初一奥数题(附答案精编版

合集下载

(word完整版)初一奥数题集(带答案)

(word完整版)初一奥数题集(带答案)

1、2002)1(-的值 ( B )A. 2000B.1C.-1D.-20002、a 为有理数,则200011+a 的值不能是 ( C ) A.1 B.-1 C .0 D.-20003、()[]}{20072006200720062007----的值等于 ( B )A.-2007B.2009C.-2009D.20074、)1()1()1()1()1(-÷-⨯---+-的结果是 ( A )A.-1B.1C.0D.25、2008200720061)1()1(-÷-+-的结果是 ( A )A.0B.1C.-1D.26、计算)2()21(22-+-÷-的结果是 ( D ) A.2 B.1 C.-1 D.07、计算:.21825.3825.325.0825.141825.3⨯+⨯+-⨯ 8、计算:.311212311999212000212001212002-++-+-Λ9、计算:).138(113)521()75.0(5.2117-⨯÷-÷-⨯÷-11、计算:.363531998199992000⨯+⨯-练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6 12、计算: )9897983981()656361()4341(21++++++++++ΛΛ结果为:5.612249122121=⨯++⨯+Λ13、计算:.200720061431321211⨯++⨯+⨯+⨯Λ应用:)111(1)1(+-=+n n d n n d练习:.1051011171311391951⨯++⨯+⨯+⨯Λ13、计算:35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯. 结果为5214、求21-++x x 的最小值及取最小值时x 的取值范围.练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.练习:1、计算2007200619991998)1()1()1()1(-+-++-+-Λ的值为 ( C )A.1B.-1C.0D.102、若m 为正整数,那么()[])1(11412---m m 的值 ( B ) A.一定是零 B.一定是偶数C.是整数但不一定是偶数D.不能确定3、若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是 ( B )A.一定是偶数B.一定是奇数C.是偶数但不是2D.可以是奇数或偶数4、观察以下数表,第10行的各数之和为 ( C )14 36 7 813 12 11 1015 16 17 18 1926 25 24 23 22 21…A.980B.1190C.595D.4905、已知,200220012002200120022001200220012⨯++⨯+⨯+=Λa 20022002=b ,则a 与b 满足的关系是 ( C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6、计算: .35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯527、计算:.561742163015201412136121++++++83288、计算:.100321132112111+++++++++++ΛΛ9、计算: .999999999999999999999+++++10、计算)100011)(99911)(99811()411)(311)(211(10201970198019992000-------++-+-ΛΛ.610 11、已知,911,999909999==Q p 比较Q P ,的大小.Q p ==⨯⨯=⨯⨯=9099909999099119991199)911(12、设n 为正整数,计算:43424131323332312122211+++++++++++ .1112141424344nn n n n n n n n ++-++-+++++++++ΛΛΛ 2)1(21+=+++n n n Λ13、2007加上它的21得到一个数,再加上所得的数的31又得到一个数,再加上这次得到的41又得到一个数,… ,依次类推,一直加到上一次得数的20071,最后得到的数是多少? 2005003)200211()311()211(2002=+⨯⨯+⨯+⨯Λ14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式:(1)_______________________;(2)________________________;(3)________________________;15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。

初一奥数题附答案

初一奥数题附答案

初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y +4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB 的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD 与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n 是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种4千米6千米1千克1~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,9(150-y)+=148.5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×+2(x+1)(1+30%)=[2x+3(x+1)],即2×+2×+2×=5x+,即=2×,所以x=(元).若y为去年每支牙膏,则y=+1=(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以(25+x)=,解之得x=50分钟.于是左边=(25+50)=30(千米),右边=×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x?40%+y?10%+z?50%=,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。

(完整word)七年级奥数题20道和答案

(完整word)七年级奥数题20道和答案

七年级奥数题20道和答案补充几道:在车站开始检查票时,有A(A>0)位旅客在等候。

检票开始后,仍有旅客继续前来排队。

设旅客按固定的速度增加,检票口检票的速度也是固定的。

若开放一个口,则要30分钟才能将排队检票的旅客全部检票完毕;若开放两个检票口,则要10分钟。

如果要在5分钟内将排队检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口上述题大致解法为:设1个检票口1分钟检票1人。

