浙江省杭州市2019年中考数学一轮复习第三章函数及其图象第五节二次函数的图象与性质同步测试含答案

合集下载

二次函数的图象与性质-中考数学第一轮总复习课件(全国通用)

二次函数的图象与性质-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第三单元 函数及其图象专题3.4 二次函数的图象与性质知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05【例1】已知二次函数y=2(x-3)2+1.下列对其图象的说法:①开口向下; ②当x<3时,y随x的增大而减小;③顶点坐标为(3,-1); ④对称轴为直线x=-3;则其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个A解析式开口方向对称轴顶点坐标一般式顶点式交点式(h,k)x=ha>0向上a<0向下无y=a(x-h)2+ky=a(x-x1)(x-x2)y=ax2+bx+c1.抛物线y=(x+3)(x-1)的对称轴是直线_______.2.二次函数y=ax 2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:则该函数图象的对称轴是( ) A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=03.对于二次函数y=ax 2-2ax-3a+3的性质,下列说法中错误的是( ) A.抛物线的对称轴为直线x=1 B.抛物线一定经过两定点(-1,3)和(3,3) C.当a<0时,抛物线与x轴一定有两个不同的交点 D.当a>0时,抛物线与x轴一定有两个不同的交点x=-1x …-3-2-101…y …-3-2-3-6-11…B D4.在同一坐标系中,一次函数y=-mx+n 2与二次函数y=x 2+m的图象可能是( )Dy OxAy Ox B y OxC y OxD 5.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax 2的图象有可能是( )y OxA-11y O xB-11yOx C-11y Ox D-11C6.已知二次函数y=ax 2-2ax-3a(a≠0),关于此函数的图象及性质,下列结论中不一定成立的是( ) A.该图象的顶点坐标为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0); C.若该图象经过点(-2,5),则一定经过点(4,5); D.当x>1时,y随x的增大而增大.7.已知二次函数y=ax 2+bx+c中,y与x的部分对应值如下表:根据表中信息,下列结论错误的是( ) A.其图象开口向下; B.其图象的对称轴为直线x=2 C.方程ax 2+bx+c=0有一个根大于5; D.当x<1时,y随x的增大而增大D知识点一强化训练二次函数图象与性质C x -1014y -7/3131用描点法画出函数的图象知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05yOx1y=ax 2+bx+c【例2】已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则以下结论同时成立的是( ) A. B. C. D.abc>0b 2-4ac<0abc<02a+b>0abc>0a+b+c<0abc<0b 2-4ac>0判断常见式子的符号判断方法a a的符号决定抛物线的开口方向及大小ba,b的符号(左同右异)决定抛物线对称轴的位置c c决定抛物线与y轴交点的位置b 2-4ac b 2-4ac决定抛物线与x轴的交点个数a+b+c 当x=1时,y=a+b+c 4a+2b+c 当x=2时,y=4a+2b+cC1.已知二次函数y=ax 2+bx+c的图象如图,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b 2-4ac<0;④4a+2b+c>0其中正确的是( ) A.①③ B.只有② C.②④ D.③④2.如图是抛物线y=ax 2+bx+c(a≠0)的一部分,下列结论:①ab<0,②b 2-4ac>0,③9a-3b+c<0,④b-4a=0,⑤方程ax 2+bx=0的两根为x 1=0,x 2=-4.其中正确的结论有( ) A.①③④ B.②④⑤ C.①②⑤ D.②③⑤Cx 1Oyx =1B xOy-23.如图,已知抛物线y=ax 2+bx+c与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,下列结论:①abc<0,② ,③ac+b+1=0,④2+c是关于x的一元二次方程ax 2+bx+c=0的一个根其中正确的有______.4.如图是抛物线y=ax 2+bx+c的一部分,下列结论:①b-2a=0,②4a-2b+c<0,③10a-b+c=0,④(-3,y 1),(1.5,y 2)是抛物线上两点,则y 1>y 2,⑤8a+7b+2c >0.其中正确的是________. ①④y O x1C A B ④点B的坐标为(2+c,0)∴④正确.∴③错误;③把A(-c,0)代入y=ax 2+bx+c得ac 2-bc+c=0∴ac-b+1=0,xy O2x =-1①③④③当x=-4时,y=16a-4b+c=0∵-b/2a=-1,∴10a-b+c=0,∴-3b=-6a,∴b=2a,⑤∵b=2a,4a+2b+c=0,∴8a+7b+2c=6a<0∴c=-8a5.二次函数y=ax2+bx+c图象如图,下列结论错误的是( )A.4ac<b2B.abc<0C.b+c>3aD.a<b6.如图,若抛物线y=ax2+bx+c(a≠0)经过点(-1,0),则下列结论①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中正确的结论是( )A.①③B.②③C.②④D.②③④DyO x-1-2C.∵-b/2a>-1, ∴-b<-2a∵a-b+c>0,∴a-2b+b+c>0∴a-4a+b+c>0,∴b+c>3aD.∵a-b+c>0 ∴a-b>-c>0∴a>bD③∵-b/2a<0.5,yO x-11∴a+a+c<0即2a+c<0∴-b>a∵a-b+c=0知识点二强化训练抛物线与a,b,c的关系知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05平移方向平移前的解析式平移后的解析式简记向左平移m个单位y=a(x-h)2+k向右平移m个单位向上平移m个单位向下平移m个单位y=a(x-h+m)2+k y=a(x-h-m)2+ky=a(x-h)2+k+m y=a(x-h)2+k-m左加右减上加下减平移a 不变.1.上下平移, 括号外__________; 2.左右平移, 括号内__________.上加下减左加右减一般式顶式点顶点坐标变换前y=x 2+2x-3关于x轴对称关于y轴对称关于原点对称关于顶点对称关于y=-2对称y=(x+1)2-4(-1,-4)y=-(x+1)2+4 y= (x-1)2-4 y=-(x-1)2+4 y=-x 2+2x+3y= x 2-2x-3y=-x 2-2x+3y=-x 2-2x-5y=-(x+1)2-4 y=-x 2-2x-1y=-(x+1)2(1,-4) (1,4) (-1,-4) (-1,0)(-1,4) 一般式变换前后的对应点变换前y=x 2+2x-3关于x轴对称关于y轴对称关于原点对称任取一点(x,y)y=-x 2+2x+3y= x 2-2x-3y=-x 2-2x+3对称点(-x,y) 对称点(-x,-y) 对称点(x,-y) 代入y=x 2+2x-3 代入y=x 2+2x-3 代入y=x 2+2x-3知识点三强化训练二次函数的图象的变换1.将抛物线y=(x-1)2+2绕关于直线 x=-1 对称的新抛物线所对应的函数解析式是____________.2.