阻变随机存储器(RRAM)综述(自己整理)
阻变存储器(RRAM)入门介绍

2.4.7铁电隧穿效应……………………………………………………28
2.5 RRAM与忆阻器……………………………………………………………30
3 RRAM研究现状与前景展望………………………………………………………
33
参考文文献……………………………………………………………………………36
4
2.2 RRAM器件参数………………………………………………………………
6
2.3 RRAM的阻变行行为分类………………………………………………………
7
2.4 阻变机制分类………………………………………………………………9
2.4.1电化学金金属化记忆效应…………………………………………11
目目 录
!
引言言……………………………………………………………………………………1
1
R R A M 技术回
顾………………………………………………………………………1
2
R R A M 工工 作 机 制 及 原 理 探
究…………………………………………………………4
2.1 RRAM基本结构………………………………………………………………
!2
可观的应用用前景[13],因而而引发了对基于阻变原理的RRAM器件的广广 泛研究。 如图2所示示,近十十年来,由于RRAM技术的巨大大潜力力,业界对非非易失 性RRAM的研究工工作呈逐年递增趋势[14]。日日益趋于深入入而而繁多的研 究报告,一一方方面面体现着RRAM日日益引起人人们的重视,而而另一一方方面面,则 体现着其机理至至今仍存在的不确定性,仍需要大大量的研究讨论。尽 管自自从对阻变现象的初次报道以来,阻变器件结构一一直沿用用着简单 的金金属-介质层-金金属(MIM)结构,且对于所有材料的介质层,其电 流-电压特性所表现的阻变现象几几乎一一致,但是对于不同的介质层材 料,其阻变现象的解释却各有分歧。总体而而言言,基于导电细丝和基 于界面面态的两种阻
阻变存储器概述

阻变存储器概述阻变存储器(Resistive Random Access Memory, RRAM)是一种基于非电荷存储机制的新型存储技术。
RRAM的上下电极之间是能够发生电阻转变的阻变层材料。
在外加偏压的作用下,器件的电阻会在高低阻态之间发生转换从而实现“0”和“1”的存储。
在二进制存储中,一般将低阻态代表“1”,高阻态代表“0”。
器件从高阻变化为低阻的过程称为Set,从低阻变为高阻的过程称为Reset。
Set过程中,一般需要限制通过器件的最大电流,以避免器件完全损坏。
虽然阻变存储器的研究自2000年后才兴起,但薄膜的阻变现象早在1967年就由英国Standard Telecommunication Laboratories的J. G. Simmons等人发现[1]。
1971年,美国加州大学伯克利分校的华裔教授Leon Chua就在理论上预言了除了电阻、电容、电感之外的第四种基本器件——忆阻器(Memristor)的存在[2]。
在2008年的Nature杂志上,惠普公司报道已成功制备出忆阻器原型器件并提出了相应的物理模型。
他们模拟了(a)有动态负微分现象的电阻器件、(b)无动态负微分现象的电阻器件、(c)存在非线性离子运动的电阻器件三种不同器件的工作机制:(a)中当所加正电压到达最大值时,器件还未完全发生电阻转变,在正电压逐渐减小的过程中器件继续发生电阻转变(电阻减小),因此观察到了明显的负微分电阻现象;在(b)中所加正向电压到达最大值之前,器件已经完全发生电阻转变,之后在未加负偏压之前器件电阻一直保持不变,因此没有负微分电阻现象;在(c)器件中,离子运动是非线性的,其到达上下电极两种边界条件是突变的,因此其一般只有两种状态(OFF和ON态)。
阻变存储器RRAM可以归为忆阻器(c)类器件中的一员。
2.1 阻变存储器的材料体系2.1.1 固态电解质材料固态电解质体系中包含两个要素:一是固态电解质层,二是可在固态电解质层中发生氧化还原反应的金属。
阻变随机存储器(RRAM)综述(自己整理)

目录引言 (1)1 RRAM技术回顾 (1)2 RRAM工作机制及原理探究 (4)2.1 RRAM基本结构 (4)2.2 RRAM器件参数 (6)2.3 RRAM的阻变行为分类 (7)2.4 阻变机制分类 (9)2.4.1电化学金属化记忆效应 (11)2.4.2价态变化记忆效应 (15)2.4.3热化学记忆效应 (19)2.4.4静电/电子记忆效应 (23)2.4.5相变存储记忆效应 (24)2.4.6磁阻记忆效应 (26)2.4.7铁电隧穿效应 (28)2.5 RRAM与忆阻器 (30)3 RRAM研究现状与前景展望 (33)参考文献 (36)阻变随机存储器(RRAM)引言:阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。
近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。
硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。
但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。
作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。
然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。
在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。
本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。
1 RRAM技术回顾虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。
1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻变现象[6]。
阻变式存储器存储机理

内注入大量电子 [ 11 ]. 同时体内一般要有以下两种状
况 [ 13 ] :材料中的陷阱是正电性的 (空态时呈正电性 ,
吸引一个电子时不带电 ) ,或者材料中存在大量的
施主或受主中心.
