()3
2--=m x
m y 是反比例函数.
3、已知当x =-2时,分式a x b x +-无意义,当x=6时,此分式的值为0,则=⎪⎭

⎝⎛a
b a .
4、已知关于x 的方程
33
2=-+x m
x 的解是正数,则m 的取值范围是 . 5、直角三角形的两边为3、4,则第三边长为 . 6、如图,A 为反比例函数x
k
y =图象上一点,AB 垂直x 轴于点B ,若S △AOB =5,则k = . 7、若
b
a b a +=
+411,则=+b a
a b . 8、点P 是等边三角形ABC 内一点,且PA=6,PB=8,PC=10,则∠APB= .
9、如图,依次摆放着七个正方形,已知余放置的三个三角形的面积分别为1、2、3,正放着的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4= . 10、如果直线kx y =(k >0)与双曲线x
y 6
=
交于A (x 1,y 1)、B (x 2,y 2)两点,则=-122172y x y x .
二、选择题(3分×7=21分) 11、下列各式中
5a 、m n 2、π21、1+b a 、3b a +、z
y 15-、3-z 中分式有( )个. A.2 B.3 C.4 D.5
12、将2
81-⎪⎭
⎫ ⎝⎛、0
8-、()52-这三个数按从小到大的顺序排列,正确的排序结果是( ).
A.0
8-<281-⎪⎭⎫ ⎝⎛<()52- B.()52-<0
8-<2
81-⎪⎭
⎫ ⎝⎛
C.281-⎪⎭⎫ ⎝⎛<08-<()52-
D.()52-<2
81-⎪⎭
⎫ ⎝⎛<0
8-
x
第6题图
S 1
1
S 2
2
S 3
3
S 4
第9题图
第2页 共6页
13、如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N ,则MN 等于( ).
A.56
B.59
C.512
D.5
16
14、若关于x 的分式方程
x
x x x m x x 1
112+=
++-+有增根,则m 的值为( ) A.―1或―2 B.-1
或2 C.1或2 D.0或-2
15、如图,地面上有一个长方体,一只蜘蛛在这个长方体的顶点A 处,一滴水珠在这个长方形的顶点C′处,已知长方体的长为6m ,宽为5m ,高为3m ,蜘蛛要沿着长方体的表面从A 处爬到C′处,则蜘蛛爬行的最短距离为( )
A.m 130
B.8m
C.10m
D.14m
16、函数x y =1(x ≥0)
、x
y 4
2=
(x >
0)的图象如图,则结论 ①两函数图象的交点A 的坐标为(2,2) ②当x
>2时,y 2>y 1 ③当x =1时,BC=3
④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小 其中正确的是( ).
A.①②
B.①②③
C.①③④
D.①②③④ 17、如图,函数()x
k
y x k y =+=与1在同一坐标系中,图象只能是下图中的( ). C
第13题图 D′
C ′
B ′ C
B
D
A′
A
第15题图
x
x
4 x
A
x
B
C
x
D
第3页 共6页
三、解答题
18、计算(5分×3=15分)
(1)111326125.02210
3
2
-+⎪⎪⎭⎫ ⎝
⎛-+⨯-⎪⎭⎫ ⎝⎛- (2)()33296422+∙+-÷++-a a a a a a
(3)已知()1
1
1022
22
2
++
--=-x x x x ,x 求代数式的值.
19、解下列分式方程(5分)
x
x x -=
+--23
123
20、(7分)如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.
D
C
B
A
第4页 共6页
21、(8分)如图,在长方形ABCD 中,AB=6,BC=8,P 是BC 边上一动点,过D 作DE ⊥AP 于E ,设AP=x ,DE=y ,试求出y 与x 之间的函数关系式,并画出函数图象.
22、(8分)金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书,从投标书中得知,甲单独完成这项工程所需天数是乙单独完成这项工程所需天数的
3
2
;若由甲队先做20天,剩下的工程再由甲、乙两队合作30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元,为缩短工期以减少对住户的影响,拟安排甲、乙两个工程队合作完成这项工程,则工程预算的费用是否够用?若不够用,需追加预算费用多少万元?请给出你的判断并说明理由.
23、(8分)已知A (-4,n )、B (2,-4)是反比例函数x
m
y =图象和一次函数b kx y +=的图象的两个交点.
(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;
A
B
D
E
P
C
第5页 共6页
(3)求方程0=-+x m
b kx 的解(请直接写出答案)
; (4)求不等式x
m
b kx -+>0的解集(请直接写出答案).
24、(8分)已知如图,AC=5,AB=3,边BC 上的中线AD=2,求△ABC 的面积.
25、(10分)如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对标. 以O 为原点,建立如图所示的坐标系,
x 轴、y 轴的正方向分别表示正东、正北方向,设A 、B 两船可近似看成在双曲线x
y 4
=
上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线x y =上,三船同时发现湖面上有一遇险的C 船. 此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).
(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A ( )、B ( )和C ( ). (2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3∶4. 问教练船是否最先赶到?请说明理由.
A
B
D
C
x (百米)
D
第6页 共6页
参考答案
1、x ≠-1
2、m =-2
3、
9
1
4、m >-9且m ≠-6
5、5或7
6、k=-10
7、2
8、150°
9、4 10、30 11—17、CBCDCCD 18、(1)-6 (2)2 (3)1 19、x =1 20、连结AD 21、x
y 48
=
(6≤x ≤10) 22、(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要
x 3
2
天,则11321303220
=⎥⎥⎦⎤
⎢⎢⎢⎣⎡++x x x . 解之得105=x . 经检验105=x 是所列方程的根且符合题意的701053
2
32=⨯=x ,故甲、乙两队单独完成这项工程各需70天、105天。

(2)设甲、乙两队合作,完成这项工程需y 天,则11051701
=⎪⎭

⎝⎛+y ,解得42=y ,需要施工费用()8.584256.084.0=⨯+(万元). ∵58.8>50 ∴工程预算的费用不够用,需追加8.8万元. 23、(1)28
--=-
=x x
y (2)S △AOB =6 (3)41-=x ,22=x (4)x <-4或0<x <2
24、延长AD 至E ,使ED=AD ,连结BE ,证∠BAE=90°,S △ABC =6. 25、(1)A (2,2) B (-2,-2) C (3232-,) (2)教练船没有最先赶到.
A
B
D
C
E
24题图。

相关文档
最新文档