北师大版必修四第一章《三角函数》word教案
高中数学 第一章 三角函数 1.1 周期现象与周期函数教案 北师大版必修4

1.1 周期现象整体设计教学分析本节是三角函数内容的开篇第一节,主要解决为什么要学习三角函数的问题.因为自然界中存在着大量的周期现象,为了研究周期现象中蕴含的数学规律,我们才来学习三角函数.三角函数是描述客观世界中周期性变化规律的重要数学模型,有着广泛的实践意义和理论价值,是高考的重点考查内容,它是学生在高中阶段学习的又一类重要的基本初等函数.函数周期性是函数的三大基本性质之一,经常在考试和练习中出现.利用周期性可以求函数值、函数的解析式,判断函数的奇偶性、单调性等,对于学生学习函数的性质有着承上启下的作用.怎样研究现实中的周期现象呢?本节给出了一个完整的例子——潮汐现象.其思考分析过程为:观察图片,感受周期现象→构造一个函数→收集相关数据→在坐标纸上画出散点图→观察散点图的特征→判断实例是否周期性变化.根据这个实例,在教学中要体现三个层次,第一个层次是感知,在问题提出前首先观察钱塘江潮的图片,使学生感受周期现象的存在.第二个层次是领悟、思考,在活动中发现水深和时间的函数,并在坐标纸上画出水深和时间的散点图.第三个层次观察散点图,从图中可以看出,每经过相同的时间间隔水深就重复出现相同的数值,因此水深是周期性变化的.在教材处理上让学生多举生活中的实例,数学来源于生活,又指导生活.大千世界有很多的周期现象,让学生通过观察、类比、思考、交流、讨论,感知周期现象的存在.教科书中的三个例题使学生进一步认识到自然界存在着丰富的周期现象,目的是让学生初步探寻领悟周期现象中蕴含的数学方法,感受身边存在的大量周期现象的实例.三维目标通过阅读教材,联想生活中的一些实例,如单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象.通过本节的学习,使学生对周期现象有一个初步的认识,感受到生活中处处有数学,从而激发学生用数学的观点方法来研究这些现象的欲望,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:感受周期现象的存在,会判断是否为周期现象.教学难点:周期现象的深刻理解以及简单的应用.课时安排1课时教学过程导入新课思路 1.让学生各自举出日常生活中存在的周期现象的实例,在生活中处处有数学的氛围感受,从数学的角度来分析研究这些周期现象所蕴含的共同规律,由此自然地展开新课.思路2.(情境导入)取出一个钟表,让学生到讲台实际操作,并请学生观察时针、分针和秒针的关系,经过讨论后得出结论:时针、分针和秒针每经过一周就会重复一次.教师点出,这种现象在数学上被称为周期现象.然后教师引导学生阅读课本,进而展开新课.推进新课新知探究提出问题①什么是周期现象?每人各自举出3个以上周期现象的实例.②周期现象与函数的概念有什么联系?③如何画出“散点图”?④如何理解“散点图”?图1中横坐标和纵坐标分别表示什么?活动:引导学生自主学习本节的相关内容,并思考理解周期现象的数学含义,理解周期现象中两个量的变化与函数中两个量的变化联系,尝试着用函数的视角来分析并解释周期现象.例如:对于函数f(x),自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,这样的函数我们就叫做周期函数.课本中的潮汐现象已经给出了相关数据(实际操作中学生应学会自己采集相关数据),教师引导学生观察表格中的数据,并发现规律,比如重复出现的几个数据.指导学生根据散点图中点的位置排列,进一步理解周期现象的含义以及散点图中横、纵坐标表示的量.当潮汐发生时,水的深度会产生周期性变化,为了研究水深的变化规律,我们可以构造一个函数.例如,确定一个位置,考察该处水深H和时间t的关系,那么H就是t的函数.下表是某港口在某一天水深与时间的对应关系表,通过表中数据,我们来研究H(t)这根据上表提供的数据在坐标纸上可以作出水深H与时间t关系的散点图(如图1).图1教师进一步引导学生举出生活中存在周期现象的例子,并结合实例与学生进一步探究、升华周期现象,丰富学生对周期现象的感知.例如:实例1.让学生观察钱塘江潮的图片(投影图片),并介绍:钱塘江是浙江省的第一大河,它位于浙江省北部,全长605千米,河域面积五万平方千米,占全省面积的百分之四十三,是我国东南沿海的一条著名江流.利用课件,让学生看看潮水,听听潮声,感受一下钱塘江潮的宏伟气势.教师适时引导学生注意波浪是怎样变化的?师生讨论总结得出:波浪每隔一段时间会重复出现,这是一种周期现象.实例2.大海富饶、美丽、,博大、宽广,壮丽的海上日出,美丽的神话传说唤起了人们对海的向往.众所周知,海水受月亮、太阳的引力,在一定的时候发生涨落现象.一般地,早潮叫潮,晚潮叫汐,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天刚刚学到的周期现象.人们根据海水的这一规律,在通常情况下,航船在涨潮时驶进航道,靠近码头,卸货后,在落潮时返回海洋,这是人们充分利用周期规律的典型例子.实例3.我们平时所说的年、月、日,实际上是自然界存在的周期性天文现象.太阳东升西落的周期是一日;月亮由圆到缺,又由缺到圆,这就是一月,即周期为一月;冬去春来,循环往复,这就是一年,即周期为一年.这些周期性现象向人们展示了时间的进程.实例 4.太阳表面的太阳黑子活动也是周期性天文现象.黑子是光球层上的巨大气流漩涡,大多呈近似椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4 000 ℃左右.倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒.太阳表面上黑子出现的情况是不断变化的,这种变化反映了太阳辐射能量的变化.太阳黑子的变化存在复杂的周期现象,平均活动周期为11.2年.实例5.在医学上,心脏收缩和舒张有规律的交替进行,称为心动周期.心房与心室每收缩和舒张一次,即为一个心动周期.正常心动周期的顺序为:首先两心房收缩,一般占0.1秒(以每分钟心跳75次计算);继而心房舒张,持续0.7秒.当心房收缩时,心室处于舒张状态,持续0.5秒;心房进入舒张后不久,心室开始收缩,持续0.3秒,随即又进入舒张状态.在正常情况下,左、右心房和左、右心室收缩和舒张活动几乎是同步进行的.另一方面,无论心房或心室,收缩期均短于舒张期.心动周期的持续时间与心跳频率有关,心率过快,心动周期时间就过短,心房和心室的舒张时间也过少,这样就会影响心脏内血液充盈程度,降低每次心搏的输出量.实例 6.蜕皮(tuipi).昆虫纲和甲壳纲等节肢动物的体表具有坚硬的角质层,虽有保护身体的作用,但限制动物的生长发育.因此,在胚后发育过程中,必须进行一次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮.只有这样,虫体才能得以继续充分生长发育.显然,蜕皮现象是自然界存在的周期性自然现象.但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉;蛇的外层角质层连同眼球外面透明的皮肤,约2个月完整地脱落1次.实例7.自出生之日起,人的情绪、体力、智力等心理、生理状况就呈周期变化.根据心理学家的统计,人体节律分为体力节律、情绪节律和智力节律三种.这些节律的时间周期分别为23天、28天、33天.每个节律周期又分为高潮期、临界日和低潮期三个阶段.以上三个节律周期的半数为临界日,这就是说11.5天、14天、16.5天分别为体力节律、情绪节律和智力节律的临界日.临界日的前半期为高潮期,后半期为低潮期.生日前一天是起始位置(平衡位置),根据自己的出生日期,就能绘制出自己的体力、情绪和智力曲线,并总结出自己在什么时候应当控制情绪,在什么时候应当鼓励自己,在什么时候应当加强锻炼,在什么时候应当保持体力,以便更好地做好工作.这是人们充分利用人体自身的周期规律、顺应自然的又一典例.实例8.化学元素的性质取决于核外电子的分布,而核外电子的分布是周期性地重复着类似的排列,于是,元素的性质也就出现了周期性的变化,根据这些变化科学家制定了元素周期表,以揭示元素周期性变化规律,最著名的有门捷列夫的元素周期表等.物理学科中这种周期性运动变化规律更是大量存在,如单摆的简谐运动、交流电的电压变化规律等.根据以上实例,教师与学生一起归纳提高:在我们生活的周围存在着大量的周期规律,充分认识这些规律,就能更好地造福于人类、造福于社会,而本章三角函数正是刻画周期现象的一类重要数学模型.学习中要通过具体现象细心观察、类比、思考、交流、讨论,感知周期现象的存在,并用学到的数学知识再应用于实践.由此可见,数学来源于生活,又指导生活,学好数学对我们来说是多么的重要.这也就理解了为什么数学家说“数学不仅是人类语言,也是宇宙语言”的道理.讨论结果:①-④略.应用示例1.