专题2 平行线复习(解析版)

合集下载

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。

2. 平行线定义:两条永不相交的直线的位置关系是平行线。

3. 平行线性质:①两直线平行,同位角相等。

②两直线平行,内错角相等。

③两直线平行,同旁内角互补。

④同一平面内,过直线外一点有且只有一条直线与已知直线平行。

⑤平行于同一直线的两直线平行。

即c b b a ∥,∥,则c a ∥。

4. 平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角相等,两直线平行。

④垂直于同一直线的两直线平行。

即若c a b a ⊥⊥,,则c a ∥。

⑤平行于同一直线的两直线平行。

即若c b b a ∥,∥,则c a ∥。

5. 平行线间的距离:平行线间的距离处处相等。

练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。

第二章 相交线与平行线复习题---解答题(含解析)

第二章 相交线与平行线复习题---解答题(含解析)

北师大版数学七下第二章相交线与平行线复习题---解答题一.解答题1.(2018秋•海珠区期末)如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.2.(2018秋•静宁县期末)如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.3.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?4.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠=180°(邻补角的意义)所以∠1=∠()5.(2018秋•鞍山期末)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.6.(2018春•赣县区期末)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.7.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.8.(2018秋•兰州期末)如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.9.(2018秋•桐梓县校级期中)已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.10.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.11.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.12.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.13.(2018春•渠县期末)如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.14.(2018春•大冶市期末)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.15.(2018春•新泰市期末)已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.16.(2018春•孝义市期末)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,17.(2018春•邹城市期末)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴.()∴∠1=∠3.()又∵∠1=∠2,(已知)∴.()∴EF∥DB.()18.(2018•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.19.(2018•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.21.(2018秋•二道区期末)探究:如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE∥BC()∴∠DEF=()∵EF∥AB∴=∠ABC()∴∠DEF=∠ABC()∵∠ABC=65°∴∠DEF=应用:如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为(用含β的代数式表示).22.(2018秋•江海区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.23.(2018•房山区二模)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.24.(2017秋•安岳县期末)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A 不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.25.(2018秋•点军区期中)如图所示,折叠一个宽度相等的纸条,求∠1的度数.26.(2018秋•道里区校级期中)如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?27.(2018秋•忻城县期中)如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.28.(2018秋•嘉祥县期中)如图1,已知过线段AB的两端作直线l1∥l2,作同旁内角的平分线交于点E,过点E作直线m分别和直线l1,12交于点D、C.(1)如图所示,当D、C在AB的同侧,且不与点A、B重合时,求证:AD+BC=AB.(2)当D、C在AB的异侧,且不与点A、B重合时,请在备用图上画出直线m,标出点D、C,并在图形下方直接写出AD、BC、AB之间的数量关系.不用说明理由.29.