MATLAB)课后实验答案[1]

合集下载

MATLAB实验答案(桂电)

MATLAB实验答案(桂电)

实验一 MATLAB入门(1)1.实验目的:(1)了解MATLAB的体系结构与特点,熟悉其集成开发环境。

(2)熟悉MATLAB界面窗口的功能和使用方法。

(3)熟悉MATLAB的帮助系统及使用方法。

(4)了解MATLAB的的数据类型、基本形式和数组的产生方法。

(5)掌握MATLAB基本的数学运算操作。

2.实验原理(1)MATLAB简介MATLAB是美国MathWorks公司开发的高性能的科学与工程计算软件。

它在数值计算、自动控制、信号处理、神经网络、优化计算、小波分析、图像处理等领域有着广泛的用途。

近年来, MATLAB在国内高等院校、科研院所的应用逐渐普及,成为广大科研、工程技术人员必备的工具之一。

MATLAB具有矩阵和数组运算方便、编程效率极高、易学易用、可扩充性强和移植性好等优点,俗称为“草稿纸式的科学计算语言”。

它把工程技术人员从繁琐的程序代码编写工作中解放出来,可以快速地验证自己的模型和算法。

经过几十年的扩充和完善,MATLAB已经发展成为集科学计算、可视化和编程于一体的高性能的科学计算语言和软件开发环境,整套软件由MATLAB开发环境、MATLAB语言、MATLAB数学函数库、MATLAB图形处理系统和MATLAB应用程序接口(API)等五大部分组成。

MATLAB的主要特点包括强大的计算能力(尤其是矩阵计算能力)、方便的绘图功能及仿真能力、极高的编程效率。

另外,MATLAB还附带了大量的专用工具箱,用于解决各种特定领域的问题。

通过学习软件的基本操作及其编程方法,体会和逐步掌握它在矩阵运算、信号处理等方面的功能及其具体应用。

通过本课程实验的学习,要求学生初步掌握MATLAB的使用方法,初步掌握M文件的编写和运行方法,初步将MATLAB运用于数字信号处理中。

循序渐进地培养学生运用所学知识分析和解决问题的能力。

(2)MATLAB的工作界面(Desktop)与操作MATLAB 安装成功后,第一次启动时,主界面如下图(不同版本可能有差异)所示:其中① 是命令窗口(Command Window ),是MATLAB 的主窗口,默认位于MATLAB界面的右侧,用于输入命令、运行命令并显示运行结果。

(完整版)MATLAB)课后实验答案[1]

(完整版)MATLAB)课后实验答案[1]

1 + e2 (2) z = 1 ln( x + 1 + x 2 ) ,其中 x = ⎡⎢ 2⎣-0.45 ⎦2 2 ⎪t 2 - 2t + 1 2 ≤ t <3 ⎨实验一MATLAB 运算基础1. 先求下列表达式的值,然后显示 MATLAB 工作空间的使用情况并保存全部变量。

(1) z = 2sin 8501221 + 2i ⎤5 ⎥(3) z = e 0.3a - e -0.3asin(a + 0.3) + ln 0.3 + a ,a = -3.0, - 2.9, L , 2.9, 3.03⎧t 2 0 ≤ t < 1 (4) z = ⎪t 2 - 11 ≤ t <2 ,其中 t=0:0.5:2.5 4⎩解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4.完成下列操作:(1)求[100,999]之间能被21整除的数的个数。

(2)建立一个字符串向量,删除其中的大写字母。

解:(1)结果:m=100:999;n=find(mod(m,21)==0);length(n)ans=43(2).建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch=⎣O2⨯3⎥,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩S⎦阵和对角阵,试通过数值计算验证A=⎢⎥。

2019年MATLAB)课后实验答案

2019年MATLAB)课后实验答案

实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:: 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。

解: M 文件如下;5. 下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程的解。

(2) 将方程右边向量元素b 3改为再求解,并比较b 3的变化和解的相对变化。

(3) 计算系数矩阵A 的条件数并分析结论。

解: M 文件如下:123d4e56g9实验三 选择结构程序设计1. 求分段函数的值。

2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=,,,,,,时的y 值。

MATLAB)课后实验答案

MATLAB)课后实验答案

实验一 MATLAB 运算基础1、 先求下列表达式得值,然后显示MATLAB 工作空间得使用情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0、5:2、5 解:4、 完成下列操作:(1) 求[100,999]之间能被21整除得数得个数。

