阻变随机存储器(RRAM)综述(自己整理)
rram模拟计算综述

rram模拟计算综述
RRAM(Resistive Random Access Memory)是一种新型的非挥
发性存储器技术,它利用电阻变化来存储数据。
RRAM的工作原理是
基于电阻随着施加的电压或电流而变化的特性。
RRAM的优点包括高
密度、低功耗、快速写入和擦除速度等,因此备受关注。
首先,让我们从技术角度来看RRAM模拟计算。
RRAM的模拟计
算涉及模拟电阻的变化以及电压和电流对存储单元状态的影响。
这
涉及到电阻的非线性特性、电压和电流的响应以及存储单元之间的
相互影响等方面。
通过模拟计算,可以更好地理解RRAM的工作原理,优化存储单元的设计以及改进存储系统的性能。
其次,从应用角度来看,RRAM模拟计算对存储器技术的发展具
有重要意义。
通过模拟计算,可以预测RRAM在不同工作条件下的性
能表现,帮助优化存储器的设计和制造工艺。
此外,模拟计算还可
以为RRAM在人工智能、物联网、大数据等领域的应用提供支持,促
进其在实际应用中的发展。
另外,从研究角度来看,RRAM模拟计算也为科学家和工程师提
供了研究工具。
通过模拟计算,可以深入研究RRAM的内部机制、电
阻变化规律以及存储单元之间的相互作用,为RRAM技术的进一步发展提供理论支持和实验指导。
总的来说,RRAM模拟计算在技术、应用和研究等方面都具有重要意义。
通过模拟计算,我们可以更好地理解和优化RRAM技术,推动其在存储器领域的应用和发展。
希望我的回答能够帮助你更全面地了解RRAM模拟计算的综述。
如果你有任何其他问题,欢迎继续提问。
阻变存储器(RRAM)入门介绍

2.4.7铁电隧穿效应……………………………………………………28
2.5 RRAM与忆阻器……………………………………………………………30
3 RRAM研究现状与前景展望………………………………………………………
33
参考文文献……………………………………………………………………………36
4
2.2 RRAM器件参数………………………………………………………………
6
2.3 RRAM的阻变行行为分类………………………………………………………
7
2.4 阻变机制分类………………………………………………………………9
2.4.1电化学金金属化记忆效应…………………………………………11
目目 录
!
引言言……………………………………………………………………………………1
1
R R A M 技术回
顾………………………………………………………………………1
2
R R A M 工工 作 机 制 及 原 理 探
究…………………………………………………………4
2.1 RRAM基本结构………………………………………………………………
!2
可观的应用用前景[13],因而而引发了对基于阻变原理的RRAM器件的广广 泛研究。 如图2所示示,近十十年来,由于RRAM技术的巨大大潜力力,业界对非非易失 性RRAM的研究工工作呈逐年递增趋势[14]。日日益趋于深入入而而繁多的研 究报告,一一方方面面体现着RRAM日日益引起人人们的重视,而而另一一方方面面,则 体现着其机理至至今仍存在的不确定性,仍需要大大量的研究讨论。尽 管自自从对阻变现象的初次报道以来,阻变器件结构一一直沿用用着简单 的金金属-介质层-金金属(MIM)结构,且对于所有材料的介质层,其电 流-电压特性所表现的阻变现象几几乎一一致,但是对于不同的介质层材 料,其阻变现象的解释却各有分歧。总体而而言言,基于导电细丝和基 于界面面态的两种阻
阻变存储器概述

阻变存储器概述阻变存储器(Resistive Random Access Memory, RRAM)是一种基于非电荷存储机制的新型存储技术。
RRAM的上下电极之间是能够发生电阻转变的阻变层材料。
在外加偏压的作用下,器件的电阻会在高低阻态之间发生转换从而实现“0”和“1”的存储。
在二进制存储中,一般将低阻态代表“1”,高阻态代表“0”。
器件从高阻变化为低阻的过程称为Set,从低阻变为高阻的过程称为Reset。
Set过程中,一般需要限制通过器件的最大电流,以避免器件完全损坏。
虽然阻变存储器的研究自2000年后才兴起,但薄膜的阻变现象早在1967年就由英国Standard Telecommunication Laboratories的J. G. Simmons等人发现[1]。