图 4 施主效应的 P - F效应 [ 8 ] ( Ed 为施主能级的深度 ,Δ< 为 势垒降 )
图 3 A l/A lq3 /A l/A lq3 /A l0 为真空介电常数 , K为相对
介电常数. 如果不考虑温度的影响 ,上式可定性看作
如下关系 :
ln ( I /V ) ~ V1 /2.
(2)
P - F效应是一种体效应 ,产生这种效应的前提
就是 :在界面处形成非阻挡接触 ,或者即使界面处是
阻挡接触 ,但是势垒很薄 ,可以通过隧穿的方式向体
应 ( electrode2lim ited)将阻变机理分成两大类 [8 ] ,其 穿的方式穿过局域态到达正电极 ,此时 SiO 薄膜处
中体效应是指发生在体内的电阻转变现象 ,相应的 于低阻态. 而在能带弯曲的 Ⅰ区 ,由于陷阱能级的差
机理包含 S - V ( Simmons - Verderber) 理论 , P - F 异 ,导致了隧穿难度的加大 ,因此有少量电子驻留在
阻变式存储器的读写机制是 : 采用简单的结
构 ,如 1D 1R (一只二极管和一个阻变器 )或 1 T1R (一只晶体管和一个阻变器 ) ,如图 1 所示 ,利用高
2. 1 体效应 ( bulk2lim ited) 2. 1. 1 S - V 理论
电压改变材料的阻值的大小 ,即擦 /写要存储的信 息 ,然后用一个适当的小电压读取存储的信息.
2. 1. 2 P - F效应
P - F效应或者称为场助热电离效应 ( field2as2
阻变存储器(RRAM)器件特性与模型研究

阻变存储器(RRAM)器件特性与模型研究阻变存储器(RRAM)器件特性与模型研究摘要:阻变存储器(Resistive Random-Access Memory,RRAM)是一种新型的非易失性存储器,具有较高的存储密度、快速的读写速度、低功耗等优势。
本文通过分析RRAM器件的特性和模型,探讨了其工作原理和性能参数对存储器性能的影响,并对其在未来存储器应用中的发展前景进行了展望。
1. 引言随着信息技术的发展,存储器的需求不断增加。
传统的存储器技术如闪存存储器在容量和速度上已经无法满足需求。
因此,研究人员开始关注新型的非易失性存储器,其中阻变存储器是一种备受关注的技术。
2. RRAM器件特性2.1 工作原理RRAM器件是基于电阻变化现象的存储器,通过在金属-绝缘体-金属(MIM)结构中施加电场来调整绝缘体的阻值。
当电场施加在绝缘体上时,它会发生极化现象,导致电荷在绝缘体内部的运动,从而改变了器件的电阻值。
通过调整施加的电场和极化方向,可以实现RRAM器件的写入和读出操作。
2.2 特性RRAM器件具有以下几个特性:(1) 高存储密度:由于RRAM器件的工作原理,可以在同一单元面积内存储大量的信息,因此具有很高的存储密度。
(2) 快速的读写速度:RRAM器件的读写速度较快,可以达到纳秒级别,远远快于传统的存储器技术。
(3) 低功耗:RRAM器件在写入和读出操作时的功耗相对较低,这使得它成为一种节能的存储器技术。
(4) 长寿命:RRAM器件的使用寿命较长,可以进行数百万次的写入和擦除操作。
3. RRAM器件模型为了更好地理解和研究RRAM器件的特性,研究人员提出了多种不同的模型来描述其行为。
其中,非易失性存储器模型(Non-volatile Memory Model,NVM)和Memristor模型是两种常用的模型。
3.1 NVM模型NVM模型是一种经典的模型,它用电阻值的变化来描述RRAM 器件的状态。
根据NVM模型,当施加电场时,RRAM器件的电阻值会发生变化,并保持在新的状态。
阻变随机存储器(RRAM)综述(自己整理)