把抛物线y=-x 2沿着x轴方向平移3个单位长度,那么平移后抛物线的解析式是_____________________.3.如图,抛物线y=x 2-4x(0≤x≤4)记为l 1,l 1与x轴分别交于点O,A 1;将l 1绕点A1旋转180º得到l 2交于点A 2;将l 2绕点A 2旋转180º得到l 3,l 3交x轴于点A 3;…,如此变换下去,若点P(2021,m)在这种连续变换的图象上,则m=____.y=(x+3)2+2y=-1y=-(x-1)2-4y=-(x+3)2或y=-(x-3)2 3知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练05【例4】已知二次函数y=x 2-3x+m的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x 2-3x+m=0的两实数根是( )A.x 1=1,x 2=-1B.x 1=1,x 2=2C.x 1=1,x 2=0D.x 1=1,x 2=3B1.已知二次函数y=x 2-x+ m-1的图象与x轴有交点,则m的取值范围是_____.2.已知抛物线y=x 2-4x+k的顶点在x轴下方,则k的取值范围是______.3.函数y=ax 2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是____________ .4.二次函数y=ax 2+bx+c(a≠0)与x轴交于点(x 1,0)与(x 2,0)(x 1<x 2),方程ax 2+bx+c-a=0的两根为m、n(m<n),则下列判断正确的是( ) A.b 2-4ac≥0 B.x 1+x 2>m+n C.m<n<x 1<x 2 D.m<x 1<x 2<n5.已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( )x <-4或x >2m≤5k <4D A知识点二次函数的图象及性质01抛物线与a ,b ,c 的关系02二次函数的图象的变换03二次函数与方程(不等式) 04拓展训练051.若二次函数y=ax 2+bx+c图象上部分点的坐标如下表,则该图象的顶点坐标为( ) A.(-2,-2) B.(-3,-3) C.(-1,-3) D.(0,-6)2.已知二次函数y=ax 2-4ax+m(a,m为常数,且a>0)的图象与直线y=3的一个交点为(-2,3),则关于x的一元二次方程ax 2-4ax+m-3=0的两个实数根是()A.x 1=-2,x 2=6B.x 1=-1,x 2=3C.x 1=-2,x 2=4D.x 1=-1,x 2=63.已知二次函数y=ax 2+bx+c的图象开口向下,并经过(2,-3),(-2,0)两点,那么该函数图象的对称轴( )A.有可能为y轴B.有可能在y轴的右边且在直线x=2的左边x …-3-2-101…y …-3-2-3-6-11…A A提升能力拓展训练二次函数C4.已知在二次函数y=ax 2-2x-3a的图象有三点A(x 1,y 1),B(x 2,y 2),C(0,-3),其中x 1<-1,0<x 2<3,则y 2-y 1的值为( )A.正数B.负数C.0D.非负数5.关于抛物线y=x 2-(a+1)x+a-2,下列说法错误的是( ) A.开口向上 B.不论a为何值,都过定点(1,2)C.当a=2时,经过坐标原点OD.当a>0时,对称轴在y轴的右侧6.四位同学在研究函数y=x 2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值,乙发现-1是方程x 2+bx+c=0的一个根,丙发现函数的最小值为3,丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论错误,则该同学是( ) A.甲 B.乙 C.丙 D.丁B BB7.已知点P(1,m)关于原点对称的点在一次函数y=2x-3的图象上,则点P的坐标是______.8.已知抛物线y=ax 2+bx+c与x轴交于点(-3,0),(1,0),则b:a=_____.9.二次函数y=-(x-h)2+2的图象上有两点A(1,y 1),B(2,y 2),若y 1≤y 2,则h的取值范围为________.10.已知二次函数y=m(x-2m)2+m 2,当x>m+1时,y随x的增大而增大,则m的取值范围是_________.11.当0≤x≤3时,直线y=a与抛物线y=(x-1)2-3有交点,则a的取值范围是___________.12.已知二次函数y=-x 2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是______.(1,5)2:10<m≤1h≥1.5-3≤x≤1b≤113.若抛物线y=x 2+2x+c与坐标轴只有两个交点,则c的值为______.14.已知直线y=4与二次函数y=x 2-2mx+m 2+3(m是常数)的图象交于M,N两点(点M在点N的左侧),与y轴交于点P.当点P,M,N中恰好有一点是其余两点组成线段的中点时,m的值为_________.15.如图,二次函数y=-x 2+4与x轴交于A、B两点(点A在点B的左侧),等腰直角△ACD的直角顶点D在x轴上,AD=3.现将△ACD沿x轴的正方向平移,则当点C在函数图象上时,△ACD的平移距离为______.16.如图,抛物线y=ax 2-4x+c经过坐标原点,与x轴交与点A(-4,0).若在抛物线上存在一点P,满足S △AOP =8,则点P的坐标___________________________.0,3或-30或1x y O D B A C 4或617.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),则下列说法不正确的是( ) A.点A,B的坐标分别是(t,0)(t+2,0) B.AB为定值C.当y≥0时,t≤x≤t+2D.y的最小值为-118.已知抛物线y=ax 2-2ax+a-c与y轴的正半轴相交,直线AB∥x轴,且与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,当x=x 1+x 2时,函数值为p,当 时,函数值为q,则p-q的值为( ) A.a C.-a+c D.a-c CA对称轴:∴x 1+x 2=2∴p=4a-4a+a-c=a-c ;q=a-2a+a-c=-c∴p-q=a-c-(-c)=a19.在平面直角坐标系中,把横、纵坐标都是整数的点叫做整点,如图,已知反比例函数 与二次函数 的图象所围成的阴影部分中(不含边界)有5个整点,则k的值可能为( ) A.4 B.3 C.2 D.14C y O x 43(1,3)(1,2)(1,1)(2,3)(2,2)(2,1)(3,2)(3,1)2≤x <3×××20.二次函数 的图像与x轴围成的封闭区域内(包括边界),横纵坐标都是整数的点有___个721.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上横纵坐标均为整数的点称为好点,已知点P为抛物线y=-(x-m)2+m+2的顶点,若点P在正方形OABC的内部,该抛物线下方(包括边界)恰好存在8个好点,则m的取值范围为_____________.yO x44P22.如图,抛物线 ,点F(0,p),直线l:y=-p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A、B两点,AA1⊥l于点A1,BB1⊥l于点B1,连接A1F、B1F、A1O、B1O,若A1F=a,B1F=b,则△A1OB1的面积=____(只用a,b表示).yOxlFB1A1BA23.设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).若该函数图象经过A(-23.1,4),B(0,-1),C(1,1)三个点中的两个点,求该二次函数的解析式.当x=1时,y=0,所以不经过点C.y=3x2-2x-1。