1971年,美国加州大学伯克利分校的华裔教授Leon Chua就在理论上预言了除了电阻、电容、电感之外的第四种基本器件——忆阻器(Memristor)的存在[2]。
在2008年的Nature杂志上,惠普公司报道已成功制备出忆阻器原型器件并提出了相应的物理模型。
他们模拟了(a)有动态负微分现象的电阻器件、(b)无动态负微分现象的电阻器件、(c)存在非线性离子运动的电阻器件三种不同器件的工作机制:(a)中当所加正电压到达最大值时,器件还未完全发生电阻转变,在正电压逐渐减小的过程中器件继续发生电阻转变(电阻减小),因此观察到了明显的负微分电阻现象;在(b)中所加正向电压到达最大值之前,器件已经完全发生电阻转变,之后在未加负偏压之前器件电阻一直保持不变,因此没有负微分电阻现象;在(c)器件中,离子运动是非线性的,其到达上下电极两种边界条件是突变的,因此其一般只有两种状态(OFF和ON态)。
阻变存储器RRAM可以归为忆阻器(c)类器件中的一员。
2.1 阻变存储器的材料体系2.1.1 固态电解质材料固态电解质体系中包含两个要素:一是固态电解质层,二是可在固态电解质层中发生氧化还原反应的金属。
rram原理

RRAM基本原理RRAM(Resistive Random-Access Memory)是一种新型的非挥发性存储器技术,它具有高密度、低功耗和快速读写等优势,被视为下一代存储器的候选技术之一。
RRAM的工作原理基于一种称为电阻变化的效应,通过控制材料中的电阻状态来实现数据的存储和读取。
RRAM的结构RRAM的基本结构由两个电极和介质层组成,介质层中包含了具有电阻变化特性的材料。
其中,一个电极称为顶电极(top electrode),另一个电极称为底电极(bottom electrode)。
介质层通常是一种氧化物,如氧化铌(Nb2O5),氧化锆(ZrO2)或氧化钛(TiO2)等。
RRAM的工作原理RRAM的工作原理可以分为两个步骤:写入(programming)和读取(readout)。
写入(programming)在写入操作中,通过施加一个较高的电压,使得介质层中的电子受到电场的影响而迁移到顶电极,这样就改变了介质层的电阻状态。
具体来说,当施加一个较高的正电压时,电子会从底电极流向顶电极,形成一个导电通道,导致介质层的电阻减小,这种状态被称为“低电阻态”(LRS,Low Resistance State)。
相反,当施加一个较高的负电压时,电子会从顶电极流向底电极,导致导电通道断开,介质层的电阻增加,这种状态被称为“高电阻态”(HRS,High Resistance State)。
读取(readout)在读取操作中,通过施加一个较低的电压,测量介质层的电阻状态,以确定存储的数据。
具体来说,当施加一个较低的电压时,如果介质层处于LRS状态,电流会通过导电通道,导致读取电流较大;如果介质层处于HRS状态,导电通道断开,读取电流较小。
通过测量读取电流的大小,就可以确定介质层的电阻状态,进而读取存储的数据。
RRAM的工作机制RRAM的电阻变化效应可以归因于介质层中的离子迁移和电子迁移。
离子迁移在写入操作中,施加的电压会导致介质层中的离子发生迁移。
阻变随机存储器RRAM 专利技术综述

况和阻变存储器技术的发展脉络,为国内阻变存储器技术的研究和专利的申请与布局提供一定的借鉴。
关键词:专利;阻变存储器;技术发展
中图分类号:TP333
文献标识码:A
文章编号:1003-5168(2016)02-0072-05
Summary of RRAM on patented technology
Sun Jian Zhang Weibing Wu qiong
一步的研究。截至今日,阻变存储器的机理仍未统一,且 申请量比较小。但是 2007 年之后,有关 RRAM 专利申请
在大量的材料中都发现了稳定的阻变存储现状,如二元 开始逐年增长,年申请量达到百件以上,到 2011 年增速
过渡金属氧化物、钙钛矿结构化合物、氮化物、非晶硅、以 达到最快。2013 年申请量开始降低,这与 2013 年后有关
收稿日期:2016-1-10 作者简介:孙健(1989-),男,硕士,研究方向:新型非易失性存储器;张伟兵(1988-),女,硕士,研究方向:功率 器件;吴琼(1988-),女,硕士,研究方向:电池器件。