(2) 建立一个字符串向量,删除其中得大写字母。

解:(1) 结果:(2)、 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果就是:实验二 MATLAB 矩阵分析与处理1、 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵与对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。

解: M 文件如下;5、 下面就是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程得解。

(2) 将方程右边向量元素b 3改为0、53再求解,并比较b 3得变化与解得相对变化。

(3) 计算系数矩阵A 得条件数并分析结论。

解: M 文件如下:实验三 选择结构程序设计1、 求分段函数得值。

2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5、0,-3、0,1、0,2、0,2、5,3、0,5、0时得y 值。

matlab实验内容答案

matlab实验内容答案

实验报告说明:matlab 课程实验需撰写8个实验报告,每个实验报告内容写每次实验内容中标号呈黑体大号字显示的题目。

第一次实验内容:实验一 MATLAB 运算基础一、实验目的1.熟悉启动和退出MATLAB 的方法。

2.熟悉MATLAB 命令窗口的组成。

3.掌握建立矩阵的方法。

|4.掌握MATLAB 各种表达式的书写规则以及常用函数的使用。

二、实验内容1.先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1)22sin 8511z e︒=+ (2)12ln(2z x =,其中2120.455i +⎡⎤=⎢⎥-⎣⎦(3)0.30.33sin(0.3), 3.0, 2.9, 2.8,,2.8,2.9,3.02a ae e z a a --=+=--- 提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。

(4)2220141122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪--≤<⎩,其中t =0::】提示:用逻辑表达式求分段函数值。

2.已知12344347873657A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,131203327B -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求下列表达式的值:(1) A+6=B 和A-B+I(其中I 为单位矩阵)。

(2) A*B 和A.*B 。

(3) A^3和A^.3 。

(4) A/B 和B\A 。

(5)[A ,B]和[A([1,3],;);B^2] 。

!3.设有矩阵A 和B12345678910111213141516171819202122232425A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 30161769023497041311B ⎡⎤⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦(1) 求它们的乘积C 。

(2) 将矩阵C 的右下角3×2子矩阵赋给D(3) 查看MATLAB 工作空间使用情况。

4.完成下列操作:(1)求[100,999]之间能被21整除的数的个数。

matlab课后习题及答案详解

matlab课后习题及答案详解

matlab课后习题及答案详解第1章练习题1.安装matlab时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?在安装matlab时,安装内容由选择组件窗口中个复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即matlab选项)必须安装。

第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可。

2.matlab操作方式桌面存有几个窗口?如何并使某个窗口瓦解桌面沦为单一制窗口?又如何将瓦解过来的窗口再次置放至桌面上?与其他计算机语言相比较,matlab语言注重的特点就是什么?matlab系统由那些部分共同组成?在matlab操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的close按钮,一个是可以使窗口成为独立窗口的undock按钮,点击undock按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view菜单中选择dock……菜单项就可以将独立的窗口重新防止的桌面上。

matlab具备功能强大、使用方便、输出简便、库函数多样、开放性弱等特点。

matlab系统主要由开发环境、matlab数学函数库、matlab语言、图形功能和应用程序接口五个部分组成。

3.如何设置当前目录和搜寻路径,在当前目录上的文件和在搜寻路径上的文件存有什么区别?命令历史窗口除了可以观测前面键入的命令外,除了什么用途?当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file菜单中的setpath菜单项来完成。

在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被matlab运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。