1个检票口30分的检票量为1×30分=30人,这既包括原有A人,也包括30分内增加的人。

2个检票口10分的检票量为2×10分=20人,这既包括原有A人,也包括10分内增加的人。

因为原有A人一定,所以上面两式的差30-20=10人正好是30分增加的人数与10分增加的人数的差。

由此可以求出每分人数增加量是10÷(30-10)=0.5人。

车站原有A人是30-0.5×30=15人,或20-0.5×10= 15人。

前面已假定每个口每分钟的检票量为1,而每分钟增加的人数为0.5,因此新增加的人需0.5个口。

今要5分内完成,1个口5分检5人,原有的15人需3个口,再加上新增加的人需0.5个口(即1个口).共4个口.所以在5分钟内检票完毕,至少要同时开放4个检票口.2008年夏季奥运会的主办国即将于2001年7月揭晓,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000km处会合,并同时向北京进发,绿队走完2000km 时,红队走完1800km,随后,红队的速度比原来的提高20%,两车队继续同时向北京进发。

(1)求红队提速前红、绿两队的速度比;(2)问红、绿两支车队是否同时到达了北京?说明理由;(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京?求出第一支车队到达北京时两车队的距离(单位:km)。

(1)V红:V绿=1800:2000=9:10(2)设提速前时间为t则提速前V绿=2000/t,V红=1800/t提速后V红后=1800*120%/t=2160/t,V绿不变,所以t绿总=3000/V绿=3t/2,t红总=t+(3000-1800)/V红后=14t/9,因为t红总不等于t绿总所以不同时到达(3)因为3t/2<5t/9所以绿队先到达。