72 HENANKECJoI·pZyHrISiHgIChHtA©N博QU看AN网. All Rights Reserved.
及有机介质材料等。选择何种材料,何种结构作为商业 RRAM 的研究进入瓶颈期密切相关。
通用的阻变存储器,仍是目前研究的重点。
由图 1 和图 2 的对比数据分析可知,RRAM 技术论文
2.2 专利文献分析
数量大于专利数量,且研究性成果早于专利申请量。这
种数据特点也充分的表明了
482
379 324
412
(Patent Examination Cooperation Henan Center Of The Patent Office ,SIPO,Zhengzhou Henan 450002)
阻变式存储器存储机理

内注入大量电子 [ 11 ]. 同时体内一般要有以下两种状
况 [ 13 ] :材料中的陷阱是正电性的 (空态时呈正电性 ,
吸引一个电子时不带电 ) ,或者材料中存在大量的
施主或受主中心.
图 4 施主效应的 P - F效应 [ 8 ] ( Ed 为施主能级的深度 ,Δ< 为 势垒降 )
图 3 A l/A lq3 /A l/A lq3 /A l0 为真空介电常数 , K为相对
介电常数. 如果不考虑温度的影响 ,上式可定性看作
如下关系 :
ln ( I /V ) ~ V1 /2.
(2)
P - F效应是一种体效应 ,产生这种效应的前提
就是 :在界面处形成非阻挡接触 ,或者即使界面处是
阻挡接触 ,但是势垒很薄 ,可以通过隧穿的方式向体
应 ( electrode2lim ited)将阻变机理分成两大类 [8 ] ,其 穿的方式穿过局域态到达正电极 ,此时 SiO 薄膜处
中体效应是指发生在体内的电阻转变现象 ,相应的 于低阻态. 而在能带弯曲的 Ⅰ区 ,由于陷阱能级的差
机理包含 S - V ( Simmons - Verderber) 理论 , P - F 异 ,导致了隧穿难度的加大 ,因此有少量电子驻留在
阻变式存储器的读写机制是 : 采用简单的结
构 ,如 1D 1R (一只二极管和一个阻变器 )或 1 T1R (一只晶体管和一个阻变器 ) ,如图 1 所示 ,利用高
2. 1 体效应 ( bulk2lim ited) 2. 1. 1 S - V 理论
电压改变材料的阻值的大小 ,即擦 /写要存储的信 息 ,然后用一个适当的小电压读取存储的信息.