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 二次函数的实际应用

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 二次函数的实际应用
(2)W=(x-10)·(-x+40)=-x2+50x-400=-(x-25)2+225. ∵当 10≤x≤16 时,W 随 x 的增大而增大, ∴当 x=16 时,W 最大,
最大利润为-(16-25)2+225=144(元). 答:W=-x2+50x-400(10≤x≤16),当销售价为 16 元时,利润最大, 最大利润为 144 元.
1.求利润问题的函数解析式: (1)若题目给出销售量与单价之间的函数解析式,以及销售单价与进价之 间的关系时,则可直接根据:销售利润=销售总额-成本=销售量×销 售价-销售量×进价=销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数解析式,则要先求出的销售 量与单价之间的函数解析式,一般是一次函数关系,再根据:销售利润 =销售量×(销售价-进价)来解决;
∴w 值与 t 值无关, ∴10-6-b=0,解得 b=4, ∴w=(10-6-4)t+3 000=3 000, 答:捐款后所得的利润始终不变,此时 b 为 4 元,利润为 3 000 元.
重难点:二次函数的实际应用 (2021·达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成
本为 30 元/千克,根据市场调查发现,批发价定为 48 元/千克时,每天 ,批发价每千克降低 1 元,每天销量可增加 50 千克.
解:(1)由题意,得 W=(48-30-x)(500+50x)=-50x2+400x+9 000, x=2 时,W=(48-30-2)(500+50×2)=9 600(元). 答:工厂每天的利润 W 元与降价 x 元之间的函数关系为: W=-50x2+400x+9 000,当降价 2 元时,工厂每天的利润为 9 600 元. (2)由(1)得:W=-50x2+400x+9 000=-50(x-4)2+9 800, ∵-50<0,∴当 x=4 时,W 最大为 9 800, 答:当降价 4 元时,工厂每天的利润最大,最大为 9 800 元.