地球围绕着太阳转(图2),地球到太阳的距离y随时间t的变化是周期性的吗?图2活动:教师引导学生回忆物理学的相关知识,结合函数的概念进行思考分析.解:根据物理学知识,我们知道在任何一个确定的时刻,地球与太阳的距离y是唯一确定的,每经过一年地球围绕着太阳转一周.无论从哪个时刻t算起,经过一年时间,地球又回到原来的位置,所以,地球与太阳的距离是周期变化的.点评:理解周期现象及相关知识.2.图3是钟摆的示意图.摆心A到铅垂线MN的距离记为y,钟摆偏离铅垂线MN的角记为θ.根据物理知识,y与θ都随时间的变化而周期性变化.图33.图4是水车的示意图.水车上A点到水面的距离为y.假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,距离y随时间t的变化规律也具有周期性.图4点评:抓住周期现象与函数的内在联系,从众多变量中找出具有反映周期现象本质的两个量,其因变量的值随着主变量每隔一定的变化时都会重复出现.培养学生善于从众多复杂现象中迅速抓住本质的能力.变式训练走路时我们的手臂自然地随步伐周期性的摆动,那么手臂的摆动满足什么规律呢?解:如图5,以ON代表手臂的垂直位置,当手臂摆动到OP位置时,设θ=∠PON为摆动的幅角,y为P点离开直线ON的水平距离,r为手臂的长度,根据初中平面几何知识可知y=rsinθ.图5知能训练课本习题1—1 1、2.课堂小结教师与学生一起回顾本节课都学到了哪些数学知识与数学方法,怎样从杂乱无章的现象中探寻规律.与学生一起探寻周期性变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着哪些积极作用.数学的伟大使命在于从混沌中发现规律,让我们借助本节的方法体会整章的风貌,让本章的探究体会为我们今后的学习插上翅膀.作业1.课本习题1—1 3.2.从物理、化学、生物、地理、历史等其他学科中举出周期现象的例子.设计感想本课时作为全章第一节开头,有仰望全章、激发探究、投石问路之意,因此在教案设计上应对教法、学法有一定设计,并对全章略做提点,也算抛砖引玉,以解学生之疑.本节通过创设一定的教学情境,让学生感知周期现象,并引导学生从数学的角度来分析探究这种现象,目的是让学生初步探寻领悟周期现象中蕴含的数学方法,感受身边存在的大量的周期现象的实例,以便于进一步学习三角函数的有关知识.本节内容实际上就是引导学生通过大量的类似现象来寻找规律.引导学生经历探索规律的过程这一步对学生来说至关重要,一开始不可要求学生机械地套用课本实例.因为每个问题都有着多种变化因素,每个学生都有着自己独特的体验,有了探索规律的过程,学生在面对新的现象或问题时,才能主动应用相关的策略,找到解决问题的方法.所以在教学时不能因为贪图省事而简单地告诉学生这个是周期现象,让学生放弃了自主探索、合作交流的机会,那才真是捡了芝麻丢了西瓜.习题详解习题1—11.解:由题意知钟摆的周期为T=1.8秒.∵1分钟=1.8×33+0.6秒,又41T=0.45, ∴钟摆在铅垂线的左边.点拨:根据钟摆的周期,可知在第一、四个41T 钟摆在铅垂线的左边,在第二、三个41T 钟摆在铅垂线的右边.2.解:由题意,知钟摆的周期为T,则43T=5,所以T=320. 所以第三次经过M 点需要320-2=314秒. 点拨:根据题意,求出质点的运动周期即可.3.点拨:由摩天轮的转动周期,得8小时内转动24圈,设每人只坐一圈且每次坐满,则最多乘坐24×8×4=768人.备课资料一、周期现象1.植物开花有早有晚,并随光照时间的长短而变化,这是周期现象吗?请解释这一现象. 地球上不同纬度地区,在植物生长季节里每天昼夜长短比例不同,对植物的开花结实具有明显的影响,这叫作光周期现象.根据植物对光周期反应的不同,可分为长日照植物、短日照植物和中间性植物.长日照植物在生长过程中有一段时间每天需要有12小时以上的光照时数才能开花,光照时间越长,开花越早.短日照植物,每天光照时数在12小时以下才能开花,在一定范围内黑暗期越长,开花越早.中间性植物,对光照长短没有严格要求,只要生存条件适宜就可开花结实.在农业生产和园艺植物栽培中,花期的控制以及引种工作中,研究植物的光周期现象具有重要的意义.动物也有明显的光周期现象,在脊椎动物中表现得最典型的就是鸟类,很多鸟类的迁徙都是由日照长短的变化而引起的.由于日照长短的变化是地球上最严格和最稳定的周期变化,所以是生物节律最可靠的信号系统.鸟类在不同年份迁离某地和到达某地的时间都不会相差几日,如此严格的迁徙规律是任何其他因素(如温度的变化,食物的短缺等)都不能解释的.同样,各种鸟类每年开始繁殖的时间也是由日照时间的长度变化决定的.2.流星雨是周期性的现象吗?流星雨是周期性的现象,每年都有,有三大流星雨最为著名.英仙座流星雨,英仙座流星雨每年固定在7月17日到8月24日这段时间出现,它不仅数量多,而且几乎从来没有在夏季星空中缺席过,其地位列全年三大周期性流星雨之首.彗星Swift-Tuttle是英仙座流星雨之母,1992年该彗星通过近日点前后,英仙座流星雨大放异彩,流星数目达到每小时400颗以上.天龙座流星雨,天龙座流星雨在每年的10月6日至10日左右出现,极大日是10月8日,该流星雨是全年三大周期性流星雨之一,最高时流量可以达到每小时120颗,其极大日一般接近新月,月光影响小,为观测者提供了很好的观测条件, Giacobini-Zinner彗星是天龙座流星雨的本源.天琴座流星雨,天琴座流星雨一般出现于每年的4月19日至23日,通常22日是极大日,该流星雨是我国最早记录的流星雨,在古代典籍《春秋》中就有对其在公元前687年大爆发的生动记载.彗星1861I的轨道碎片形成了天琴座流星雨,该流星雨作为全年三大周期性流星雨之一,在天文学中占有着极其重要的地位.二、如何理解周期现象与三角函数的关系我们是生活在周期变化的世界中,大到地球、月亮,小到原子、电子都在周期地运动,时间在年复一年,月复一月,日复一日地变化,所有的生物都会生老病死,等等.研究周期变化规律是我们生活的需要.所谓周期函数就是定量地反映周期变化规律的基本概念,简单地说经过一定数量重复原来的变化,即f(x+k)=f(x)时,函数y=f(x)是一个周期函数.在实际教学中,教师应指导学生收集和整理其他学科、日常生活中的周期变化的实例.如物理、化学、生物、地理等学科中,有很多生动的周期变化的实例.通过这些实例体会周期现象的规律性,对于理解相应学科的内容很有帮助,例如,交流电的变化等等.三角函数本身是最基本的周期函数,三角函数包括正弦函数、余弦函数、正切函数等,它们是描述周期现象的一个重要工具.其中正弦函数和余弦函数更为重要,很多周期现象的规律都可以由它们直接描述.传统的三角学主要研究测量三角形内的各种边角关系,反映“静态的关系”,传统三角学的内容随着时代的发展逐步消弱.在高中课程中,解三角形是属于三角学的内容,三角学与三角函数的定位不同,三角函数是动态的,研究周期变化的,是“分析学”的主要内容.。
高中数学 第一章 三角函数 1.3 弧度制教案 北师大版必修4-北师大版高一必修4数学教案

1.3 弧度制整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小1,记作1°.可以用度为单位进行度量,并且一度的角等于周角的360通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路 1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位又是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.推进新课新知探究提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,为更好地理解角度弧度的关系奠定基础.我们知道,半径不同时,同样的圆心角所对的弧长是不相等的,但通过度量和计算发现,当半径不同时,同样的圆心角所对的弧长与半径之比是常数,这个常数我们称为该角的弧度数.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师引导学生进一步探究,对任意一个0°—360°的角,我们以它的顶点为圆心,画单位圆就能得到它的弧度数.不难看出,不同的角,其弧度数一定不相同,而且角越大,它的弧度数越大.因此,我们可以用角的弧度数来度量角的大小.我们规定长度等于半径长的圆弧所对的圆心角叫作1弧度的角.以弧度为单位来度量角的制度叫作弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半l=1.径r,所对的圆心角∠AOB就是1弧度的角,即r图1讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.②能,用弧度制.