2. 1. 2 P - F效应
P - F效应或者称为场助热电离效应 ( field2as2
阻变存储器入门介绍

阻变存储器入门介绍RRAM是一种基于电阻变化的存储技术,通过调整电阻值来存储和读取数据。
它使用了一种称为"电阻随机烧结"的机制,利用了材料中的物理和化学效应来实现电阻值的变化。
RRAM通常由两个电极之间夹状的电阻随机烧结材料组成,其中一种是金属氧化物或硫化物。
当一个电压脉冲施加到电阻材料上时,其中产生的离子迁移会改变材料内部的电阻。
根据电压脉冲的极性和大小,电阻材料的电阻值可以被调整为不同的状态。
RRAM具有许多优点,使其成为下一代存储器技术的热门选择之一、首先,RRAM具有极低的功耗。
由于其存储过程是通过电阻调整来实现的,相比于传统存储器技术,RRAM的功耗要低得多。
其次,RRAM具有快速的存取速度。
由于RRAM的存取时间仅受限于电阻状态的调整时间,因此RRAM可以在纳秒级别的时间内进行存取操作。
此外,RRAM还具有高密度存储的能力。
由于其存储单元的尺寸很小,可以实现高集成度并具有更大的存储容量。
除了这些优点,RRAM还具有其他一些特殊的特性。
首先,RRAM是一种非易失性存储器技术。
即使在断电的情况下,存储的数据也能长时间保持。
这使得RRAM非常适合用于需要长期保存数据的应用领域。
其次,RRAM对环境的依赖性较低。
与闪存相比,RRAM在高温和辐射环境下具有更好的稳定性和抗干扰能力。
因此,RRAM适用于一些极端环境下的应用。
尽管RRAM具有许多优点,但它还存在一些挑战和限制。
首先,RRAM的可靠性和耐久性仍然需要改进。
存储材料的电阻变化可能会导致存储单元的退化,影响其可靠性和寿命。
此外,RRAM的制造成本较高。
由于RRAM技术还处于早期阶段,生产工艺和设备的成本仍然很高。
这导致RRAM在商业上的应用仍然受到限制。
尽管存在一些挑战,但RRAM作为一种新型的存储器技术仍具有巨大的发展潜力。
随着技术的不断进步和商业化的推进,RRAM有望在未来取代传统的存储器技术,为人们提供更快速、低功耗和高密度的数据存储解决方案。
阻变随机存储器综述

阻变随机存储器综述
一、概述
RRAM技术指的是利用高分子形成的电阻结构,利用热、光、电等能
源在电阻中产生和擦除电荷,以控制电阻的变化而记忆信息的技术。
通常,记忆由由阻变改变的电阻状态进行,这具有很多优势,如比闪存更快的读
写性能、无紧急要求是写入信息的高可靠性,可大大改善存储芯片的能效
和性能。
二、结构性质
RRAM存储元件的结构由两个部分组成:电极和被隔离的低电阻变化层。
当电子流穿过电极和变化层时,阻值会在一定的电场作用下发生变化。
几乎所有的RRAM设计都是使用可变阻性材料的阻变式结构,即可变
阻变化层由可改变阻值的材料组成。
具体来说,可变阻材料能用电场或温
度改变阻值。
其中,可改变的电阻值的变化可以用作记忆数据,也就是说,在变化层形成一定的阻值时,用于记忆的信息就被存储起来。
RRAM设计一般有三种结构:薄膜通道结构、沉积物结构和薄膜沉积
物结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录引言 (1)1 RRAM技术回顾 (1)2 RRAM工作机制及原理探究 (4)2.1 RRAM基本结构 (4)2.2 RRAM器件参数 (6)2.3 RRAM的阻变行为分类 (7)2.4 阻变机制分类 (9)2.4.1电化学金属化记忆效应 (11)2.4.2价态变化记忆效应 (15)2.4.3热化学记忆效应 (19)2.4.4静电/电子记忆效应 (23)2.4.5相变存储记忆效应 (24)2.4.6磁阻记忆效应 (26)2.4.7铁电隧穿效应 (28)2.5 RRAM与忆阻器 (30)3 RRAM研究现状与前景展望 (33)参考文献 (36)阻变随机存储器(RRAM)引言:阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。
近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。
硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。
但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。
作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。