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。

从第四个数字开始,每个数字都是前三个数字的和。

请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。

然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。

答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。

将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。

所以,斜边的长度是5厘米。

试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。

问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。

我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。

这相当于在4个球之间插入2个隔板来形成3个部分。

我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。

但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。

因此,最终的放球方法有\[ 6 - 3 = 3 \]种。

试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。

求这个数列的第10项。

答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。

初一奥数题(附答案精编版

初一奥数题(附答案精编版

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯初一奥数题(附答案)1.设 a,b,c 为实数,且| a|+a=0,| ab|=ab,|c|-c=0,求代数式|b| -| a+b|-|c-b|+| a-c|的值.2.若 m< 0,n> 0,| m|<| n|,且| x+m|+| x-n| =m+n,求 x 的取值范围.3.设 (3x-1) 7=a7x7+a6x6++a1x+ a0,试求 a0+a2+a4+a6的值.4.解方程 2| x+1|+|x-3 |=6.5.解不等式|| x+ 3|-|x-1 ||> 2.6. x,y,z 均是非负实数,且知足:x+3y+2z=3,3x+3y+z=4,求 u =3x-2y + 4z 的最大值与最小值.7.求 x4-2x3 +x2+2x-1 除以 x2+x+ 1 的商式和余式.12.如图 1-88 所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才能使行程最短?13.如图 1-89 所示. AOB 是一条直线, OC,OE 分别是∠ AOD 和∠ D OB 的均分线,∠ COD=55°.求∠ DOE 的补角.14.如图 1- 90 所示.BE 均分∠ ABC ,∠ CBF=∠ CFB=55°,∠ EDF=70°.求证: BC‖AE .15.如图 1-91 所示.在△ ABC 中, EF⊥ AB ,CD ⊥AB ,∠ CDG= ∠BE F.求证:∠ AGD= ∠ ACB .16.如图 1-92 所示.在△ ABC 中,∠ B= ∠C, BD ⊥ AC 于 D.求17.如图 1-93 所示.在△ ABC 中, E 为 AC 的中点, D 在 BC 上,且 B D∶DC=1∶2,AD 与 BE 交于 F.求△ BDF 与四边形 FDCE 的面积之比.18.如图 1-94 所示.四边形ABCD 两组对边延伸订交于K 及 L ,对角线 AC ‖KL ,BD 延伸线交 KL 于 F.求证: KF=FL .19.随意改变某三位数数码次序所得之数与原数之和可否为999?说明理由.20.设有一张 8 行、8 列的方格纸,随意把此中32 个方格涂上黑色,剩下的 32 个方格涂上白色.下边对涂了色的方格纸实行“操作”,每次操作是把随意横行或许竖列上的各个方格同时改变颜色.问可否最后获取恰有一个黑色方格的方格纸?21.假如正整数p 和 p+2 都是大于 3 的素数,求证: 6| (p+1).22.设 n 是知足以下条件的最小正整数,它们是75 的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有 3 条腿,每把椅子有 4 条腿,当它们全被人坐上后,共有 43 条腿 (包含每一个人的两条腿 ),问房间里有几个人?24.求不定方程49x-56y+14z=35 的整数解.25.男、女各8 人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不考虑先后序次,只考虑男女如何结成舞伴.问各有多少种不一样状况?26.由 1,2,3,4,5 这 5 个数字构成的没有重复数字的五位数中,有多少个大于 34152?27.甲火车长 92 米,乙火车长84 米,若相向而行,相遇后经过 1.5 秒 (s)两车错过,若同向而行相遇后经 6 秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了 4 天后,由甲队独自达成剩下的,又用 2 天达成.若甲独自达成比乙独自达成所有任务快 3 天.求甲乙独自完成各用多少天?29.一船向相距240 海里的某港出发,抵达目的地前48 海里处,速度每小时减少 10 海里,抵达后所用的所有时间与原速度每小时减少 4 海里航行全程所用的时间相等,求本来的速度.30.某工厂甲乙两个车间,昨年计划达成税利750 万元,结果甲车间超额15%达成计划,乙车间超额 10%达成计划,两车间共同达成税利 845 万元,求昨年这两个车间分别达成税利多少万元?