提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连接圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)1;第三,无论是以“弧度”还是以的大小,而1°的角是周角的360“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角.1;将角度化为弧②α=r度:360°=2πrad,1°=180πrad≈0.01745rad,将弧度化为角度:2πrad=360°,1rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为αrad=(π180)°,n°=n 180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示? ②:填写下列的表格,并找出某种规律. 的长OB 旋转的方向 ∠AOB 的弧度数 ∠AOB 的度数 πr逆时针方向 2πr逆时针方向 r1-2-π180° 360°活动:教师先点明教科书上为什么设置这个“探究”?其意图是先根据所给图像对一些特殊角填表,然后概括出一般情况.通过学生合作交流,讨论并总结出规律,提问学生的总结情况,让学生板书.教师对做正确的学生给予表扬,对没有总结完全的学生进行必要的提示.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是rl 这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师点拨:角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3 或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ (k∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2kπ (k∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=l 21R. ② 的长OB 旋转的方向 ∠AOB 的弧度数 ∠AOB 的度数 πr逆时针方向 π 180° 2πr逆时针方向 2π 360° r逆时针方向 1 57.3° 2r顺时针方向 -2 -114.6° πr顺时针方向 -π -180° 0未施转 0 0° πr逆时针方向 π 180° 2πr 逆时针方向 2π 360°应用示例思路1例1 下列各命题中,是真命题的是( )A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧所对的圆心角叫作一弧度的角.对照各项,可知D为真命题.答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念.变式训练下列四个命题中,不正确的一个是( )A.半圆所对的圆心角是πradB.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度答案:D例2 把45°化成弧度.解:45°=180π×45rad=4πrad. 例3 把53πrad 化成度. 解:53πrad=53×180°=108°. 例4 将下列用弧度制表示的角化为2kπ+α〔k∈Z ,α∈[0,2π)〕的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-23. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k∈Z },{β|β=2π+kπ,k∈Z }.第一、二、三、四象限角的集合分别为:{β|2kπ<β<2kπ+2π,k∈Z }, {β|2kπ+2π<β<2kπ+π,k∈Z }, {β|2kπ+π<β<2kπ+,k∈Z },{β|2kπ+23π<β<2kπ+2π,k∈Z }. 解:①-415π=-4π+4π,是第一象限角.②332π=10π+32π,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角.④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α〔k∈Z ,α∈[0,2π)〕的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限.变式训练(1)把-1 480°写成2kπ+α(k∈Z ,α∈[0,2π))的形式;(2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解:(1)∵-1 480°=-974π=-10π+916π,0≤916π<2π, ∴-1 480°=2(-5)π+916π. (2)∵β与α终边相同,∴β=2kπ+916π,k∈Z. 又∵β∈[-4π,0),∴β1=-92π,β2=-920π. 思路21.已知0<θ<2π,且θ与7θ终边相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2kπ+θ,k∈Z ,即6θ=2kπ.∴θ=3πk . 又∵0<θ<2π,∴0<3πk <2π. ∵k∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π 点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2kπ+α〔k∈Z ,α∈[0,2π)〕的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例2 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充.函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.解:设扇形的弧长为l,半径为r,圆心角为α,面积为S.由已知,2r+l=a,即l=a-2r. ∴S=21l·r=21 (a-2r)·r=-r 2+2a r=-(r-4a )2+162a .∵r>0,l=a-2r >0,∴0<r <2a . ∴当r=4a 时,max S =162a 此时,l=a-2·4a =2a ,∴α=r1=2. 故当扇形的圆心角为2rad时,扇形的面积取最大值162a 点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角. 变式训练已知一个扇形的周长为98 +4,圆心角为80°,求这个扇形的面积.解:设扇形的半径为r,面积为S,由已知知道,扇形的圆心角为80×180π=94π,∴扇形的弧长为94πr,由已知,94πr+2r=98π+4,∴r=2,∴S=21,94πr 2=98π故扇形的面积为点评:求解扇形问题的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用. 知能训练习题1—3 1、2、3、4、5. 课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=πrad 这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业习题1—3 6、8.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的60001所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以1°=3606000密位≈16.7密位, 1密位=6000360︒=0.06°=3.6′≈216″. 密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”. 二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.3π B.6π C.1 D.π2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( ) A.扇形的面积不变 B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍3.下列表示的为终边相同的角的是( )A.kπ+4π与2kπ+4π(k∈Z ) B.2πk 与kπ+2π(k∈Z )C.kπ-32π与kπ+3π(k∈Z ) D.(2k+1)π与3kπ(k∈Z )4.已知扇形的周长为6cm,面积为2cm 2,求扇形的中心角的弧度数. 5.若α∈(-2π,0),β∈(0,2π),求α+β,α-β的范围,并指出它们各自所在的象限.6.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图3所示).