高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第五节 指数与指数函数

高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第五节 指数与指数函数
∴e2a-ea+b+eb+c-ea+b=ea(ea-eb)+eb(ec-ea)=0,其中ea>1,eb>1,ec>1,对于A,若
a=b=c,则ea-eb=ec-ea=0,满足题意;对于B,若a>b>c,则ea-eb>0,ec-ea<0,满足
题意;对于C,若b>c>a,则ea-eb<0,ec-ea>0,满足题意;对于D,若b>a>c,则

(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.
微点拨在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不
能同时含有根号和分数指数幂,也不能既有分母又有负指数.
3.有理指数幂的运算性质
(1)aras= ar+s (a>0,r,s∈Q);
(2)(ar)s= ars
(a>0,r,s∈Q);
3.f(x)=ax与g(x)=a-x=
1

x(a>0,且a≠1)的图象关于y轴对称.
4.指数函数的图象以x轴为渐近线.
5.函数y=
-1
+ 1
(a>0,且a≠1),y=ax-a-x(a>0,且a≠1)均为奇函数,函数
y=ax+a-x(a>0,且a≠1)为偶函数.
6.若函数g(x)=af(x)(a>0,且a≠1)的值域为(0,+∞),则f(x)的值域必为R.
根式的概念
n=a
x
如果
,那么x叫做a的n次方根
符号表示