命令历史窗口除了用作查阅以前键入的命令外,还可以轻易执行命令历史窗口中选取的内容、将选取的内容拷贝到剪贴板中、将选取内容轻易拷贝到m文件中。

Matlab实验1答案

Matlab实验1答案

Matlab 曲线绘图练习1. 绘出立方曲线3=。

y xx=-2::2;y=x.^3;plot(x,y)grid on2. 立方抛物线y=y=-2::2;x=y.^3;plot(x,y)grid on3. 高斯曲线2x y e -=。

clear; x=-2::2;y=exp(-x.^2); plot(x,y)以参数方程表示的曲线: 4. 奈尔抛物线2323,()x t y t y x ===clear; t=-2::2;x=t.^3;y=t.^2 plot(x,y)y =Columns 1 through 14Columns 15 through 28Columns 29 through 420 Columns 43 through 56Columns 57 through 70Columns 71 through 815. 半立方抛物线2323,()x t y t y x ===clear; t=-2::2;x=t.^2;y=t.^3 plot(x,y)y =Columns 1 through 14Columns 15 through 28Columns 29 through 420 Columns 43 through 56Columns 57 through 70 Columns 71 through 816. 迪卡尔曲线2332233,(30) 11at atx y x y axyt t==+-= ++clear;a=3;t=-2::2;x=3*a.*t./(1+t.^2);y=3*a.*t.^2./(1+t.^2); plot(x,y);grid on7. 蔓叶线233222,() 11at at xx y yt t a x ===++-clear;a=2;t=-10::10;x=a.*t.^2./(1+t.^2);y=a.*t.^3./(1+t.^2); plot(x,y);grid on8. 摆线(sin),(1cos)x a t t y b t=-=-。

MATLAB课后实验答案

MATLAB课后实验答案

实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1) 0122sin851z e =+(2) 221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=-- (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解: M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5]; z2=1/2*log(x+sqrt(1+x^2)) a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 MATLAB 运算基础
1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1) 0
12
2sin 851z e =+
(2) 21ln(2
z x =,其中2
120.45
5i x +⎡⎤=⎢
⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a
z a a --+=
++=--
(4) 2242011
122123t t z t t t t t ⎧≤<⎪
=-≤<⎨⎪-+≤<⎩
,其中t =0:0.5:2.5 解:
4. 完成下列操作:
(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:
(2). 建立一个字符串向量 例如: ch='ABC123d4e56Fg9';则要求结果是: 实验二 MATLAB 矩阵分析与处理
1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤
=⎢
⎥⎣⎦
,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证2
2
E R RS A O S +⎡⎤
=⎢⎥⎣⎦。

解: M 文件如下;
5. 下面是一个线性方程组: (1) 求方程的解。

(2) 将方程右边向量元素b 3改为0.53
再求解,并比较b 3的变化和解的相对变化。

(3) 计算系数矩阵A的条件数并分析结论。

解:M文件如下:
实验三选择结构程序设计
1. 求分段函数的值。

用if语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y值。

解:M文件如下:
2. 输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。

其中90分~100分为A,80分~89分为B,79分~79分为C,60分~69分为D,60分以下为E。

要求:
(1) 分别用if语句和switch语句实现。

(2) 输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。

解:M文件如下
3. 硅谷公司员工的工资计算方法如下:
(1) 工作时数超过120小时者,超过部分加发15%。

(2) 工作时数低于60小时者,扣发700元。

(3) 其余按每小时84元计发。

试编程按输入的工号和该号员工的工时数,计算应发工资。

解:M文件下
实验四循环结构程序设计
1. 根据
2
2222
1111
6123n
π
=++++,求π的近似值。

当n分别取100、1000、10000
时,结果是多少?
要求:分别用循环结构和向量运算(使用sum函数)来实现。

解:M文件如下:
运行结果如下:
2. 根据
111
1
3521
y
n
=++++
-
,求:
(1) y<3时的最大n值。

(2) 与(1)的n值对应的y值。

解:M—文件如下:
3. 考虑以下迭代公式:
其中a、b为正的学数。

(1) 编写程序求迭代的结果,迭代的终止条件为|x n+1-x n|≤10-5,迭代初值x0=1.0,迭代次数不超过500次。

(2) 如果迭代过程收敛于r ,那么r 的准确值是2
b -±,当(a,b)的值取(1,1)、
(8,3)、(10,0.1)时,分别对迭代结果和准确值进行比较。

解:
M 文件如下: 运算结果如下;
5. 若两个连续自然数的乘积减1是素数,则称这两个边疆自然数是亲密数对,该素数是亲密素数。

例如,2×3-1=5,由于5是素数,所以2和3是亲密数,5是亲密素数。

求[2,50]区间内:
(1) 亲密数对的对数。

(2) 与上述亲密数对对应的所有亲密素数之和。

解:
M 文件:
实验五 函数文件
4. 设2411
()(2)0.1(3)0.01
f x x x =
+-+-+,编写一个MATLAB 函数文件fx.m ,使得
调用f(x)时,x 可用矩阵代入,得出的f(x)为同阶矩阵。