图37.(1)角α,β的终边关于直线y=x 对称,写出α与β的关系式; (2)角α,β的终边关于直线y=-x 对称,写出α与β的关系式. 参考答案:1.A 2.B 3.C4.解:设扇形所在圆的半径为R,扇形的中心角为α,依题意有αR+2R=6,且21αR 2=2, ∴R=1,α=4或R=2,α=1. ∴α=4或1.5.解:-2π<α+β<2π,∴α+β在第一象限或第四象限,或α+β的终边在x 轴的非负半轴上.-π<α-β<0,∴α-β在第三象限或第四象限,或α-β的终边在y 轴的非正半轴上.6.解:(1){θ|2kπ-6π<θ<2kπ+125π,k∈Z };(2){θ|2kπ-43π<θ<2kπ+43π,k∈Z };(3){θ|2kπ+6π<θ<2kπ+2π,k∈Z }∪{θ|2kπ+67π<θ<2kπ+23π,k∈Z }={θ|nπ+6π<θ<π+2π,n∈Z }. 7.解:(1)β=2π-α+2kπ,k∈Z ;(2)β=2π+α+2kπ,k∈Z.三、钟表的分针与时针的重合问题弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π (rad),30π(rad),1800π(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)? 甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过π6h=π360min,分针走1弧度相当于经过π30min,故有π360x=π30(2π+x),得x=112π,∴到分针与时针再一次重合时,分针转过的弧度数是112π+π2+2π=1124π(rad).乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分24π,针的旋转速度是时针的12倍),得α=1124π(rad).∴到分针与时针再一次重合时,分针转过的弧度数是11点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.。
数学北师大版高中必修4《三角函数的简单应用》教案

3.3三角函数的简单应用(两课时)一.教学目标:1.知识与技能(1)能够推导“和差化积”及“积化和差”公式,并对此有所了解. (2)能较熟练地运用公式进行化简、求值、探索和证明一些恒等关系,进一步体会这些三角恒等变形公式的意义和作用,体会如何综合利用这些公式解决问题.(3)揭示知识背景,培养学生的应用意识与建模意识.2.过程与方法让学生自己导出“和差化积”及“积化和差”公式,领会这些三角恒等变形公式的意义和作用,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;同时让学生初步体会如何利用三角函数研究简单的实际问题.通过例题讲解,总结方法.通过做练习,巩固所学知识.3.情感态度价值观通过本节的学习,使同学们对三角恒等变形公式的意义和作用有一个初步的认识;理解并掌握三角函数各个公式的灵活变形,体会公式所蕴涵的和谐美,增强学生灵活运用数学知识解决实际问题的能力.二.教学重、难点重点:三角恒等变形.难点: “和差化积”及“积化和差”公式的推导.三.学法与教学用具学法:(1)自主+探究性学习:让学生自己根据已有的知识导出“和差化积”及“积化和差”公式,领会这些三角恒等变形公式的意义和作用,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想【创设情景】请回忆两角和的正弦公式、两角差的正弦公式、两角和的余弦公式、两角差的余弦公式;问你能否用sin )(βα+与sin )(βα-表示sin α·cos β和cos α·sin β?类似地能否用cos )(βα+与cos )(βα-来表示cos α·cos β和sin α·sin β?【探究新知】[展示投影](在学生已完成的基础上进行评价)积化和差公式的推导sin(α + β) + sin(α - β) = 2sin αcos β ⇒ sin αcos β =21[sin(α + β) + sin(α - β)]sin(α + β) - sin(α - β) = 2cos αsin β ⇒ cos αsin β =21[sin(α + β) - sin(α - β)]cos(α + β) + cos(α - β) = 2cos αcos β ⇒ cos αcos β =21[cos(α + β) + cos(α - β)]cos(α + β) - cos(α - β) = - 2sin αsin β ⇒ sin αsin β = -21[cos(α + β) - cos(α - β)][展示投影]这组公式有何特点?应注意些什么?这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将“积式”化为“和差”,有利于简化计算。
高中数学第一章三角函数1.9三角函数的简单应用学案北师大版必修4

1.9 三角函数简单应用解答三角函数应用题根本步骤解答三角函数应用题根本步骤可分为四步:审题、建模、解模、回归实际问题.1.审题审题是解题根底,它包括阅读理解、翻译、挖掘等,通过阅读,真正理解用文字语言表述实际问题类型、思想内涵、问题实质,初步预测所属数学模型,有些问题中采用即时定义解释某些概念或专业术语,要仔细阅读,准确把握,同时,在阅读过程中,注意挖掘一些隐含条件.2.建模在细心阅读与深入理解题意根底上,引进数学符号,将试题中非数学语言转化为数学语言,然后根据题意,列出数量关系——建立三角函数模型.这时要注意三角函数定义域应符合实际问题要求,这样便将实际问题转化成了纯数学问题.3.解模运用三角函数有关公式进展推理、运算,使问题得到解决.4.回归实际问题应用问题不是单纯数学问题,既要符合数学科学,又要符合实际背景,因此,对于解出结果要代入原问题中进展检验、评判.预习交流交流电电压U (单位:伏)与时间t (单位:秒)关系可用U =2203sin ⎝ ⎛⎭⎪⎪⎫100πt +π6来表示, 求:(1)开场时电压;(2)电压值重复出现一次时间间隔;(3)电压最大值与第一次获得这最大值时间.答案:预习交流:解:(1)当t =0时,U =1103(伏),即开场时电压为1103伏.(2)T =2π100π=150(秒),即电压值重复出现一次时间间隔为0.02秒.(3)电压最大值为2203伏.当100πt +π6=π2,即t =1300秒时第一次获得这个最大值.1.三角函数模型解决实际问题如下图,表示电流I(单位:安)与时间t(单位:秒)关系式I=A sin(ωt +φ)(A>0,ω>0)在一个周期内图像.(1)试根据图像写出I=A sin(ωt+φ)解析式;(2)为了使I=A sin(ωt+φ)中,t在任意一段1100秒时间内能同时取最大值A与最小值-A,那么正整数ω最小值为多少?思路分析:这是一道给出图像来求解析式,进而研究在某区间内能否有最值问题.首先找振幅与周期,从而求出A与ω,再用一个特殊点坐标(注意“五点〞顺序)代入或根据平移情况求出φ. 在大于或等于一个周期区间内可同时有最大值与最小值.如下图,某市拟在长为8 km道路OP一侧修建一条运动赛道,赛道前一局部为曲线段OSM,该曲线段为函数y=A sin ωx(A>0,ω>0),x∈[0,4]图像,且图像最高点为S(3,23);赛道后一局部为折线段MNP.为保证参赛运发动平安,限定∠MNP=120°,求A,ω值与M,P两点间距离.这类问题特点是三角函数解析式构造,要求根据图像或性质首先求出待定A,ω,φ,b值,然后再利用解析式解决有关问题,其中准确确定待定字母值是解题关键.2.建立三角函数模型解决实际问题如下图,摩天轮半径为40 m,O点距地面高度为50 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上P点起始位置在最低点处.(1)试确定在时刻t min时P点距离地面高度;(2)在摩天轮转动一圈内,有多长时间P点距离地面超过70 m思路分析:首先建立平面直角坐标系,然后确定P点距离地面高度y与时刻t函数关系,进而解决第(2)问.受日月引力,海水会发生涨落.这种现象叫作潮汐.在通常情况下,船在涨潮时驶进航道靠近船坞;卸货后落潮时返回海洋.某港口水深度y(米)是时间t(0≤t≤24,单位:时)函数,记作y =f(t),下面是某日水深数据:经长期观察,y=f(t)曲线可以近似地看成函数y=A sin ωt+b图像.(1)试根据以上数据,求出函数y=f(t)近似表达式;(2)一般情况下,船舶航行时,船底离海底距离为5米或5米以上时认为是平安(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面距离)为,如果该船希望在同一天内平安进出港,请问:它至多能在港内停留多长时间(忽略进出港所需时间)解决这类问题首先要建立坐标系,根据题意确定函数解析式,然后再解决相关问题.3.