目录引言 (1)1 RRAM技术回顾 (1)2 RRAM工作机制及原理探究 (4)2.1 RRAM基本结构 (4)2.2 RRAM器件参数 (6)2.3 RRAM的阻变行为分类 (7)2.4 阻变机制分类 (9)2.4.1电化学金属化记忆效应 (11)2.4.2价态变化记忆效应 (15)2.4.3热化学记忆效应 (19)2.4.4静电/电子记忆效应 (23)2.4.5相变存储记忆效应 (24)2.4.6磁阻记忆效应 (26)2.4.7铁电隧穿效应 (28)2.5 RRAM与忆阻器 (30)3 RRAM研究现状与前景展望 (33)参考文献 (36)阻变随机存储器(RRAM)引言:阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。
近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。
硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。
但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。
作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。
然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。
在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。
本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。
1 RRAM技术回顾虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。
1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻变现象[6]。
阻变存储器概述

阻变存储器概述-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN阻变存储器概述阻变存储器(RRAM)是利用脉冲电压对存储单元进行写入和消除,进而导致记忆单元电阻改变,这就是电脉冲诱使阻变效应。
电阻转换现象利用一些薄膜材料在电激励条件下薄膜电阻在不同电阻状态(高阻态(HR S)、低阻态(LRS))之间的相互转换来实现数据存储。
根据电阻转换所需外加电压极性的不同,RRAM器件的电阻转变特性可以分为两种切换模式:单极转换和双极转换。
从HRS到LRS的转换被称为“SET”过程。
相反,从LRS到H RS的转换被称为“RESET”过程。
单极转换是指器件在高低组态之间转变时外加电压极性相同。
如果器件能在任意极性的电压实现高低阻态的转变,它被称作为无极性转换。
双极开关的切换方向取决于所施加的电压的极性。
图(a)RRAM基本结构示意图和RRAM转换特性,(b)单极性转换,(c)双极性转换对于单极转换必须设置限制电流,对于双极转换,不一定需要设置限定电流的大小。
施加在RRAM上的电压可以是脉冲电压或扫描电压,实际应用中利用扫描电压改变记忆单元电阻是不行的。
除了使用直流电压改变阻态,还可以用电脉冲诱导电阻转变(EPIR)效应实现记忆单元阻值转换。
利用改变脉冲电压的极性完成高低阻态的转变,如图所示。
图脉冲诱使电阻转换的可重复现象RRAM器件的阻变机制到目前为止,电阻转换的真正机制还未确定,机制的不明确严重影响阻变存储器的应用步伐[6]。
阻变效应属于材料的体效应还是氧化物与电极间的界面效应是需要解决的重大难点。
目前,对于电阻转换现象的解释,研究人员提出了下面几种模型,主要有:导电细丝模型,界面接触势垒模型,缺陷能级模型。
导电细丝模型导电细丝(CF,conducting filament)机制是一种局域化的效果,仅在介质薄膜的局部发生电阻的转变。
从目前报道来看,固态电解液和大多数金属氧化物RRAM的电阻转变都与局部导电细丝的形成与断裂有关[7]。
二元金属氧化物阻变存储器概述

二元金属氧化物阻变存储器概述半导体器件的尺寸随着摩尔定律的不断缩小是支撑集成电路和信息技术快速发展的原动力。
然而基于电荷存储机制的Flash 存储器作为当前主流的非挥发性存储技术随工艺技术代拓展遇到严重的技术瓶颈,已经无法满足信息技术迅速发展对超高密度存储的要求。