甲: 460 万乙:290万31.已知甲乙两种商品的原价之和为150 元.因市场变化,甲商品降价 1 0%,乙商品抬价20%,调价后甲乙两种商品的单价之和比原单价之和降低了 1%,求甲乙两种商品原单价各是多少?甲: 105 乙: 4532.小红昨年暑期在商铺买了 2 把小孩牙刷和 3 支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多 1 元,今年暑期她又带相同的钱去该商店买相同的牙刷和牙膏,因为今年的牙刷每把涨到1.68 元,牙膏每支涨价30%,小红只能买 2 把牙刷和 2 支牙膏,结果找回 4 角钱.试问昨年暑期每把牙刷多少钱?每支牙膏多少钱?牙刷:牙膏:33.某商场假如将进货单价为8 元的商品,按每件12 元卖出,每日可售出 400 件,据经验,若每件少卖 1 元,则每日可多卖出 200 件,问每件应减价多少元才可获取最好的效益?11元34.从 A 镇到 B 镇的距离是28 千米,今有甲骑自行车用0. 4 千米 /分钟的速度,从 A 镇出发驶向 B 镇, 25 分钟此后,乙骑自行车,用0.6 千米/分钟的速度追甲,试问多少分钟后追上甲?50 分钟后35.现有三种合金:第一种含铜60%,含锰 40%;第二种含锰10%,含镍 90%;第三种含铜 20%,含锰 50%,含镍 30%.现各取适合重量的这三种合金,构成一块含镍 45%的新合金,重量为 1 千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;最大:最小:(3)求新合金中含锰的重量范围.0.01~0 .54参照答案2.因为| a| =-a,所以a≤0,又因为| ab| =ab,所以 b≤0,因为| c| =c,所以 c≥0.所以a+ b≤0,c-b≥0, a-c≤0.所以原式 =-b+ (a+ b)-(c-b)-(a-c)=b .3.因为 m< 0,n> 0,所以| m| =-m ,| n| =n.所以| m|<| n|可变成m+ n> 0.当 x+m≥0时,| x+m |=x + m;当 x- n≤0时,| x-n | =n-x .故当 -m≤ x≤n时,|x+ m|+| x-n | =x + m-x + n=m + n.4.分别令x=1 , x=-1 ,代入已知等式中,得a0+a2+ a4+ a6=-8128 .10.由已知可解出y 和 z因为 y, z 为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3 ,余式为2x-412.小柱的路线是由三条线段构成的折线(如图 1- 97 所示 ).我们用“对称”的方法将小柱的这条折线的路线转变成两点之间的一段“连线”(它是线段).设甲村对于北山坡(将山坡当作一条直线)的对称点是甲′;乙村对于南山坡的对称点是乙′,连结甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是 A , B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)明显,路线甲→A→B→乙的长度恰巧等于线段甲′乙′的长度.而从甲村到乙村的其余任何路线,利用上边的对称方法,都能够化成一条连结甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的行程最短.13.如图1- 98 所示.因为OC,OE 分别是∠ AOD ,∠ DOB 的角均分线,又∠ AOD+∠ DOB=∠ AOB=180°,因为∠ COD=55° ,所以∠ DOE=90° -55°=35°.所以,∠ DOE 的补角为180°-35 °= 145°.14.如图1- 99 所示.因为BE 均分∠ ABC ,所以∠CBF= ∠ ABF ,又因为∠ CBF=∠ CFB,所以∠ ABF=∠ CFB.进而AB ‖ CD( 内错角相等,两直线平行).由∠ CBF=55°及 BE 均分∠ ABC ,所以∠ ABC=2× 55°=110°.①由上证知AB ‖ CD,所以∠ EDF=∠ A=70°,②由①,②知BC ‖ AE( 同侧内角互补,两直线平行).15.如图1-100 所示. EF⊥ AB , CD ⊥ AB ,所以∠ EFB=∠ CDB=90°,所以 EF‖ CD( 同位角相等,两直线平行).所以∠BEF=∠ BCD(两直线平行,同位角相等).①又由已知∠ CDG= ∠BEF .② 由①,②∠ BCD=∠ CDG.所以BC ‖ DG( 内错角相等,两直线平行).所以∠ AGD=∠ ACB(两直线平行,同位角相等).16.在△ BCD 中,∠DBC +∠ C=90°(因为∠ BDC=90° ),① 又在△ ABC 中,∠ B= ∠ C,所以∠A +∠ B+∠ C=∠ A + 2∠ C=180°,所以由①,②17.如图 1- 101,设 DC 的中点为G,连结 GE .在△ ADC 中, G,E 分别是 CD ,CA 的中点.所以,GE ‖ A D ,即在△ BEG 中, DF ‖ GE.进而 F 是 BE 中点.连结FG .所以又S△ EFD = S△ BFG-SEFDG=4S △ BFD-SEFDG ,所以S△ EFGD=3S △ BFD .设 S△ BFD=x ,则 SEFDG=3x .又在△ BCE 中, G 是 BC 边上的三均分点,所以S△ CEG=S △ BCEE ,进而所以SEFDC=3x + 2x= 5x,所以S△ BFD ∶ SEFDC=1 ∶ 5.18.如图1- 102 所示.由已知AC ‖KL ,所以 S△ ACK=S △ ACL ,所以即 KF=FL .+ b1=9 , a+a1=9 ,于是 a+b+c + a1+ b1+c1=9 + 9+9,即 2(a 十 b+ c)=27 ,矛盾!20.答案能否认的.设横行或竖列上包含k 个黑色方格及8-k 个白色方格,此中0≤ k≤8.