三角函数最值问题如下图,ABCD 是一块边长为100 m 正方形地皮,其中AST 是一半径为90 m 扇形小山,其余局部都是平地,一开发商想在平地上建一个矩形停车场,使矩形一个顶点P 在ST 上,相邻两边CQ ,CR 落在正方形边BC ,CD 上.求矩形停车场PQCR 面积最大值与最小值.(提示:sin 2θ+cos 2θ=1)思路分析:设∠PAB =θ(0°≤θ≤90°),用θ表示出PQ ,PR ,从而面积S =PQ ·PR ,转化为求三角函数最值.如图,动点P 在以AB =4为直径半圆上自A 向B 运动,设AP =x ,△ABP 面积为S ,试把S 表示成x 函数,并求当S 取最大值时x 值.处理以三角形为模型三角函数实际应用问题关键在于如何巧妙地引入角,使实际问题转化为三角函数问题.答案:活动与探究1:解:(1)由图A =300,T =160-⎝ ⎛⎭⎪⎪⎫-1300=150, 所以ω=2πT=100π. 又因为⎝ ⎛⎭⎪⎪⎫1150,0是“五点法〞作图第三个点, 所以1150×100π+φ=π. 所以φ=π3.所以I =300sin ⎝ ⎛⎭⎪⎪⎫100πt +π3. (2)依题意有T ≤1100,即2πω≤1100. 所以ω≥200π,又因为ω∈N +,所以ω最小正整数为629.迁移与应用:解:依题意,有A=4T =3,又T =2πω,∴ω=6π.∴y =6πx .当x =4时,y =23π=3, ∴M(4,3).又P(8,0),∴5=.活动与探究2:解:(1)以中心O 为坐标原点建立如下图坐标系,设t min 时P 距地面高度为y ,依题意得又∵T=3,∴ω=23π. 由于起始位置在最低点处, 那么φ=2π-.∴y =40sin+50.(2)令40sin+50>70,∴sin >12,∴2k π+6π<<2k π+56π(k ∈Z), ∴2k π+23π<23πt <2k π+43π(k ∈Z), ∴3k +1<t <3k +2.令k =0,得1<t <2.因此,共有1min P 点距离地面超过70 m.迁移与应用:解:(1)由数据作出散点图如下,易知函数y =f (t )周期T =12,振幅A=3,b=10,所以y =3sin6t π+10,t ∈[0,24].(2)由题意知,该船进出港时,水深应不小于5+6.5=11.5(米),所以3sin πt 6+10≥11.5. 所以sin πt 6≥12. 解得2k π+π6≤π6t ≤2k π+5π6(k ∈Z ),12k +1≤t ≤12k +5(k ∈Z ).在同一天内,取k =0或1,所以1≤t ≤5或13≤t ≤17.所以该船最早能在凌晨1时进港,下午17时出港,它至多能在港内停留16小时.活动与探究3:解:设∠PAB=θ(0°≤θ≤90°),延长RP 交AB 于点M ,那么AM=90cos θ,MP=90sin θ,PQ=MB=100-90cos θ,PR =MR -MP =100-90sin θ.故矩形PQCR 面积为S =PQ ·PR =(100-90cos θ)(100-90sin θ)=10 000-9 000(sin θ+cos θ)+8 100sin θcos θ.设sin θ+cos θ=t (1≤t ≤2),那么sin 2θ+cos 2θ+2sin θcos θ=t 2,∴sin θcos θ=t 2-12. ∴S =10 000-9 000t +8 100×t 2-12=4 050⎝ ⎛⎭⎪⎪⎫t -1092+950. 故当t =109时,S min =950(m 2); 当t =2时,S max =14 050-9 0002(m 2).迁移与应用:解:由弧长公式得∠AOP =x 2(0<x <2π),∴△ABP 面积是S =2×12OA ×OP sin x 2=2×12×2×2×sin x 2=4sin x 2, 即S =4sin x 2. 当sin x 2=1,即x 2=π2,x =π时,S max =4. 1.如下图为一简谐振动图像,那么以下判断正确是( ).A .该质点振动周期为0.7 sB .该质点振幅为5 cmC .该质点在0.1 s 与0.5 s 时振动速度最大D .该质点在0.3 s 与0.7 s 时加速度为零2.如下图,为一半径为3 m 水轮,水轮圆心O 距离水面2 m ,水轮自点A 开场1 min 旋转4圈,水轮上点P 到水面距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2,那么( ).A .ω=2π15,A =3 B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 3.简谐运动f (x )=2sin ⎝ ⎛⎭⎪⎪⎫π3x +φ⎝ ⎛⎭⎪⎪⎫|φ|<π2图像经过点(0,1),那么该简谐运动最小正周期T 与初相φ分别为( ).A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π34.动点A (x ,y )在圆x 2+y 2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.时间t =0时,点A 坐标是⎝ ⎛⎭⎪⎪⎫12,32,那么当0≤t ≤12时,动点A 纵坐标y 关于t (单位:秒)函数单调递增区间是__________.5.如以下图是某地一天从6时至14时温度变化曲线,近似满足函数y =A sin(ωx +φ)+b .(1)求这段时间最大温差;(2)写出这段曲线函数解析式.答案:1.B2.A 解析:∵T =604=15,∴ω=2πT =2π15. 又y max =5,∴A =3.3.A 解析:T =2πω=2ππ3=6, 将点(0,1)代入方程,有sin φ=12. ∵-π2<φ<π2,∴φ=π6. 4.[0,1]与[7,12] 解析:设点A 纵坐标y 关于t 函数关系式为y =sin ⎝ ⎛⎭⎪⎪⎫t 12×2π+π3=sin ⎝ ⎛⎭⎪⎪⎫πt 6+π3. 令2k π-π2≤π6t +π3≤π2+2k π(k ∈Z ), 故12k -5≤t ≤12k +1.又由0≤t ≤12,故k 取0,1,可知t ∈[0,1]与[7,12].5.解:(1)由题图知,这段时间最大温差是30-10=20(℃).(2)题图中从6时到14时图像是函数y =A sin(ωx +φ)+b 半个周期图像.∴T =2×(14-6)=16,ω=2πT =π8. 又A =30-102=10,b =30+102=20, ∴y =10sin ⎝ ⎛⎭⎪⎪⎫π8x +φ+20. 又当x =6时,π8×6+φ=3π2, ∴φ=3π4. ∴所求函数解析式为y =10sin ⎛⎪⎪⎫π8x +3π4+20,x ∈[6,14].。
数学北师大版高中必修4第一章 三角函数— 第二节角的概念推广 学案

角的概念推广 学案本节课我们学习正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限.本节课重点是学习终边相同的角的表示法.严格区分“终边相同”和“角相等”;“轴线角”“象限角”和“区间角”;“小于90°的角”“第一象限角”“0°到90°的角”和“锐角”的不同意义.讲解范例:例1 在0到360度范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角(1)120(2)640(3)95012'-︒︒-︒例2写出与下列各角终边相同的角的集合S ,并把S 中在︒︒-720~360间的角写出来:︒60⑴ ︒-21⑵ '︒14363⑶。
课堂练习1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗?0°~90°的角是锐角吗?总结有关角的集合表示.锐角:{θ|0°<θ<90°},0°~90°的角:{θ|0°≤θ≤90°};小于90°角:{θ|θ<90°}.2.已知角的顶点与坐标系原点重合,始边落在x 轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?).课后作业:1.下列命题中正确的是( )A.终边在y轴非负半轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β终边相同2.与120°角终边相同的角是( )A.-600°+k·360°,k∈ZB.-120°+k·360°,k∈ZC.120°+(2k+1)·180°,k∈ZD.660°+k·360°,k∈Z3.若角α与β终边相同,则一定有( )A.α+β=180°B.α+β=0°C.α-β=k·360°,k∈ZD.α+β=k·360°,k∈Z4.与1840°终边相同的最小正角为,与-1840°终边相同的最小正角是 .5.今天是星期一,100天后的那一天是星期,100天前的那一天是星期 .6.钟表经过4小时,时针与分针各转了 (填度).7.在直角坐标系中,作出下列各角(1)360° (2)720° (3)1080° (4)1440°8.已知A={锐角},B={0°到90°的角},C={第一象限角},D={小于90°的角}.求:A,B,C,D9.将下列各角表示为α+k·360°(k∈Ζ,0°≤α<360°)的形式,并判断角在第几象限.(1)560°24′(2)-560°24′(3)2903°15′(4)-2903°15′(5)3900°(6)-3900°10.写出终边落在第一象限角的角集合:写出终边落在第二象限角的角集合:写出终边落在第三象限角的角集合:写出终边落在第四象限角的角集合:11.试写出终边落在X轴正半轴的所有角的集合:。