(2018秋•南岗区期中)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.30.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.31.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.32.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.33.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.34.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.35.(2018春•安庆期末)如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD 是何种位置关系?北师大版数学七下第二章相交线与平行线复习题---解答题参考答案与试题解析一.解答题1.(2018秋•海珠区期末)如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.【分析】(1)根据题意画出图形即可;(2)设∠EOD=3x,∠AOC=4x,根据对顶角的性质得到∠BOD=4x,根据平角的定义列方程即可得到结论.【解答】解:(1)如图所示,直线CD,射线OE即为所求;(2)∵∠EOD:∠AOC=3:4,∴设∠EOD=3x,∠AOC=4x,∵∠BOD=∠AOC,∴∠BOD=4x,∵∠AOB=180°,∴40°+3x+4x=180°,∴x=20°,∴∠AOC=4x=80°.2.(2018秋•静宁县期末)如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.【分析】直接利用已知结合邻补角的定义分析得出答案.【解答】解:∵∠2=2∠1,∴∠1=∠2,∵∠3=3∠2,∴∠1+∠2+∠3=∠2+∠2+3∠2=180°,解得:∠2=40°,∴∠3=3∠2=120°,∴∠DOE=∠3=120°.3.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有2对对顶角.(2)如图b,图中共有6对对顶角.(3)如图c,图中共有12对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?【分析】(1)根据对顶角的定义找出即可;(2)根据对顶角的定义找出即可;(3)根据对顶角的定义找出即可;(4)根据求出的结果得出规律,即可得出答案;(5)把n=2000代入n(n﹣1),求出即可.【解答】解:(1)如图a,图中共有2对对顶角,故答案为:2;(2)如图b,图中共有6对对顶角.故答案为:6;(3)如图c,图中共有12对对顶角;故答案为;12;(4)2=2×1,3×(3﹣1)=6,4×(4﹣1)=12,所以若有n条直线相交于一点,则可形成n(n﹣1)对对顶角;(5)2000×(2000﹣1)=3998000,若有2000条直线相交于一点,则可形成3998000对对顶角.4.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠DFE=180°(邻补角的意义)所以∠1=∠DFE(等量代换)【分析】根据平行线的判定方法和平行线的性质填空即可.【解答】解:因为∠1+∠2=180°(已知)又因为∠2+∠DFE=180°(邻补角的意义)所以∠1=∠DFE(等量代换),所以AB∥EF(内错角相等,两直线平行),所以∠3=∠ADE(两直线平行,内错角相等)因为∠3=∠B(已知)所以∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行)∴∠AED=∠C(两直线平行,同位角相等).故答案为DFE,DFE,等量代换.5.(2018秋•鞍山期末)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为15°.(2)若∠COF=x°,求∠BOC的度数.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.6.(2018春•赣县区期末)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.【分析】(1)根据对顶角概念,延长DA、BA即可得;(2)根据同位角定义可得;(3)根据同旁内角定义求解可得;(4)由∠1=∠C知AE∥BC,据此可得∠DAB+∠B=180°,进一步求解可得.【解答】解:(1)如图,∠GAH即为所求;(2)∠1的同位角是∠DAB;(3)∠C的同旁内角是∠B和∠ADC;(4)因为∠1=∠C,所以AE∥BC.所以∠DAB+∠B=180°,又因为∠DAB=65°,所以∠B=115°.7.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【解答】解:(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°,∵∠BOM=45°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.8.(2018秋•兰州期末)如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.【分析】先利用角平分线定义得到∠3=∠ADC,∠2=∠ABC,而∠ABC=∠ADC,则∠3=∠2,加上∠1=∠2,则∠1=∠3,于是可根据平行线的判定得到DC∥AB.【解答】证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.9.(2018秋•桐梓县校级期中)已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.【分析】证明△CBA≌△FED,根据全等三角形的性质得到∠B=∠FED,根据平行线的判定定理证明.【解答】证明:∵AD=BE,∴AD+AE=BE+AE,即BA=ED,在△CBA和△FED中,,∴△CBA≌△FED(SSS),∴∠B=∠FED,∴BC∥EF.10.