当改变方格的颜色时,获取 8-k 个黑色方格及k个白色方格.所以,操作一次后,黑色方格的数量“增添了”(8-k)-k=8-2k个,即增添了一个偶数.于是不论如何操作,方格纸上黑色方格数量的奇偶性不变.所以,从原有的32 个黑色方格(偶数个 ),经过操作,最后老是偶数个黑色方格,不会获取恰有一个黑色方格的方格纸.21.大于 3 的质数 p 只能拥有6k+ 1, 6k+ 5 的形式.若p=6k + 1(k ≥ 1),则 p+2=3(2k + 1)不是质数,所以,p =6k + 5(k ≥ 0).于是, p+1=6k + 6,所以, 6| (p+ 1) .22.由题设条件知n=75k=3 ×52 ×k .欲使 n 尽可能地小,可设 n=2α 3β 5γ (,β≥1γ≥,2)且有( α +1)( β+1)(+1)=75γ .于是α+ 1,β+1,γ+ 1 都是奇数,α,β,γ均为偶数.故取γ=2.这时( α+1)( β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20?324?5223.设凳子有x 只,椅子有y 只,由题意得3x+4y+2(x+y) = 43,即5x+6y = 43.所以 x=5, y=3 是独一的非负整数解.进而房间里有8 个人.8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24.原方程可化为7x-8y+2z = 5.令 7x-8y=t , t +2z=5 .易见 x=7t , y=6t 是 7x-8y=t 的一组整数解.所以它的所有整数解是而 t=1, z=2 是 t+ 2z=5 的一组整数解.它的所有整数解是把 t 的表达式代到 x , y 的表达式中,获取原方程的所有整数解是25. (1)第一个地点有8 种选择方法,第二个地点只有7 种选择方法,,由乘法原理,男、女各有8×7×6×5×4×3×2×1= 40320种不一样摆列.又两列间有一相对地点关系,所以共有2×403202 种不一样状况.(2)逐一考虑结对问题.与男甲结对有8 种可能状况,与男乙结对有7 种不一样状况,,且两列可对调,所以共有2×8×7×6×5×4×3×2 ×1=80640种不一样状况.26.万位是 5 的有 4×3×2×1=24( 个 ).万位是 4 的有4×3×2×1=24( 个 ).万位是3,千位只能是 5 或 4,千位是 5 的有 3×2×1=6 个,千位是 4 的有以下 4 个:34215 , 34251, 34512 , 34521.所以,总合有24+24 + 6+4= 58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92 + 84=176( 米 ).设甲火车速度为x 米 /秒,乙火车速度为y 米 /秒.两车相向而行时的速度为x+y ;两车同向而行时的速度为x- y,依题意有解之得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯解之得x=9( 天 ), x +3=12( 天 ).解之得x=16( 海里 /小时 ).经查验, x=16 海里 /小时为所求之原速.30.设甲乙两车间昨年计划达成税利分别为x 万元和y 万元.依题意得解之得故甲车间超额达成税利乙车间超额达成税利所以甲共达成税利400+60=460( 万元 ),乙共达成税利350+35=385( 万元 ).31.设甲乙两种商品的原单价分别为x 元和 y 元,依题意可得由②有0.9x+1.2y=148.5 ,③由①得x=150-y ,代入③有0. 9(150-y) += 148. 5,解之得y=45( 元 ),因此, x=105( 元).32.设昨年每把牙刷x 元,依题意得2×+2(x+1)(1+30 % )=[2x + 3(x+1)]-0.4 ,即 2×+ 2×1.3+2 ×1.3x = 5x +,即 2.4x=2 ×1.68 ,所以x=1.4( 元 ).若 y 为昨年每支牙膏价钱,则y=1.4 +1=2.4( 元 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33.本来可获收益4×400=1600 元.设每件减价x 元,则每件仍可赢利(4-x) 元,此中0< x< 4.因为减价后,每日可卖出(400+200x) 件,若设每日赢利y 元,则y= (4-x)(400+200x)= 200(4-x)(2+x)=200(8 + 2x-x2)=-200(x2-2x+1) + 200+1600=-200(x-1)2+1800 .所以当 x=1 时, y 最大 =1800( 元 ).即每件减价 1 元时,赢利最大,为1800 元,此时比本来多卖出200 件,因此多赢利 200 元.34.设乙用x 分钟追上甲,则甲到被追上的地址应走了(25+x) 分钟,所以甲乙两人走的行程分别是0. 4(25+x) 千米和0. 6x 千米.因为两人走的行程相等,所以0.4(25+x)=0.6x ,解之得x=50 分钟.于是左侧 =0.4(25 + 50)=30( 千米 ),右侧 = 0.6 ×50=30( 千米 ),即乙用50 分钟走了30 千米才能追上甲.但 A ,B 两镇之间只有28 千米.所以,到 B 镇为止,乙追不上甲.35. (1) 设新合金中,含第一种合金x 克(g) ,第二种合金y 克,第三种合金z 克,则依题意有(2) 当 x=0 时,大 500 克.(3) 新合金中,含锰重量为:x?40%+ y?10% +z?50% =400-0.3x ,y=250 ,此时, y 为最小;当z=0 时, y=500 为最大,即250 ≤ y≤ 500,所以在新合金中第二种合金重量y 的范围⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯是:最小250 克,最而 0≤x≤500,所以新合金中锰的重量范围是:最小250 克,最大400 克.。