北师大版高中数学必修4教案备课同角三角函数的基本关系

§1同角三角函数的基本关系学习目标核心素养1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sinαcos α=tan α.(重点) 2.会利用这两个公式求三角函数式的值,化简三角函数式或证明三角恒等式.(难点) 1.通过学习同角三角函数基本关系式,提升数学抽象素养.2.通过运用同角三角函数基本关系化简或证明三角恒等式,培养逻辑推理素养.同角三角函数基本关系式(1)关系式①平方关系:sin2α+cos2α=__1__;②商数关系:sinαcos α=tan α.(2)文字叙述同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.(3)变形形式①1=sin2α+cos2α;②sin2α=1-cos2α;cos2α=1-sin2α;③sinα=±_1-cos2α;cosα=±_1-sin2α;④sinα=cos αtan α;⑤(sin α±cos α)2=1±2sin αcos α.思考:sin230°+cos245°等于1吗?sin90°cos 90°有意义吗?[提示] 不等于1,sin 90°cos 90°分母为0,无意义.1.已知sin α=-45,α是第三象限角,则tan α等于( ) A .34 B .-34 C .43 D .-43C [因为sin α=-45,且α是第三象限角.所以cos α=-1-sin 2α=-35. 所以tan α=sin αcos α=43.]2.已知3sin α+cos α=0,则tan α=________. -13 [因为3sin α+cos α=0, 所以cos α=-3sin α,所以tan α=sin αcos α=sin α-3sin α=-13.]3.已知sin θ=m -3m +5,cos θ=4-2mm +5,则m =________. 0或8 [由sin 2θ+cos 2θ=1得,m =0或8.] 4.⎝ ⎛⎭⎪⎫tan x +cos x sin x cos 2x =( ) A .tan x B .sin x C .cos xD .cos x sin xD [原式=⎝ ⎛⎭⎪⎫sin x cos x +cos x sin x cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =cos x sin x .]利用同角基本关系式求值【例1】 已知cos α=-817,求sin α,tan α的值.[解]∵cos α=-817<0,∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos2α=1-⎝⎛⎭⎪⎫-8172=1517,tan α=sin αcos α=1517-817=-158.如果α是第三象限角,同理可得sin α=-1-cos2α=-1517,tanα=158.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.另外也要注意“1”的代换,如“1=sin2α+cos2α”.本题没有指出α是第几象限的角,则必须由cosα的值推断出α所在的象限,再分类求解.1.已知tan α=43且α为第三象限角,求sin α,cos α的值.[解]由tan α=sin αcos α=43,得sin α=43cos α. ①又sin2α+cos2α=1,②由①②得169cos2α+cos2α=1,即cos2α=925,又α是第三象限角,∴cosα=-35,sin α=-45.利用sin α±cos α,sin α,cos α之间的关系求值 【例2】 已知0<α<π,sin α+cos α=15,求tan α的值. [解] 由sin α+cos α=15, ①得sin α·cos α=-1225<0, 又0<α<π,∴sin α>0,cos α<0,则sin α-cos α>0, ∴sin α-cos α= (sin α-cos α)2=1-2sin αcos α=1-2×⎝ ⎛⎭⎪⎫-1225=75,② 由①②解得sin α=45,cos α=-35, ∴tan α=sin αcos α=-43.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α,利用此关系求sin α+cos α或sin α-cos α的值时,要注意判断它们的符号.2.sin αcos α=18,且π4<α<π2,则cos α-sin α的值为( ) A .32 B .-32 C .34D .-34B [∵(cos α-sin α)2=sin 2α-2sin αcos α+cos 2α=1-2×18=34, ∴cos α-sin α=±32. 又π4<α<π2,sin α>cos α,∴cos α-sin α=-3 2.]利用同角三角函数关系化简、证明[探究问题]1.平方关系对任意α∈R均成立,对吗?商数关系呢?[提示]平方关系中对任意α∈R均成立,而商数关系中α≠kπ+π2(k∈Z).2.证明三角恒等式常用哪些技巧?[提示]切弦互化,整体代换,“1”的代换.3.证明三角恒等式应遵循什么样的原则?[提示]由繁到简.【例3】(1)化简tan α·1sin2α-1,其中α是第二象限角;(2)求证:1+2sinαcos αsin2α-cos2α=tanα+1tan α-1.[思路探究](1)先确定sin α,cos α的符号,结合平方关系和商数关系化简.(2)逆用平方关系结合tan α=sin αcos α化简.[解](1)因为α是第二象限角,所以sin α>0,cos α<0.故tan α·1sin2α-1=tanα·1-sin2αsin2α=tanαcos2αsin2α=sinαcos α·⎪⎪⎪⎪⎪⎪cos αsin α=sin αcos α·-cos αsin α=-1.(2)证明:左边=sin2α+cos2α+2sinαcos αsin2α-cos2α=(sinα+cos α)2 sin2α-cos2α=sinα+cos αsin α-cos α=tan α+1tan α-1=右边.所以原式成立.1.将例3(1)变为“cos 36°-1-cos236°1-2sin36°cos 36°”,试对该式进行化简.[解]原式=cos 36°-sin236°sin236°+cos236°-2sin36°cos 36°=cos 36°-sin 36°(cos 36°-sin 36°)2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1.2.将例3(2)变为试证“tan αsin αtan α-sin α=1+cos αsin α”.[证明]左边=sin2αcosαsin αcos α-sin α=sin2αsinα-sin αcos α=1-cos2αsinα(1-cos α)=1+cos αsin α=右边,所以等式成立.1.化简过程中常用的方法有:(1)化切为弦,即把非正弦、余弦函数都化为正弦、余弦函数.从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低函数次数,达到化简的目的.2.证明三角恒等式常用的方法有:(1)从一边开始,证得它等于另一边;(2)证明左右两边都等于同一个式子;(3)变更论证,即通过化除为乘、左右相减等,转化成证明与其等价的等式.1.“同角”有两层含义:一是“角相同”;二是“任意性”,即关系式恒成立,与角的表达形式无关.如:sin23α+cos23α=1等.2.已知角α的一个三角函数值,求α的其他两个三角函数值时,要特别注意角所在的象限,以确定三角函数值的符号.3.计算、化简或证明三角函数式时常用的技巧:(1)“1”的代换.为了解题的需要,有时可以将1用“sin2α+cos2α”代替.(2)切化弦.利用商数关系把切函数化为弦函数.(3)整体代换.将计算式适当变形使条件可以整体代入,或将条件适当变形找出与算式之间的关系.1.