然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。
在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。
本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。
1 RRAM技术回顾虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。
1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻变现象[6]。
如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通过将阻变现象与空间电荷限制电流理论、介质层击穿理论、氧空洞迁移理论等进行结合,尝试解释了金属氧化物介质层阻变现象的机理。
虽然在这篇文献报道中,最大的开关电流比只有30:1,但本次报道开创了对阻变机理研究的先河,为之后的RRAM技术研发奠定了基础。
图1. T. W. Hickmott报道的基于Al/Al2O3/Au结构的电流-电压曲线,其中氧化层的厚度为300Å,阻变发生在5V左右,开关电流比约10:1[6] Hickmott对阻变现象的首次报道立刻引发了广泛的兴趣,之后在十九世纪60年代到80年代涌现了大量的研究工作,对阻变的机理展开了广泛的研究。
除了最广泛报道的金属氧化物,基于金属硫化物[7]、无定形硅[8]、导电聚合物[9]、异质结构[10]等新材料作为介质层的结构也表现出了阻变性质。
这些研究工作也很快被总结归纳[11、12]。
早期的研究工作主要是对于阻变的本质和机理进行探究,以及对阻变机理应用于RRAM技术的展望。
但此时半导体产业对新型NVM器件的研究尚未引起广泛重视,并且在对阻变现象的解释过程中遇到了很多困难,没有办法达成广泛的共识,故而在80年代末期,对阻变的研究一度趋于平淡。
90年代末期,摩尔定律的发展规律开始受到物理瓶颈的限制,传统硅器件的微缩化日益趋近于极限,新结构与新材料成为研究者日益关注的热点。
与此同时,研究者开始发现阻变器件极为优异的微缩化潜力及其作为NVM器件具有可观的应用前景[13],因而引发了对基于阻变原理的RRAM器件的广泛研究。
如图2所示,近十年来,由于RRAM技术的巨大潜力,业界对非易失性RRAM 的研究工作呈逐年递增趋势[14]。
日益趋于深入而繁多的研究报告,一方面体现着RRAM日益引起人们的重视,而另一方面,则体现着其机理至今仍存在的不确定性,仍需要大量的研究讨论。
尽管自从对阻变现象的初次报道以来,阻变器件结构一直沿用着简单的金属-介质层-金属(MIM)结构,且对于所有材料的介质层,其电流-电压特性所表现的阻变现象几乎一致,但是对于不同的介质层材料,其阻变现象的解释却各有分歧。
总体而言,基于导电细丝和基于界面态的两种阻图2. 由Web of Science统计的每年关于阻变(resistive switching)词条发表的文章数[14]。
变解释理论已被大多数研究者接受,尤以导电细丝理论最被广泛接纳。
由于基于细丝导电的器件将不依赖于器件的面积,于是材料的多样性配以细丝导电理论,愈加拓宽了RRAM技术的应用前景。
截至今日,研究较为成熟的RRAM介质层材料主要包括:二元过渡金属氧化物(TMO),如NiO[15,16]、TiO2[17]、ZnO[18];固态电解质,如Ag2S[19]、GeSe[20];钙钛矿结构化合物[21,22];氮化物[23];非晶硅[24];以及有机介质材料[25]。
RRAM的研究应用还有广阔的空间值得人们去研究探寻,还有许多困难与挑战亟待人们去积极面对。
近几年,国内外研究者陆续开始对RRAM研究的现状进行综述总结[26-29],为进一步的探究工作打下了基础。
由于RRAM研究仍处于共识与争论并存、理论尚未统一的研究阶段,本文旨在总结目前部分较为成熟的工作以及较为公认的理论,并且对RRAM的应用前景作出合理的评价。
2 RRAM工作机制及原理探究2.1 RRAM基本结构存储器的排布一般是以矩形阵列形式的,矩阵的行和列分别称为字线和位线,而由外围连线控制着字线和位线,从而可以对每个单元进行读和写操作。
对于RRAM而言,其存储器矩阵可以设计为无源矩阵和有源矩阵两种。
无源矩阵单元相对而言设计比较简单,如图3(a)所示,字线与位线在矩阵的每一个节点通过一个阻变元件以及一个非线性元件相连。