数学奥数题初中试卷及答案

数学奥数题初中试卷及答案

一、选择题(每题5分,共20分)1. 下列数中,哪个数是质数?A. 28B. 29C. 30D. 312. 若一个数的平方等于25,则这个数可能是:A. 2B. 3C. 5D. 63. 在直角坐标系中,点A(2,3)关于原点的对称点是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)4. 一个长方形的长是12cm,宽是5cm,它的周长是:A. 25cmB. 30cmC. 35cmD. 40cm5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共20分)6. 若a² = 16,则a的值为______。

7. 若一个等腰三角形的底边长为8cm,腰长为10cm,则其高为______cm。

8. 若直角三角形的两个锐角分别为30°和60°,则其斜边与直角边的比值为______。

9. 一个数的十分位上是7,百分位上是2,这个数写作______。

10. 若一个数的千分位上是4,百分位上是8,这个数写作______。

三、解答题(每题10分,共30分)11. (10分)已知一元二次方程x² - 5x + 6 = 0,求方程的两个根。

12. (10分)一个梯形的上底长为10cm,下底长为20cm,高为15cm,求梯形的面积。

13. (10分)在直角坐标系中,点P的坐标为(4, -3),点Q在x轴上,且PQ=5,求点Q的坐标。

四、附加题(20分)14. (10分)已知正方形的边长为a,求正方形对角线的长度。

15. (10分)一个圆锥的底面半径为r,高为h,求圆锥的体积。

答案:一、选择题1. B2. C3. C4. B5. C二、填空题6. ±47. 108. 2:19. 7.210. 0.48三、解答题11. x₁ = 2,x₂ = 312. 梯形面积 = (上底 + 下底) × 高÷ 2 = (10 + 20) × 15 ÷ 2 = 150cm²13. 点Q的坐标为(4, 2)或(4, -8)四、附加题14. 正方形对角线长度 = 边长× √2 = a√215. 圆锥体积= 1/3 × π × r² × h。

简单初一奥数题(10篇)

简单初一奥数题(10篇)1.简单初一奥数题篇一1、兄妹二人同时从家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离学校180米处和妹妹相遇。

他们家离学校有多远?2、甲、乙两人骑自行车分别从A,B两地同时相向而行。

第一次两车在距B地7千米处相遇。

相遇后,两车继续向前行驶,当两车分别到达B,A两地后立即返回,返回时在距A地4千米处相遇。

A,B两地相距多少千米?3、龟兔赛跑,同时同地出发,全程20000米,乌龟每分钟爬行80米,兔子每分钟跑800米,兔子跑了一会儿就在途中睡觉,醒来后立刻以原速向前跑。

(1)若兔子不想输给乌龟,则它在途中多只能睡多少分钟?(2)如果兔子在途中要睡1.5小时(乌龟和兔子的速度保持不变),且兔子不输给乌龟,则路程至少为多少米?4、甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲、丙两队同时到达B地。

那么丙队追上乙队的时间是什么时候?5、王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。

相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回。

刘洋追上王明后两人多长时间再次相遇?2.简单初一奥数题篇二1.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?2.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?3.快车长80米,慢车长70米,如果同向而行,快车车头接住慢车车尾后,又经过15秒才穿过;如果相向而行,两个车头相接后,又经过6秒可以相离,问两车每秒各行多少米?4.某列车通过360米长的第一个隧道用了24秒,接着通过216米长的隧道用了16秒,(1)求列车的长度和速度。

(完整版)初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

完整版)初一奥数题集(带答案)