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.【分析】(1)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(2)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(3)根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;【解答】解:(1)AB∥CD,理由:延长EG交CD于H,∴∠HGF=∠EGF=90°,∴∠GHF+∠GFH=90°,∵∠BEG+∠DFG=90°,∴∠BEG=∠GHF,∴AB∥CD;(2)∠BEG+∠MFD=90°,理由:延长EG交CD于H,∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=2∠DFG,∴∠BEG+∠MFD=90°;(3)∠BEG+()∠MFD=90°,理由:∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=n∠DFG,∴∠BEG+∠MFG=∠BEG+()∠MFD=90°.11.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.【分析】(1)利用基本作图(作已知角的平分线)作∠BDC的平分线DE;(2)先根据角平分线的定义得到∠BDE=∠CDE,再利用三角形外角性质得∠BDC=∠A+∠ACD,加上∠ACD=∠A,则∠BDE=∠A,然后根据平行线的判定方法可判断DE∥BC.【解答】解:(1)如图,DE为所作;(2)DE∥AC.理由如下:∵DE平分∠BDC,∴∠BDE=∠CDE,而∠BDC=∠A+∠ACD,即∠BDE+∠CDE=∠A+∠ACD,∵∠ACD=∠A,∴∠BDE=∠A,∴DE∥BC.12.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.【分析】推出DG∥AC,根据平行线性质得出∠2=∠ACD,求出∠1=∠DCA,根据平行线判定推出即可.【解答】证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).13.(2018春•渠县期末)如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.【分析】由∠E=∠F,根据内错角相等,两直线平行得AE∥CF,根据平行线的性质得∠A=∠ADF,利用等量代换得到∠ADF=∠C,然后根据同位角相等,两直线平行可判定AD∥BC.【解答】证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.14.(2018春•大冶市期末)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.【分析】(1)根据两直线平行,同旁内角互补,即可得出∠C的度数;(2)根据AC∥DE,∠C=∠E,即可得出∠C=∠ABE,进而判定BE∥CD.【解答】解:(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.15.(2018春•新泰市期末)已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠CEF,求出∠D=∠CEF,根据平行线的判定得出即可.【解答】解:BD∥CE,理由是:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE16.(2018春•孝义市期末)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,【分析】依据PG平分∠BPQ,QH平分∠CQP,即可得到∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,依据∠1=∠2,可得∠GPQ=∠HQP,∠BPQ=∠CQP,进而得出QH∥PG,AB∥CD.【解答】解:AB∥CD,QH∥PG.理由:∵PG平分∠BPQ,QH平分∠CQP,∴∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,∵∠1=∠2,∴∠GPQ=∠HQP,∠BPQ=∠CQP,∴QH∥PG,AB∥CD.17.(2018春•邹城市期末)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB.(同旁内角互补,两直线平行.)∴∠1=∠3.(两直线平行,内错角相等.)又∵∠1=∠2,(已知)∴∠2=∠3.(等量代换)∴EF∥DB.(同位角相等,两直线平行.)【分析】由已知的一对同旁内角互补,利用同旁内角互补,两直线平行得出DG与AB平行,再由两直线平行内错角相等得到∠1=∠3,而∠1=∠2,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到EF与DB平行.【解答】证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴EF∥DB(同位角相等,两直线平行).故答案为:DG∥AB;同旁内角互补,两直线平行;两直线平行,内错角相等;∠2=∠3;等量代换;同位角相等,两直线平行.18.(2018•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.【分析】直接利用平行线的性质得出∠3的度数,再利用角平分线的定义结合平角的定义得出答案.【解答】解:∵直线AB∥CD,∴∠1=∠3∵∠1=54°,∴∠3=54°∵BC平分∠ABD,∴∠ABD=2∠3=108°,∵AB∥CD,∴∠BDC=180°﹣∠ABD=72°,∴∠2=∠BDC=72°.19.(2018•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.20.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.21.