非线性元件的作用是使阻变元件得到合适的分压,从而避免阻变元件处于低阻态时,存储单元读写信息的丢失。
非线性元件一般选择二极管或者其他有确定非线性度的元件。
然而,采用无源矩阵会使相邻单元间不可避免地存在干扰。
为了避免不同单元之间信号串扰的影响,RRAM图3. RRAM存储器矩阵的单元电路图。
图(a)为无源电路,图(b)为有源电路。
矩阵也可以采用有源单元设计,如图3(b)所示。
由晶体管来控制阻变元件的读写与擦除信号可以良好隔离相邻单元的干扰,也与CMOS工艺更加兼容。
但这样的单元设计无疑会使存储器电路更加复杂,而晶体管也需要占据额外的器件面积。
RRAM中的阻变元件一般采用简单的类似电容的金属-介质层-金属(MIM)结构,由两层金属电极包夹着一层介质材料构成。
金属电极材料的选择可以是传统的金属单质,如Au、Pt、Cu、Al等,而介质层材料主要包括二元过渡金属氧化物、钙钛矿型化合物等,这在后文将会更加详细地讨论。
由于对RRAM器件的研究主要集中在对电极材料以及介质层材料的研究方面,故而往往采用如图4所示的简单结构,采用传统的硅、氧化硅或者玻璃等衬底,通过依次叠合的底电极、介质层、顶电极完成器件的制备,然后于顶电极与底电极之间加入可编程电压信号来测试阻变器件的性能,这样的简单结构被大多数研究者所采纳。
而简单的制备过程和器件结构也是RRAM被认为具有良好的应用前景的原因之一。
图4. 应用于RRAM器件研究的MIM结构。
通过在顶电极和底电极之间施加电压信号来研究RRAM器件的工作情况。
2.2 RRAM器件参数基于以往对DRAM、SRAM、Flash等存储器器件较为成熟的研究经验,RRAM 器件的参数可以如下归纳总结并加以展望[28]:1.写(Write)操作参数V wr,t wrV wr为写入数据所需电压。
与现代CMOS电路相兼容,RRAM的V wr的大小一般在几百mV至几V之间,这相对于传统需要很高写入电压的Flash器件来说有较大优势。
t wr为写入数据时间所需时间。
传统器件中,DRAM、SRAM和Flash的t wr分别为100ns、10ns和10us数量级。
为了与传统器件相比显示出优势,RRAM 的t wr期望可以达到100ns数量级甚至更小。
2.读(Read)操作参数V rd,I rd,t rdV rd为读取数据所需电压。
为了避免读操作对阻变元件产生影响,RRAM的V rd值需要明显小于V wr。
而由于器件原理限制,V rd亦不能低于V wr的1/10。
I rd为读操作所需电流。
为了使读取信号能够准确快速地被外围电路的小信号放大器所识别,RRAM的I rd不能低于1uA。
t rd为读操作所需时间。
RRAM的t rd需要与t wr 同等数量级甚至更小。
3.开关电阻比值R OFF/R ONR OFF和R ON分别为器件处于关态与开态时的元件阻值。
尽管在MRAM中,大小仅为1.2~1.3的R OFF/R ON亦可以被应用,对RRAM的R OFF/R ON一般要求至少达到10以上,以减小外围放大器的负担,简化放大电路。
4.器件寿命器件寿命指器件能够正常维持工作状态的周期数目。
一般而言,NVM器件的工作寿命希望达到1012周期。
因此,RRAM的器件寿命期望可以达到同等甚至更长久。
5.保持时间t rett ret指存储器件长久保存数据信息的时间。
对RRAM而言,数据一般需要保持10年甚至更久,而这过程中也需要考虑温度以及持续的读操作电压信号的影响。
以上介绍了RRAM的几个主要性能参数。
各个参数之间看似相互独立,但事实上各项之间却有着相互制约的关系,比如V rd与V wr的比值事实上被t ret和t rd所限制[28]。
故而寻求高密度、低功耗的理想RRAM器件,需要从各个性能参数的角度共同考虑,寻求最佳的平衡点。
2.3 RRAM的阻变行为分类RRAM的阻变行为主要体现在其电流-电压曲线上。
根据大量研究经验表明,基于不同材料的RRAM器件,其器件特性是有很多细节上的差别的,不过粗略地按照电流-电压曲线来区分,RRAM的阻变行为可以分为单极型(Unipolar)和双极型(Bipolar)两大类。
这主要是由阻变行为出现时施加的电压极性及大小所区分的。
而具体引起阻变行为的本质原因并没有非常确凿的定论,我们会在随后的章节中对其进行介绍、分析和讨论。
典型的单极型RRAM阻变行为的电流-电压曲线如图5(a)所示,阻变行为并不依赖于施加电压的极性,而表现出单极型阻变行为的RRAM器件也往往是上下电极对称的MIM结构。
一般地,由于单极型循环阻变IV曲线不依赖于极性,故而我们只关注正向扫描周期。