完整版)初一奥数题集(带答案) 奥数1、求(-1)^2002的值。

答案:12、如果a是有理数,那么a+2000的值不能是多少?答案:03、计算2007-[2006-{2007-(2006-2007)}]的值。

答案:20094、计算(-1)+(-1)-(-1)×(-1)÷(-1)的结果。

答案:-15、计算(-1)^2006+(-1)^2007÷-1^2008的结果。

答案:06、计算-2÷(-2)^2+(-2)的结果。

答案:07、计算3.825×-1.825+0.25×3.825+3.825×0.的结果。

答案:-2.58、计算2002-2001+2000-1999+…+2-1的值。

答案:10019、计算-1÷2.5×(-0.75)^(-1)÷(-1)×(-1)的结果。

答案:0.610、计算-5×+6×的结果。

答案:11、计算2-2+2-3+2-4+…+2-9+2^10的值。

答案:102212、计算(1/3)+(2/4)+(3/6)+…+(n/n+1)的值。

答案:n/(n+1)13、计算1×2×3+2×4×6+7×14×21/2的结果。

答案:10514、求x+1+x-2的最小值及取最小值时x的取值范围。

答案:最小值为-1,x的取值范围为[2,∞)。

已知实数$a,b,c$满足$-1c>a$,求$c-1+a-c-a-b$的值。

解题思路:将$c-1+a-c-a-b$化简,得到$a-2c-b-1$,然后根据题目中的不等式关系,将$a,b,c$表示成$c$的形式,代入化简后的式子中,即可得到答案。

具体步骤如下:由题意得:$c-1c>a$,即$b-a>a-c$,$b-c>c-a$。

将$c-1+a-c-a-b$化简,得到$a-2c-b-1$。

七年级数学奥数题八套(附答案)

七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是().(A)-|-3|3(B)-(-3)3(C)(-3)3(D)-332.“a的2倍与b的一半之和的平方,减去a、b两数平方和的4倍”用代数式表示应为()(A)2a+(1b2)-4(a+b)2(B)(2a+1b)2-a+4b222(c)(2a+1b)2-4(a2+b2)(D)(2a+1b)2-4(a2+b2)2223.若a是负数,则a+|-a|(),(A)是负数(B)是正数(C)是零(D)可能是正数,也可能是负数4.如果n是正整数,那么表示“任意负奇数”的代数式是().(A)2n+l(B)2n-l(C)-2n+l(D)-2n-l5.已知数轴上的三点A、B、C分别表示有理数a、1、-l,那么|a+1|表示().(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是().(A)A点(B)B点(C)C点(D)D点7.已知a+b=0,a≠b,则化简b(a+1)+a(b+1)得().a b(A)2a(B)2b(C)+2(D)-28.已知m<0,-l<n<0,则m,mn,mn2由小到大排列的顺序是().(A)m,mn,mn2(B)mn,mn2,m(C)mn2,mn,m(D)m,mn2,mn二、填空题(每小题?分,共84分)9.计算:1a-(1a-4b-6c)+3(-2c+2b)=3210.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是梨梨梨型苹果苹果梨梨3028荔枝香蕉苹果梨20香蕉19香蕉荔枝苹果202530?14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是.15.在数轴上,点A、B分别表示-1和1,则线段AB的中点所表示的数35是.16.已知2a x b n-1与-3a2b2m(m是正整数)是同类项,那么(2m-n)x=17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2088,则王恒出生在年月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入 1 000 元,2000 年 12 月 3 日支取时本息和是 元,国家利息税税率是 20%,交纳利息税后还有元.19.有一列数 a ,a ,a ,a ,…,a ,其中1 234na =6×2+l;a =6×3+2;a =6×4+3;a =6×5+4;1 234则第 n 个数 a =;当 a =2001 时,n =.n n20.已知三角形的三个内角的和是 180°,如果一个三角形的三个内角的度数都 是小于 120 的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一 a6+1 06,10.一 43.6,11.男生比女生多的人数,1 2.90,13.1 6,14.0.1 2 5,15.-115,16.1,17.1988;1.18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9 或 2,7 1,1 07(每填错一组另扣 2 分).七年级奥数试题(二)一、选择题1.已知 x=2 是关于 x 的方程 3x-2m=4 的根,则 m 的值是()(A)5(B)-5(C)1 (D)-12.已知 a+2=b-2= c =2001,且 a+b+c=2001k ,那么 k 的值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x 的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u =3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠D OB的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BE F.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且B D∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价1 0%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?甲:105 乙:4532.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?牙刷:1.4 牙膏:2.433.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;0.9+ 0.25x(2)求新合金中含第二种合金的重量范围;最大:1.035 最小:0.905(3)求新合金中含锰的重量范围.0.01~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖A D,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p =6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。

相关文档
最新文档