当n是奇数时,正数的n次方根是一个
正数 ,负数的n次方根是一个 负数
当n是偶数时,正数的n次方根有两个,这

浙江省中考数学总复习第三章函数及其图象第15讲二次函数的图象与性质讲解篇

浙江省中考数学总复习第三章函数及其图象第15讲二次函数的图象与性质讲解篇

第15讲二次函数的图象与性质1.二次函数的概念、图象和性质考试内容考试要求二次函数的概念一般地,形如 (a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a、b、c分别为函数表达式的二次项系数、一次项系数和常数项.b二次函数的图象与性质a a>0 a<0bc 图象开口方向抛物线开口向_______,并向上无限延伸抛物线开口向_____,并向下无限延伸对称轴直线x=-b2a直线x=-b2a顶点坐标⎝⎛-b2a,⎭⎪⎫4ac-b24a⎝⎛-b2a,⎭⎪⎫4ac-b24a最值抛物线有最低点,当x=-b2a时,y有最小值,y最小值=4ac-b24a.抛物线有最高点,当x=-b2a时,y有最大值,y最大值=4ac-b24a.增减性在对称轴的左侧,即当x<-b2a时,y随x的增在对称轴的左侧,即当x<-b2a时,y随x2.二次函数的图象与字母系数的关系3.确定二次函数的解析式考试内容考试要求方法 适用条件及求法c一般式若已知条件是图象上的三个点或三对自变量与函数的对应值,则可设所求二次函数解析式为____________________.顶点式若已知二次函数图象的顶点坐标或对称轴方程与最大值(最小值),可设所求二次函数为____________________.交点式若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),可设所求的二次函数为 .4.二次函数与一元二次方程以及不等式之间的关系考试内容考试要求二次函数与一元二次方程二次函数y =ax 2+bx +c 的图象与 轴的交点的 坐标是一元二次方程ax 2+bx +c =0的根.b二次函数与不等式 抛物线y =ax 2+bx +c 在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式ax 2+bx +c 0的解集;在x 轴下方的部分点的纵坐标均为负,所对应的x 的所有值就是不等式ax 2+bx +c 0的解集.5.二次函数图象常见的变换考试内容考试要求平移顶点坐标的变化,按照“横坐标加减左右移”、“纵坐标加减上下移”的方法进行.c旋转 抛物线关于原点旋转180°,此时顶点关于原点对称,a 的符号相反. 轴对称抛物线关于x 轴对称,此时顶点关于x 轴对称,a 的符号相反;抛物b线关于y轴对称,此时顶点关于y轴对称,a的符号不变.考试内容考试要求基本思想数形结合,从二次函数的图象研究其开口方向、对称轴、顶点坐标、增减性、最值及其图象的平移变化,到利用二次函数图象求解方程与方程组,再到利用图象求解析式和解决实际问题,都体现了数形结合的思想.c1.(2015·台州)设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l 上,则点M的坐标可能是( )A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)2.(2017·金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是( )A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=-1,最小值是2D.对称轴是直线x=-1,最大值是23.(2017·宁波)抛物线y=x2-2x+m2+2(m是常数)的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(2016·舟山)把抛物线y=x2先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是____________________.5.(2015·甘孜州)若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=____________________.【问题】如图是y=ax2+bx+c(a≠0)的图象,且点A(-1,0),B(3,0).(1)你能从图象中想到哪些二次函数性质;(2)若点C为(0,-3),你又能得到哪些结论.【归纳】通过开放式问题,归纳、疏理二次函数的图象与性质.类型一二次函数的解析式例1(1)已知抛物线的顶点坐标为(-1,-8),且过点(0,-6),则该抛物线的表达式为________;(2)已知二次函数y=ax2+bx+c的图象经过A(-1,-1)、B(0,2)、C(1,3);则二次函数的解析式为________;(3)已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为________.【解后感悟】解题关键是选择合适的解析式:当已知抛物线上三点求二次函数的关系式时,一般采用一般式y=ax2+bx+c(a≠0);当已知抛物线顶点坐标(或对称轴及最大或最小值)求关系式时,一般采用顶点式y=a(x-h)2+k;当已知抛物线与x轴的交点坐标求二次函数的关系式时,一般采用交点式y=a(x-x1)(x-x2).1.(1)(2017·杭州模拟)如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是____________________.(2)(2017·长春模拟)已知二次函数的图象与x轴的两个交点A,B关于直线x=-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为____________________.类型二二次函数的图象、性质例2(1)对于抛物线y=-(x+1)2+4,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,4);④x≥1时,y 随x的增大而减小;⑤当x=-1时,y有最大值是4;⑥当y≥0时,-3≤x≤1;⑦点A(-2,y1)、B(1,y2)在抛物线上,则y1>y2.其中正确结论是______________;(2)如图是二次函数y=ax2+bx+c的图象,下列结论:①-2≤x≤1,二次函数y=ax2+bx+c的最大值为4,最小值为0;②使y≤3成立的x 的取值范围是x≥0;③一元二次方程ax2+bx+c=0的两根为x1=-3,x2=1;④一元二次方程ax2+bx+c-3=0的两根为x1=-2,x2=0;⑤当二次函数的值大于一次函数y=-x +3的值时,x取值范围是-1<x<0.其中正确结论是______________.【解后感悟】解题关键是正确把握解析式的特点、图象的特点、二次函数的性质,注意数形结合.2.(1)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0;②当-1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0;⑤4a-2b+c>0.其中正确的是____________________.(2)(2015·杭州)设函数y=(x-1)[(k-1)x+(k-3)](k是常数).①当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;②根据图象,写出你发现的一条结论;③将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.类型三二次函数的图象变换例3已知抛物线y=2(x-4)2-1.(1)将该抛物线先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为________;(2)将该抛物线关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为________.(3)将该抛物线绕它的顶点旋转180°,所得抛物线的解析式是________.【解后感悟】①平移的规律:左加右减,上加下减;②对称的规律:关于x轴对称的两点横坐标相同,纵坐标互为相反数;关于y轴对称的两点纵坐标相同,横坐标互为相反数;关于原点对称的两点横、纵坐标均互为相反数;③旋转的规律:旋转后的抛物线开口相反,顶点关于旋转点对称.3.(1)(2017·绍兴)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( )A .y =x 2+8x +14B .y =x 2-8x +14C .y =x 2+4x +3D .y =x 2-4x +3(2)(2017·盐城)如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′、B′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x -2)2-2B .y =12(x -2)2+7 C .y =12(x -2)2-5 D .y =12(x -2)2+4类型四 二次函数的综合问题例4 如图,抛物线y =-x 2+2x +c 与x 轴交于A ,B 两点,它们的对称轴与x 轴交于点N ,过顶点M 作ME⊥y 轴于点E ,连结BE 交MN 于点F. 已知点A 的坐标为(-1,0).(1)求该抛物线的解析式及顶点M 的坐标; (2)求△EMF 与△BNF 的面积之比.【解后感悟】抛物线与x 轴的交点问题;二次函数的性质;待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的判定和性质.4.(1)(2016·长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-x2+6x上一点,且在x轴上方,则△BCD面积的最大值为____________________.(2)(2015·湖州)如图,已知抛物线C1∶y=a1x2+b1x+c1和C2∶y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N 都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.类型五二次函数的应用例5(2017·杭州模拟)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件) 100 110 120 130 …月销量(件) 200 180 160 140 …已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是________元;②月销量是________件;(直接填写结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【解后感悟】此题是二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.5.(2017·重庆模拟)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两段抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图1所示(图2是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅里的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.【探索研究题】如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=________.【方法与对策】本题是数形规律探究能力.图形类规律探索题,通常先把图形型问题转化为数字型问题,再从数字的特点来寻找规律,解题关键从操作中前面几个点的坐标位置变化,猜想、归纳出一般变化规律.该题型是图形变换和规律的探究题,是中考命题方向.【配方漏括号】用配方法求二次函数y=512x2-53x+54图象的顶点坐标及对称轴.参考答案第15讲二次函数的图象与性质【考点概要】1.y=ax2+bx+c上下减小增大增大减小 2.上下小y左右原点 正 负 唯一 两个 没有 > < 3.y =ax 2+bx +c y =a (x -m )2+k y =a (x -x 1)(x -x 2) 4.x 横 > <【考题体验】1.B 2.B 3.A 4.y =(x -2)2+3 5.2【知识引擎】【解析】(1)对称轴是直线x =1等;(2)当x =1时,y 的最小值为-4等.【例题精析】例1 (1)y =2(x +1)2-8;(2)y =-x 2+2x +2;(3)y =x 2-x -2或y =-x 2+x +2 例2 (1)①③④⑤⑥⑦;(2)①③④⑤ 例3 (1)y =2x 2+1;(2)y =-2(x +4)2+1;(3)y =-2(x -4)2-1 例4 (1)∵点A 在抛物线y =-x 2+2x +c 上,∴-(-1)2+2·(-1)+c =0,解得:c =3,∴抛物线的解析式为y =-x 2+2x +3.∵y=-x 2+2x +3=-(x -1)2+4,∴抛物线的顶点M(1,4);(2)∵A(-1,0),抛物线的对称轴为直线x =1,∴点B(3,0).∴EM=1,BN =2.∵EM∥BN,∴△EMF ∽△BNF.∴S △EMF S △BNF =⎝ ⎛⎭⎪⎫EM NB 2=⎝ ⎛⎭⎪⎫122=14. 例5 (1)①(x-60);②(-2x +400) (2)依题意可得:y =(x -60)×(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,当x =130时,y 有最大值9800.所以售价为每件130元时,当月的利润最大为9800元.【变式拓展】1.(1)y =-x 2+2x +3 (2)y =29x 2+49x -1692.(1)①④⑤ (2)①根据题意可得函数图象为:②图象都经过点(1,0)和点(-1,4);图象总交x 轴于点(1,0);k 取0和2时的函数图象关于点(0,2)成中心对称;③平移后的函数y 3的表达式为:y 3=(x +3)2-2,∴当x =-3时,函数y 3的最小值为-2.3. (1)A (2)D4. (1)15 (2)y =-3x 2+23x y =3x 2+23x5.(1)由于抛物线C 1、C 2都过点A(-3,0)、B(3,0),可设它们的解析式为:y =a(x -3)(x+3);抛物线C 1还经过D(0,-3),则有:-3=a(0-3)(0+3),解得:a =13,即:抛物线C 1:y =13x 2-3(-3≤x≤3);抛物线C 2还经过C(0,1),则有:1=a(0-3)(0+3),解得:a =-19,即:抛物线C 2:y =-19x 2+1(-3≤x≤3).(2)当炒菜锅里的水位高度为1dm 时,y =-2,即13x 2-3=-2,解得:x =±3,∴此时水面的直径为23dm . (3)锅盖能正常盖上,理由如下:当x =32时,抛物线C 1:y =13×⎝ ⎛⎭⎪⎫322-3=-94,抛物线C 2:y =-19×⎝ ⎛⎭⎪⎫322+1=34,而34-⎝ ⎛⎭⎪⎫-94=3,∴锅盖能正常盖上. 【热点题型】【分析与解】C 1:y =-x(x -3)(0≤x≤3)C 2:y =(x -3)(x -6)(3≤x≤6)C 3:y =-(x -6)(x -9)(6≤x≤9)C 4:y =(x -9)(x -12)(9≤x≤12)…C 13:y =-(x -36)(x -39)(36≤x≤39),当x =37时,y =2,所以,m =2.【错误警示】y =512x 2-53x +54=512(x 2-4x +3)=512[(x -2)2-1]=512(x -2)2-512,∴该函数图象的顶点坐标是(2,-512),对称轴是直线x =2.。