为了延续摩尔定律的前进脚步,许多基于其它存储概念的新型非挥发性存储技术受到科研界和学术界的广泛关注。
其中,基于薄膜材料的可逆电致电阻效应的阻变随机存取存储器(resistive random access memory,RRAM),因其具有简单的器件结构、低压低功耗操作、高速擦写和极佳的尺寸缩小性等优势,并且其材料与当前CMOS 工艺兼容,被认为是下一代非挥发性存储器的最有力竞争者之一。
在阻变存储器(RRAM)中,我们把研究的注意力集中在材料组分简单、容易控制,制造工艺与CMOS兼容的二元金属氧化物上,创新性地研究了掺杂二元金氧化物的电阻转变特性。
主要研究了Au/ZrO2:Au/n+ Si,Au/HfO2:Cu/n+ SiCu/ZrO2:Cu/Pt这三种材料结构的阻变特性,分析了各自电阻转变的可能机制,发展了一套测试器件性能参数的电学测试方法。
实验结果发现在二元金属氧化物中掺杂可以有效的提高器件的成品率,我们认为这是由于人为引入的杂质能够调制与阻变密切相关的缺陷的分布和类型。
这项结果使得掺杂的二元金属氧化物材料具有很大的RRAM的应用潜力。
关键词:非挥发性存储器;电阻转变;阻变随机存储器;二元金属氧化物;多值存储;第一章绪论1.1 引言存储是一切生物的本能,松鼠存储过冬的松果;北极熊为冬天的漫长寒冷存储下厚厚的脂肪以冬眠;而人类的发展从未离开过存储。
从古至今,从原始人类存储食物,到现代人的信息交流,都离不开这个词。
我们存储的载体从山洞变成了冰箱,从毛皮变成了纸张,又从纸张变成了手机,电脑等电子产品。
随着人们的生活水平越来越高,越来越多人都拥有各种电子产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录引言 (1)1 RRAM技术回顾 (1)2 RRAM工作机制及原理探究 (4)2.1 RRAM基本结构 (4)2.2 RRAM器件参数 (6)2.3 RRAM的阻变行为分类 (7)2.4 阻变机制分类 (9)2.4.1电化学金属化记忆效应 (11)2.4.2价态变化记忆效应 (15)2.4.3热化学记忆效应 (19)2.4.4静电/电子记忆效应 (23)2.4.5相变存储记忆效应 (24)2.4.6磁阻记忆效应 (26)2.4.7铁电隧穿效应 (28)2.5 RRAM与忆阻器 (30)3 RRAM研究现状与前景展望 (33)参考文献 (36)阻变随机存储器(RRAM)引言:阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。
近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。
硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。
但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。
作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。
然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。
在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。
本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。
1 RRAM技术回顾虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。
1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻变现象[6]。
如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通过将阻变现象与空间电荷限制电流理论、介质层击穿理论、氧空洞迁移理论等进行结合,尝试解释了金属氧化物介质层阻变现象的机理。