判断(正确的打“√”,错误的打“×”)(1)sin2α+cos2β=1. ()(2)对任意角α,sinα2cosα2=tanα2. ()(3)利用平方关系求sin α或cos α时,会得到正负两个值.()(4)若sin α=12,则cos α=32. ()[答案](1)×(2)×(3)×(4)×2.若sin α=45,且α是第二象限角,则tan α的值等于() A.-43B.34C.±34D.±43A[α为第二象限角,sin α=45,cos α=-35,tan α=-43.]3.已知角A 是三角形的一个内角,sin A +cos A =23,则这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰直角三角形B [∵sin A +cos A =23, ∴1+2sin A cos A =49, ∴sin A cos A =-518<0, 又∵A ∈(0,π),sin A >0, ∴cos A <0,A 为钝角.故选B.] 4.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ. [解] 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611,解得tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1.(2)原式=sin 2θ-4sin θcos θ+3cos 2θ =sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15.。
数学必修四第一章三角函数(单元)教学设计
数学必修四第一章三角函数(单元)教学设计本节课的教学目标是让学生能够正确理解任意角的概念和弧度制的度量方式,能够判别角的象限,并能够在弧度制和角度制之间进行转化。
通过本节课的研究,学生将能够在对角的认识和掌握的基础上,对角的概念进行拓展和延伸,为后续三角函数值和三角函数的研究打下基础。
三、教学重点和难点本节课的教学重点是任意角的概念和弧度制的度量方式,以及如何在弧度制和角度制之间进行转化。
教学难点是让学生能够正确判别角的象限,并能够在弧度制和角度制之间进行转化。
四、教学方法和手段本节课的教学方法主要是讲授和演示相结合,通过讲解概念和例题的演示,让学生能够更好地理解任意角和弧度制的概念和应用。
同时,通过课堂互动和讨论,激发学生的研究兴趣和思考能力。
五、教学过程设计本节课的教学过程设计如下:1.引入:通过引入角的概念,让学生回顾和巩固已有的知识,为后续的任意角和弧度制的研究做好铺垫。
2.讲解任意角的概念和性质:通过讲解任意角的定义和分类,让学生能够理解任意角的概念和性质,并能够判别角的象限。
3.讲解弧度制的概念和应用:通过讲解弧度制的度量方式和应用,让学生能够理解弧度制的概念和应用,并能够在弧度制和角度制之间进行转化。
4.例题演示:通过例题的演示,让学生能够更好地掌握任意角和弧度制的应用技巧。
5.课堂互动和讨论:通过课堂互动和讨论,激发学生的思考能力和研究兴趣,让学生能够更好地理解和掌握本节课的知识点。
课时二一、教学内容分析本节课主题是任意角的三角函数,是对初中角和锐角三角函数的拓展和延伸,是整个三角函数部分的基础。
本节课的教学内容较为繁琐,需要学生掌握三角函数的定义和性质,并能够正确求解任意角的三角函数值。
二、教学目标本节课的教学目标是让学生能够用三角函数的定义正确求解任意角的三角函数,能够正确判别三角函数的符号。
三、教学重点和难点本节课的教学重点是让学生能够正确求解任意角的三角函数值,掌握三角函数的定义和性质。
高中数学必修4第一章三角函数完整教案
第一章 三角函数 4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义 教学难点:“旋转”定义角 课标要求:了解任意角的概念 教学过程: 一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。
三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:如图1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。
旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
师:在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300. 师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。
本节课将在已掌握~角的范围基础上,重新给出角的定义,并研究这些角的分类及记法. 2.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。
北师大版必修四第一章《三角函数》word教案
北师大版高中数学必修4第一章《三角函数》全部教案第一课时§1.1 周期现象与周期函数一、教学目标1、知识与技能:(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法:通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观:通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
二、教学重、难点重点: 感受周期现象的存在,会判断是否为周期现象。
难点: 周期函数概念的理解,以及简单的应用。
三、学法与教法学法:数学来源于生活,又指导于生活。
在大千世界有很多的现象,通过具体现象让学生通过观察、类比、思考、交流、讨论,感知周期现象的存在。
并在此基础上学习周期性的定义,再应用于实践。
四、教学过程(一)、创设情境,揭示课题同学们:你们有没有见过大海,观看过潮涨落,相信大家见过的不多,那今天就来看看著名的钱塘江潮。
(课件展示)众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)(二)、探究新知1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。
北师大版高中数学必修四第一章三角函案(1)
1.2.1任意角的三角函数学习目标1. 借助单位圆能够理解任意角的三角函数的定义;2. 根据三角函数的定义能够理解其定义域、三角函数值的符号及诱导公式一。
学习重点难点重点:任意角的正弦、余弦、正切的定义 难点:任意角的三角函数概念的建构过程 知识链接锐角的三角函数如何定义? y如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限,在α的终边上任取一点 P(b a ,),它与原点的距离22b a r +=> 0,过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b ,则=αsin = ;=αcos = ;=αtan = .改变终边上P 点的位置,这三个比值会改变吗?为什么?质疑探究解疑 (预读教材P11-13)探究1:任意角的三角函数的定义将点P 取在使线段OP 的长 r = 1 的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数为:=αsin ;=αcos ;=αtan ;上述锐角α 的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何推广到任意角呢?新知1:在直角坐标系中,我们称以_______为圆心,以________为半径的圆叫做单位圆.如图,设α是一个任意角,它的终边与单位圆交于点P(x, y ),那么:(1) 叫做α的正弦,记做αsin ; (2) 叫做α的余弦,记做αcos ; (3) 叫做α的正切,记做αtan .即=αsin ;=αcos ;=αtan .说明: 试试1:求35π的正弦、余弦和正切值.小结 如何求一个角的三角函数值: .变式练习:你能求出67π的正弦、余弦和正切值吗?试试2:已知角α的终边过点()4,30--P ,求角α的正弦、余弦和正切值小结:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何 求它的三角函数值呢?变式练习:已知角θ的终边过点()5,12-P ,求角θ的正弦、余弦和正切值思考1:对于三角函数,当x 在不同的象限取值时,其正负符号也不相同,如何判断其符号? 请同学们完成P13的探究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版高中数学必修4第一章《三角函数》全部教案合阳县黑池高中王成林第一课时§1.1 周期现象与周期函数一、教学目标1、知识与技能:(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法:通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观:通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