2019年浙江省中考数学分类汇编专题06:函数及其图象(二次函数)

2019年浙江省中考数学分类汇编专题06:函数及其图象(二次函数)

2019年浙江省中考数学分类汇编专题06:函数及其图象(二次函数)一、单选题(共6题;共12分)1.二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)2.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值﹣1,有最小值﹣2B. 有最大值0,有最小值﹣1C. 有最大值7,有最小值﹣1D. 有最大值7,有最小值﹣23.小飞研究二次函数( 为常数)性质时如下结论:①这个函数图象的顶点始终在直线上;②存在一个的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点与点在函数图象上,若,,则;④当时,随的增大而增大,则的取值范围为其中错误结论的序号是()A. ①B. ②C. ③D. ④4.D在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是()A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移8个单位5.已知a,b是非零实数,,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b 的大致图象不可能是()A. B. C. D.6.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1D. M=N或M=N-1二、作图题(共1题;共15分)7.某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元)… 190 200 210 220 …y(间) … 65 60 55 50 …(1)根据所给数据在坐标系中描出相应的点,并画出图象。

高考数学一轮复习第三章三角函数解三角形第五节y=Asinωx+φ的图象及应用课件新人教版

高考数学一轮复习第三章三角函数解三角形第五节y=Asinωx+φ的图象及应用课件新人教版

其中所有正确结论的编号是( D )
A.①④
B.②③ C.①②③ D.①③④
[解析] 已知 f(x)=sinωx+π5(ω>0)在[0,2π]有且仅有 5 个零点,如图, 其图象的右端点的横坐标在[a,b)上,此时 f(x)在(0,2π)有且仅有 3 个极
大值点,但 f(x)在(0,2π)可能有 2 或 3 个极小值点,所以①正确,②不正 确;当 x∈[0,2π]时,ωx+π5∈5π,2πω+π5,由 f(x)在[0,2π]有且仅有 5 个 零点可得 5π≤2πω+π5<6π,得 ω 的取值范围是152,2190,所以④正确; 当 x∈0,1π0时,π5<ωx+π5<π1ω0 +π5<41090π<π2,所以 f(x)在0,1π0单调递 增,所以③正确.
三角函数的零点、不等式问题的求解思路 (1)把函数表达式转化为正弦型函数情势y=Asin(ωx+φ)+B(A>0, ω>0). (2)画出长度为一个周期的区间上的函数图象. (3)利用图象解决有关三角函数的零点、不等式问题.
[题组突破]
1.(2021·佛山四校联考)已知x0=
π 3
是函数f(x)=sin(2x+φ)的一个极大值
点,则f(x)的一个单调递减区间是( B )
A.6π,23π C.2π,π
B.3π,56π D.23π,π
角,∴2A=π3,A=π6,故tan
A=
3 3.
确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法 (1)求A,b.确定函数的最大值M和最小值m, 则A=M-2 m,b=M+2 m. (2)求ω.确定函数的最小正周期T,则ω=2Tπ.
(3)求φ常用的方法: ①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入 图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在 降落区间上). ②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体 如下:

浙江省杭州市中考数学第一轮复习(课件)第三章第四节


抛物线与y轴交
函数
抛物
c>0 于正半轴
特征 与系 c
数a、
线与y 轴交 点的
c<0
抛物线过 ⑫_原__点___
b、c
位置
抛物线与y轴交
的关
c=0 于负半轴

二次
决定对 ab>0 对称轴在y轴左侧
函数
称轴的 (a、b同号)
特征 与系 数a、
b 2a
位置, 对称轴 是直线
b=0
对称轴是y轴
b、c 的关 系
及 性 质
最值Leabharlann 当 x b 2a时,y有最小值,
当 x b 2a
时,y有最大值,
4ac b2 y最小值 = 4a
4ac b2 y最大值 = 4a
在对称轴的左侧,即当 在对称轴的左侧,即当
二 次 函 数 的 图 像
增 减 性
x b 时,y随x的增 2a
大而⑥_减__小___;在对称轴
的直线为y2=kx+b. (1)求二次函数y1的解析式及点B的坐标; (2)由图象写出满足y1<y2的自变量x的取值 范围;
(3)在两坐标轴上是否存在点P,使得△ABP
是以AB为底边的等腰三角形?若存在,求出
P点的坐标;若不存在,说明理由.
(1)【思路点拨】将点A(4,0)代入抛物线解析式,
即可得到c的值,从而确定抛物线的解析式,令抛物线
与不 等式
的关 系
ax²+bx+c>0的解集 →函数y= ax²+bx+c的图象 位于x轴上方对应的点的横坐标的取值范围
ax²+bx+c <0的解集→函数y= ax²+bx+c的图象 位于x轴下方对应的点的横坐标的取值范围

2019年中考数学第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材


b a
>0,对称轴在

轴������������ 左侧 ;
) 程为


������������ -
b 2a
b a
<0,对称轴在

轴������������ 右侧
c = 0,抛物线过������������ 原点 ;
决定抛 轴;
交点的位置
c<0,抛物线与 y 轴交于负半轴
考点 2 二次函数与一元二次方程之间的联系
在二次函数 y = ax2 +bx+c( a≠0) 中,当 y = 0 时,x 的取值就 是一元二次方程 ax2 +bx+c = 0 的解,即 y = ax2 +bx+c 与 x 轴交点 的横坐标就是一元二次方程 ax2 +bx+c = 0 的根.
式:y = a( x-h) 2 +k( a≠0) ,其中顶点坐标为( h,k) ,对称轴为直
线 x = h;
(3)若已知抛物线与 x 轴的交点的坐标,则可设解析式为 y
= a(x-x1) ( x -x2 ) ( a≠0),其中与 x 轴的交点坐标为( x1,0), ( x2 ,0) .
例 3 (2017 广西百色,17,3 分) 经过 A( 4,0) ,B( - 2,0) ,
68
考点 1 二次函数的图象与性质
1.概念:一般地,形如① y = ax2 +bx+c ( a≠0,a,b,c 为常数) 的函数叫做二次函数.
2.二次函数的图象与性质
函数
y = ax2 +bx+c( a≠0)
a>0
a<0
图象
开口方向 对称轴
顶点坐标
② 开口向上
③ 开口向下
④ 直线

(2) 在这 30 天内,哪一天的利润是 6 300 元?