虽然在这篇文献报道中,最大的开关电流比只有30:1,但本次报道开创了对阻变机理研究的先河,为之后的RRAM技术研发奠定了基础。
图1. T. W. Hickmott报道的基于Al/Al2O3/Au结构的电流-电压曲线,其中氧化层的厚度为300Å,阻变发生在5V左右,开关电流比约10:1[6]Hickmott对阻变现象的首次报道立刻引发了广泛的兴趣,之后在十九世纪60年代到80年代涌现了大量的研究工作,对阻变的机理展开了广泛的研究。
除了最广泛报道的金属氧化物,基于金属硫化物[7]、无定形硅[8]、导电聚合物[9]、异质结构[10]等新材料作为介质层的结构也表现出了阻变性质。
这些研究工作也很快被总结归纳[11、12]。
早期的研究工作主要是对于阻变的本质和机理进行探究,以及对阻变机理应用于RRAM技术的展望。
但此时半导体产业对新型NVM器件的研究尚未引起广泛重视,并且在对阻变现象的解释过程中遇到了很多困难,没有办法达成广泛的共识,故而在80年代末期,对阻变的研究一度趋于平淡。
90年代末期,摩尔定律的发展规律开始受到物理瓶颈的限制,传统硅器件的微缩化日益趋近于极限,新结构与新材料成为研究者日益关注的热点。
与此同时,研究者开始发现阻变器件极为优异的微缩化潜力及其作为NVM器件具有可观的应用前景[13],因而引发了对基于阻变原理的RRAM器件的广泛研究。
如图2所示,近十年来,由于RRAM技术的巨大潜力,业界对非易失性RRAM 的研究工作呈逐年递增趋势[14]。
日益趋于深入而繁多的研究报告,一方面体现着RRAM日益引起人们的重视,而另一方面,则体现着其机理至今仍存在的不确定性,仍需要大量的研究讨论。
尽管自从对阻变现象的初次报道以来,阻变器件结构一直沿用着简单的金属-介质层-金属(MIM)结构,且对于所有材料的介质层,其电流-电压特性所表现的阻变现象几乎一致,但是对于不同的介质层材料,其阻变现象的解释却各有分歧。
总体而言,基于导电细丝和基于界面态的两种阻图2. 由Web of Science统计的每年关于阻变(resistive switching)词条发表的文章数[14]。
变解释理论已被大多数研究者接受,尤以导电细丝理论最被广泛接纳。
由于基于细丝导电的器件将不依赖于器件的面积,于是材料的多样性配以细丝导电理论,愈加拓宽了RRAM技术的应用前景。
截至今日,研究较为成熟的RRAM介质层材料主要包括:二元过渡金属氧化物(TMO),如NiO[15,16]、TiO2[17]、ZnO[18];固态电解质,如Ag2S[19]、GeSe[20];钙钛矿结构化合物[21,22];氮化物[23];非晶硅[24];以及有机介质材料[25]。
RRAM的研究应用还有广阔的空间值得人们去研究探寻,还有许多困难与挑战亟待人们去积极面对。
近几年,国内外研究者陆续开始对RRAM研究的现状进行综述总结[26-29],为进一步的探究工作打下了基础。
由于RRAM研究仍处于共识与争论并存、理论尚未统一的研究阶段,本文旨在总结目前部分较为成熟的工作以及较为公认的理论,并且对RRAM的应用前景作出合理的评价。
2 RRAM工作机制及原理探究2.1 RRAM基本结构存储器的排布一般是以矩形阵列形式的,矩阵的行和列分别称为字线和位线,而由外围连线控制着字线和位线,从而可以对每个单元进行读和写操作。
对于RRAM而言,其存储器矩阵可以设计为无源矩阵和有源矩阵两种。
无源矩阵单元相对而言设计比较简单,如图3(a)所示,字线与位线在矩阵的每一个节点通过一个阻变元件以及一个非线性元件相连。
非线性元件的作用是使阻变元件得到合适的分压,从而避免阻变元件处于低阻态时,存储单元读写信息的丢失。
非线性元件一般选择二极管或者其他有确定非线性度的元件。
然而,采用无源矩阵会使相邻单元间不可避免地存在干扰。
为了避免不同单元之间信号串扰的影响,RRAM图3. RRAM存储器矩阵的单元电路图。
图(a)为无源电路,图(b)为有源电路。
矩阵也可以采用有源单元设计,如图3(b)所示。
由晶体管来控制阻变元件的读写与擦除信号可以良好隔离相邻单元的干扰,也与CMOS工艺更加兼容。