二、教学重、难点重点: 感受周期现象的存在,会判断是否为周期现象。
难点: 周期函数概念的理解,以及简单的应用。
三、学法与教法学法:数学来源于生活,又指导于生活。
在大千世界有很多的现象,通过具体现象让学生通过观察、类比、思考、交流、讨论,感知周期现象的存在。
并在此基础上学习周期性的定义,再应用于实践。
四、教学过程(一)、创设情境,揭示课题同学们:你们有没有见过大海,观看过潮涨落,相信大家见过的不多,那今天就来看看著名的钱塘江潮。
(课件展示)众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)(二)、探究新知1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。
(板书:二、周期函数的概念)3.[展示投影]练习:(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。
求f(x+2T) ,f(x+3T)略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x), f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x) 本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。
(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=2005,求f(11)略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2(三)、巩固深化,发展思维1.请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。
2.例题讲评例1.地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数y=f(t)是不是周期函数?解析:在任何确定的时间,地球与太阳距离y是唯一确定的,每经过一年地球围绕着太阳转一周。
无论从哪个时间t算起,经过一年时间(T=365天),地球又回到原来的位置,所以地球与太阳的距离是周期变化的。
y=f(t+365)=f(t)。
例2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。
根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。
若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是θ的周期函数。
例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。
假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。
【T=5y=f(t+5)=f(t)】3.小组课堂作业:(1) 课本P6的思考与交流(2) (回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?【7k(k∈Z)天后的那一天是星期三;星期二;100天后的那一天是星期二。
】(四)、归纳整理,整体认识:(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?(五)、布置作业:1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.五、教后反思:第二课时§1.2 角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。
2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
二、教学重、难点重点: 理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。
难点: 把终边相同的角用集合和符号语言正确地表示出来。
三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教法: 类比探究交流法。
四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。
但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
这里面到底是怎么回事?这就是我们这节课所要学习的内容。
初中我们已给角下了定义,先请一个同学回忆一下当时是怎么定义的?我们把“有公共端点的两条射线组成的图形叫做角”,这是从静止的观点阐述的。
(二)、探究新知如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)1、正角、负角、零角的概念(打开课件第一版,演示正角、负角、零角的形成过程).我们规定:(板书)按逆时针方向旋转形成的角叫做正角,如图(见课件)。
一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α.旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点.按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°。
钟表的时针和分针在旋转时所形成的角总是负角.为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以记成“α”。
过去我们研究了0°~360°范围的角.如图(见课件)中的角α就是一个0°~360°范围内的角(α=30°).如果我们将角α的终边OB继续按逆时针方向旋转一周、两周……而形成的角是多少度?是不是仍为30°的角?(用多媒体演示这一旋转过程,让学生思考;为终边相同角概念做准备).将终边OB旋转一周、两周……,分别得到390°,750°……的角.如果将OB继续旋转下去,便可得到任意大小的正角。
同样地,如果将OB按顺时针方向旋转,也可得到任意大小的负角(通过课件,动态演示这一无限旋转过程).这就是说,角度并不局限于0°~360°的范围,它可以为任意大小的角(与数轴进行比较).(打开课件第三版).如图(1)中的角为正角,它等于750°;(2)中,正角α=210°,负角β=—150°,γ=-660°.在生活中,我们也经常会遇到不在0°~360°范围的角,如在体操中,有“转体720°”(即“转体2周”),“转体1080°”(即“转体3周”)这样的动作名称;紧固螺丝时,扳手旋转而形成的角.角的概念经过这样的推广以后,就包括正角、负角和零角.2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(打开课件第四版)例如图(1)中的30°、390°、-330°角都是第一象限角,图(2)中的300°、-60°角都是第四象限角;585°角是第三象限角.(板书)如果角的终边在坐标轴上,就认为这个角不属于任一象限.3.终边相同的表示方法.(返回课件第二版,在图(1)1(2)中分别以O为原点,直线0A为x轴建立直角坐标系,重新演示前面的旋转过程)在图(1)中,如果将终边OB按逆时针方向旋转一圈、两圈……,分别得到390°,750°……的角,这些角的终边与30°角的终边相同,只是转过的圈数不同,它们可以用30°角来表示,如390°=30°十360°,750°=30°十2×360°,……在图(2)中,如果将终边OB按顺时针方向旋转一圈、两圈……分别得到-330°,-690°……的角,这些角的终边与30°角终边也相同,也只是转过的圈数不同,它们也都可以用30°的角来表示,如-330°=30°-360°,-690°=30°—2×360°,……由此可以发现,上面旋转所得到的所有的角(记为β),都可以表示成一个0°到360°的角与k(k∈Z)个周角的和,即:β=30°十k·360°(k∈Z).如果我们把β的集合记为S,那么S={β|β=30°十k·360°, k∈Z}.容易看出:所有与30°角终边相同的角,连同30°角(k=0)在内,都是集合S的元素;反过来,集合S的任一元素显然与30°角终边相同。