中考数学复习第三章函数讲义

第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。

2. 建立了平面直角坐标系的平面称为坐标平面。

3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。

4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。

2. 常量:某一变化的过程中保持相同数值的量叫做常量。

3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。

4. 函数的表示方法有:、、。

在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。

5. 画函数图象的一般步骤:列表、、。

【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。

4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。

第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。

当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。

【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。

中考数学 精讲篇 考点系统复习 第三章 函数 第五节 新函数的图象与性质


(2)①该函数图象是轴对称图形,对称轴是 y 轴; ②该函数在自变量的取值范围内,有最大值,当 x=0 时,函数取得最大 值 4; ③当 x<0 时,y 随 x 的增大而增大; 当 x>0 时,y 随 x 的增大而减小. (以上三条性质写出一条即可) (3)x<-0.3,1<x<2. 注:当不等式解集端点值误差在±0.2 范围内,均给相应分值.
重难点:探究函数的图象与性质 探究函数性质时,我们经历了列表、描点、连线画出函数图象,观
察分析图象特征,概括函数性质的过程.结合已有的学习经验,请根据 已学知识对函数 y=16x3-2x 的图象和性质进行探究.
(1)根据表格填空,并在图中补全该函数图象. 则 m 的值为________.
(2)观察函数图象,则下列关于函数性质的结论正确的是________; ①该函数图象是轴对称图形,它的对称轴为 y 轴.
第五节 新函数的Βιβλιοθήκη 象与 性质1.画出一次函数 y=-2x+1 的图象,根据图象回答下列问题. (1) 图象与 x 轴的交点坐标是________,与 y 轴的交点坐标是________; (2)当 x________时,y>0;
1 (3)当 x≥2时,y 的值随 x 的值增大而________; (4)当 1≤x≤2 时,y 的最大值是________,最小 值是________; (5)把直线 y=-2x+1 向下平移 2 个单位,得到 的直线解析式是________.
16 (3)已知函数 y= x 的图象如图所示,结合 你所画的函数图象,直接写出不等式 x+| -2x+6|+m>1x6的解集.
解:(1)m=-2,a=3,b=4; (2)函数图象如图所示,函数的性质如下: (写出其中一条即可) ①当 x<3 时,y 随 x 的增加而减少; 当 x>3 时,y 随 x 的增加而增加; ②当 x=3 时,函数 y 取得最小值 1;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 二次函数的图象与性质
姓名:________ 班级:________ 用时:______分钟
1.(2019·易错题)将二次函数y =x 2
-2x +3化为y =(x -h)2
+k 的形式,结果为( ) A .y =(x +1)2
+4 B .y =(x +1)2
+2 C .y =(x -1)2+4
D .y =(x -1)2
+2
2.(2017·浙江丽水中考)将函数y =x 2
的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
A .向左平移1个单位
B .向右平移3个单位
C .向上平移3个单位
D .向下平移1个单位
3.(2018·湖南益阳中考)已知二次函数y =ax 2
+bx +c 的图象如图所示,则下列说法正确的是( )
A .ac <0
B .b <0
C .b 2
-4ac <0 D .a +b +c <0
4.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2
+4,
则选取点B 为坐标原点时的抛物线表达式是_________________________.
5.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2
,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.
6.已知二次函数y =ax 2
-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.3
4或1 B.1
4或1 C.34或12
D.14或34
7.如图,反比例函数y =k x 的图象经过二次函数y =ax 2
+bx 图象的顶点(-12
,m)(m>0),则有( )
A .a =b +2k
B .a =b -2k
C .k<b<0
D .a<k<0
8.(2018·山东德州中考)如图,函数y =ax 2
-2x +1和y =ax -a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是( )
9.(2018·浙江杭州中考)设二次函数y =ax 2
+bx -(a +b)(a ,b 是常数,a≠0). (1)判断该二次函数图象与x 轴的交点的个数,说明理由;
(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;
(3)若a +b <0,点P(2,m)(m >0)在该二次函数图象上,求证:a >0.
10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).
(1)求抛物线的表达式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
(3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;
②若△BCD是锐角三角形,求点D的纵坐标的取值范围.
11.(2018·四川南充中考)如图,抛物线y =ax 2
+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点P(m ,n).给出下列结论: ①2a+c <0;
②若(-32,y 1),(-12,y 2),(1
2,y 3)在抛物线上,则y 1>y 2>y 3;
③关于x 的方程ax 2
+bx +k =0有实数解,则k >c -n ; ④当n =-1
a 时,△ABP 为等腰直角三角形.
其中正确结论是________(填写序号).
参考答案
【基础训练】 1.D 2.D 3.B
4.y =-19(x +6)2+4 5.y =x 2
+8x +14
【拔高训练】 6.A 7.D 8.B
9.解:(1)由题意知Δ=b 2
-4a[-(a +b)]=b 2
+4ab +4a 2
=(2a +b)2
≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得
⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩
⎪⎨⎪⎧a =3,b =-2. ∴该二次函数的表达式为y =3x 2
-2x -1. (3)证明:当x =2时,
m =4a +2b -(a +b)=3a +b >0,① ∵a+b <0,∴-a -b >0.② ①+②得2a >0,∴a>0.
10.解:(1)由题意得⎩⎪⎨⎪⎧32
+3b +c =0,c =3,
解得⎩
⎪⎨⎪⎧b =-4,
c =3,
∴抛物线的表达式为y =x 2
-4x +3.
(2)方法1:如图1,过点P 作PG∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3), ∴△CFE 和△GPE 均为等腰直角三角形, ∴EF=
22CF =22(3-m),PE =2
2
PG. 设x P =t(1<t<3), 则PE =
22PG =2
2
(-t +3-t -m)

22
(-m -2t +3),t 2
-4t +3=t +m , ∴PE+EF =
22(-m -2t +3)+22(3-m)=22
(-2t -2m +6)=-2(t +m -3)=-2(t 2
-4t)=-2(t -2)2
+42,
∴当t =2时,PE +EF 的最大值为4 2.
方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形,
以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,
∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),
∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.
当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2
+BC 2
=BD 2
, 即(2-0)2
+(n -3)2
+(32)2
=(3-2)2
+(0-n)2
,解得n =5;
当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2
+BC 2
=CD 2
, 即(2-3)2
+(n -0)2
+(32)2
=(2-0)2
+(n -3)2
,解得n =-1. ∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).
②如图4,以BC 的中点T(32,32),1
2BC 为半径作⊙T,与对称轴x =2交于D 3和D 4,
由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =32
2得
(32-2)2+(32-m)2
=(322)2, 解得m =32±172

∴D 3(2,32+172),D 4(2,32-17
2).
又由①得D 1为(2,5),D 2(2,-1),
∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是
-1<y D <32-172或32+17
2
<y D <5.
【培优训练】 11.②④。

相关文档
最新文档