(2018秋•二道区期末)探究:如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE∥BC(已知)∴∠DEF=∠CFE(两直线平行,内错角相等)∵EF∥AB∴∠CFE=∠ABC(两直线平行,同位角相等)∴∠DEF=∠ABC(等量代换)∵∠ABC=65°∴∠DEF=65°应用:如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为180°﹣β(用含β的代数式表示).【分析】探究:依据两直线平行,内错角相等以及两直线平行,同位角相等,即可得到∠DEF=∠ABC,进而得出∠DEF的度数.应用:依据两直线平行,同位角相等以及两直线平行,同旁内角互补,即可得到∠DEF的度数.【解答】解:探究:∵DE∥BC(已知)∴∠DEF=∠CFE(两直线平行,内错角相等)∵EF∥AB∴∠CFE=∠ABC(两直线平行,同位角相等)∴∠DEF=∠ABC(等量代换)∵∠ABC=65°∴∠DEF=65°故答案为:已知;∠CFE;两直线平行,内错角相等;∠CFE;两直线平行,同位角相等;等量代换;65°.应用:∵DE∥BC∴∠ABC=∠D=β∵EF∥AB∴∠D+∠DEF=180°∴∠DEF=180°﹣∠D=180°﹣β,故答案为:180°﹣β.22.(2018秋•江海区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【解答】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.23.(2018•房山区二模)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.【分析】依据平行线的性质,即可得到∠ADB=∠DBC,再根据∠C=∠AED=90°,DB=DA,即可得到△AED≌△DCB,进而得到AE=CD.【解答】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD24.(2017秋•安岳县期末)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A 不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【分析】(1)依据平行线的性质,即可得到∠ACD的度数,再根据角平分线,即可得出∠ECF的度数;(2)依据平行线的性质,以及角平分线,即可得到∠APC=2∠AFC;(3)依据平行线的性质可得∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,进而得出∠ACE=∠DCF,依据∠PCD=∠ACD=70°,即可得出∠APC=70°.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.25.(2018秋•点军区期中)如图所示,折叠一个宽度相等的纸条,求∠1的度数.【分析】依据折叠以及平行线的性质,即可得出∠1=∠2,再根据三角形外角性质,即可得出结论.【解答】解:∵AB∥CD,∴∠1=∠3,由折叠可得∠2=∠3,∴∠1=∠2,又∵∠EFC=∠1+∠2,∴∠1=∠EFC=40°.26.(2018秋•道里区校级期中)如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?【分析】(1)依据平行线的性质,以及角平分线的定义,即可得到∠1+∠2=(∠ABD+∠BDC),进而得出结论;(2)依据角平分线定义以及(1)中的结论,即可得出∠1=54°,再根据平行线的性质,即可得到∠BFC的度数.【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°,(2)∵DE平分∠BDC,∴∠2=∠EDF=36°,又∵∠1+∠2=90°,∴∠1=54°,又∵AB∥CD,∴∠BFC=180°﹣∠1=180°﹣54°=126°.27.(2018秋•忻城县期中)如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.28.(2018秋•嘉祥县期中)如图1,已知过线段AB的两端作直线l1∥l2,作同旁内角的平分线交于点E,过点E作直线m分别和直线l1,12交于点D、C.(1)如图所示,当D、C在AB的同侧,且不与点A、B重合时,求证:AD+BC=AB.(2)当D、C在AB的异侧,且不与点A、B重合时,请在备用图上画出直线m,标出点D、C,并在图形下方直接写出AD、BC、AB之间的数量关系.不用说明理由.【分析】(1)延长BE与l1交于F,根据角平分线的定义得到∠BAE=∠F AE=∠BAD,∠ABE=ABC,根据全等三角形的性质得到BE=FE,AB=AF,根据全等三角形的性质得到BC=FD,于是得到AD+BC=AB;(2)方法同(1).【解答】(1)证明:延长BE与l1交于F,∵AE平分∠F AB,EB平分∠ABC,∴∠BAE=∠F AE=∠BAD,∠ABE=ABC,∵l1∥l2,∴∠BAD+∠ABC=180°,∴∠BAE+∠ABE=(BAD+∠ABC+=90°,∴∠AEB=90°,∴∠AEB=∠AEF=90°,在△AEB与△AEF中,∴△AEB≌△AEF,(ASA),∴BE=FE,AB=AF,即AD+FD=AB,∵l1∥l2,∴∠CBE=∠DFE,在△CBE与△DFE中,,∴△CBE≌△DFE(ASA),∴BC=FD,∴AD+BC=AB;(2)如备用图1,BC﹣AD=AB;如备用图2,AD﹣BC=AB.29.(2018秋•南岗区期中)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.【分析】依据平行线的性质,即可得到∠C=∠CEF,依据∠CEF=∠D,即可得到BD∥CE,进而得出∠3=∠4,再根据对顶角相等,即可得到∠2=∠1.【解答】证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.30.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.