但这样的单元设计无疑会使存储器电路更加复杂,而晶体管也需要占据额外的器件面积。
RRAM中的阻变元件一般采用简单的类似电容的金属-介质层-金属(MIM)结构,由两层金属电极包夹着一层介质材料构成。
金属电极材料的选择可以是传统的金属单质,如Au、Pt、Cu、Al等,而介质层材料主要包括二元过渡金属氧化物、钙钛矿型化合物等,这在后文将会更加详细地讨论。
由于对RRAM器件的研究主要集中在对电极材料以及介质层材料的研究方面,故而往往采用如图4所示的简单结构,采用传统的硅、氧化硅或者玻璃等衬底,通过依次叠合的底电极、介质层、顶电极完成器件的制备,然后于顶电极与底电极之间加入可编程电压信号来测试阻变器件的性能,这样的简单结构被大多数研究者所采纳。
而简单的制备过程和器件结构也是RRAM被认为具有良好的应用前景的原因之一。
图4. 应用于RRAM器件研究的MIM结构。
通过在顶电极和底电极之间施加电压信号来研究RRAM器件的工作情况。
2.2 RRAM器件参数基于以往对DRAM、SRAM、Flash等存储器器件较为成熟的研究经验,RRAM 器件的参数可以如下归纳总结并加以展望[28]:1.写(Write)操作参数V wr,t wrV wr为写入数据所需电压。
与现代CMOS电路相兼容,RRAM的V wr的大小一般在几百mV至几V之间,这相对于传统需要很高写入电压的Flash器件来说有较大优势。
t wr为写入数据时间所需时间。
传统器件中,DRAM、SRAM和Flash的t wr分别为100ns、10ns和10us数量级。
为了与传统器件相比显示出优势,RRAM 的t wr期望可以达到100ns数量级甚至更小。
2.读(Read)操作参数V rd,I rd,t rdV rd为读取数据所需电压。
为了避免读操作对阻变元件产生影响,RRAM的V rd值需要明显小于V wr。
而由于器件原理限制,V rd亦不能低于V wr的1/10。
I rd为读操作所需电流。
为了使读取信号能够准确快速地被外围电路的小信号放大器所识别,RRAM的I rd不能低于1uA。
t rd为读操作所需时间。
RRAM的t rd需要与t wr 同等数量级甚至更小。
3.开关电阻比值R OFF/R ONR OFF和R ON分别为器件处于关态与开态时的元件阻值。
尽管在MRAM中,大小仅为1.2~1.3的R OFF/R ON亦可以被应用,对RRAM的R OFF/R ON一般要求至少达到10以上,以减小外围放大器的负担,简化放大电路。
4.器件寿命器件寿命指器件能够正常维持工作状态的周期数目。
一般而言,NVM器件的工作寿命希望达到1012周期。
因此,RRAM的器件寿命期望可以达到同等甚至更长久。
5.保持时间t rett ret指存储器件长久保存数据信息的时间。
对RRAM而言,数据一般需要保持10年甚至更久,而这过程中也需要考虑温度以及持续的读操作电压信号的影响。
以上介绍了RRAM的几个主要性能参数。
各个参数之间看似相互独立,但事实上各项之间却有着相互制约的关系,比如V rd与V wr的比值事实上被t ret和t rd所限制[28]。
故而寻求高密度、低功耗的理想RRAM器件,需要从各个性能参数的角度共同考虑,寻求最佳的平衡点。
2.3 RRAM的阻变行为分类RRAM的阻变行为主要体现在其电流-电压曲线上。
根据大量研究经验表明,基于不同材料的RRAM器件,其器件特性是有很多细节上的差别的,不过粗略地按照电流-电压曲线来区分,RRAM的阻变行为可以分为单极型(Unipolar)和双极型(Bipolar)两大类。
这主要是由阻变行为出现时施加的电压极性及大小所区分的。
而具体引起阻变行为的本质原因并没有非常确凿的定论,我们会在随后的章节中对其进行介绍、分析和讨论。
典型的单极型RRAM阻变行为的电流-电压曲线如图5(a)所示,阻变行为并不依赖于施加电压的极性,而表现出单极型阻变行为的RRAM器件也往往是上下电极对称的MIM结构。
一般地,由于单极型循环阻变IV曲线不依赖于极性,故而我们只关注正向扫描周期。