5. 已知(40)
(30)(20)
f y f f =
+
(1) 当f(n)=n+10ln(n 2+5)时,求y 的值。

(2) 当f(n)=1×2+2×3+3×4+...+n ×(n+1)时,求y 的值。

实验八数据处理与多项式计算
2. 将100个学生5门功课的成绩存入矩阵P中,进行如下处理:
(1) 分别求每门课的最高分、最低分及相应学生序号。

(2) 分别求每门课的平均分和标准方差。

(3) 5门课总分的最高分、最低分及相应学生序号。

(4) 将5门课总分按从大到小顺序存入zcj中,相应学生序号存入xsxh。

提示:上机调试时,为避免输入学生成绩的麻烦,可用取值范围在[45,95]之间的随机矩阵来表示学生成绩。

解:M文件:
运行结果:
3. 某气象观测得某日6:00~18:00之间每隔2h的室内外温度(0C)如实验表1所示。

实验表1 室内外温度观测结果(0C)
时间h 6 8 10 12 14 16 18 室内温度t1 18.0 20.0 22.0 25.0 30.0 28.0 24.0
室外温度t2 15.0 19.0 24.0 28.0 34.0 32.0 30.0 试用三次样条插值分别求出该日室内外6:30~18:30之间每隔2h各点的近似温度(0C)。

解:
4. 已知lgx在[1,101]区间10个整数采样点的函数值如实验表2所示。

实验表2 lgx在10个采样点的函数值
x 1 11 21 31 41 51 61 71 81 91 101
lgx 0 1.0414 1.3222 1.4914 1.6128 1.7076 1.7853 1.8513 1.9085 1.9510 2.0043
试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在[1,101]区间的函数曲线。

解:
5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行下列操作:
(1) 求P(x)=P1(x)+P2(x)P3(x)。

(2) 求P(x)的根。

(3) 当x取矩阵A的每一元素时,求P(x)的值。

其中:
(4) 当以矩阵A为自变量时,求P(x)的值。

其中A的值与第(3)题相同。

解:M文件:
实验九 数值微积分与方程数值求解
1. 求函数在指定点的数值导数。

实验六 高层绘图操作
3. 已知
在-5≤x ≤5区间绘制函数曲线。

解:M 文件:
2. 用数值方法求定积分。

(1) 210
I π
=⎰
的近似值。

(2) 222
ln(1)
1x I dt x
π
+=
+⎰
运行结果:
3. 分别用3种不同的数值方法解线性方程组。

解:M 文件:
运行结果:
4. 求非齐次线性方程组的通解。

解:M 文件。

5. 求代数方程的数值解。

(1) 3x +sin x -e x =0在x 0=1.5附近的根。

(2) 在给定的初值x 0=1,y 0=1,z 0=1下,求方程组的数值解。

解:M 文件:
运行结果:
6. 求函数在指定区间的极值。

(1) 3cos log ()x
x x x x
f x e
++=在(0,1)内的最小值。

(2) 332
12112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值。

解: 令y1=x,y2=y,y3=z; 这样方程变为:
'''0.51(0)0,(0)1,(0)1
x yz y xz z xy x y z =⎧⎪=-⎪

=-⎪⎪===⎩,自变量是t
实验十 符号计算基础与符号微积分
一、
1. 已知x=6,y=5,利用符号表达式求
提示:定义符号常数x=sym(‘6’),y=sym(‘5’
)。

解:M 文件: 运行结果: 2. 分解因式。

(1) x 4-y 4
(2) 5135
解:M 文件:
运行结果:
5. 用符号方法求下列极限或导数。

解:M 文件:
运行结果:
6. 用符号方法求下列积分。

运行结果:。

相关文档
最新文档