【分析】首先求出∠MGN,再根据角平分线的定义可得∠MGH.【解答】解:∵MG⊥EF,∴∠GME=90°,∴∠BMG=90°﹣∠EMB=50°,∵AB∥CD,∴∠BMG=∠MGN=50°,∴∠MGD=130°,∵GH平分∠MGD,∴∠MGH=∠MGD=65°.31.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAE.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解答】解:(1)∵ED∥BC,∴∠C=∠DAE,故答案为:∠DAE;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.32.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=50°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.【分析】(1)根据平行线的性质即可得到结论;(2)过点P作PG∥AB,根据平行线的性质即可得到结论;(3)过点P作PG∥CD,根据平行线的性质即可得到结论.【解答】解:(1)∵AB∥CD,∴∠α=50°,故答案为:50;(2)∠α=∠1+∠2,证明:过点P作PG∥∵AB∥CD,∴PG∥CD,∴∠2=∠3,∠1=∠4,∴∠α=∠3+∠4=∠1+∠2;(3)∠α=∠2﹣∠1,证明:过点P作PG∥CD,∵AB∥CD,∴PG∥AB,∴∠2=∠EPG,∠1=∠3,∴∠α=∠EPG﹣∠3=∠2﹣∠1.33.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.【分析】(1)①过点作BG∥AM,则AM∥CN∥BG,依据平行线的性质,即可得到∠ABG+∠BAM =180°,∠CBG+∠BCN=180°,即可得到∠MAB+∠ABC+∠BCN=360°;②过E作EP∥AM,过F作FQ∥CN,依据平行线的性质,即可得到∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°,即可得到∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)过n个点作AM的平行线,则这些直线互相平行且与CN平行,即可得出所有角的和为(n+1)•180°.【解答】解:(1)①证明:如图1,过点作BG∥AM,则AM∥CN∥BG∴∠ABG+∠BAM=180°,∠CBG+∠BCN=180°∴∠ABG+∠BAM+∠CBG+∠BCN=360°∴∠MAB+∠ABC+∠BCN=360°②如图,过E作EP∥AM,过F作FQ∥CN,∵AM∥CN,∴EP∥FQ,∴∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°∴∠MAE+∠AEF+∠EFC+∠FCN=180°×3=540°;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°.证明:如图2,过n个点作AM的平行线,则这些直线互相平行且与CN平行,∴所有角的和为(n+1)•180°.34.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED =∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.35.(2018春•安庆期末)如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD 是何种位置关系?【分析】(1)根据平行线的判定证明即可;(2)根据平行线的性质解答即可;(3)根据平行线的性质和角平分线的性质解答即可.【解答】解:(1)AB∥CD,∵AD∥BC,∴∠A+∠ABC=180°,∵∠A=50°,∴∠ABC=130°,∵∠C=50°,∴∠C+∠ABC=180°,∴AB∥CD;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3.(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∴∠ABE=∠DBC,∵BE平分∠ABF,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE⊥AD.中小学教育资源及组卷应用平台21世纪教育网。

(易错题精选)初中数学相交线与平行线知识点总复习有答案解析

(易错题精选)初中数学相交线与平行线知识点总复习有答案解析

(易错题精选)初中数学相交线与平行线知识点总复习有答案解析一、选择题1.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.7.如图,直线a ∥b ,直角三角开的直角顶点在直线b 上,一条直角边与直线a 所形成的∠1=55°,则另外一条直角边与直线b 所形成的∠2的度数为( )A .25°B .30°C .35°D .40°【答案】C【解析】如图所示:∵直线a ∥b ,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C .8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.9.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D .【答案】D【解析】【分析】 根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30°B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.13.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.14.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°【答案】D【解析】【分析】过点C作CF∥AB,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C作CF∥AB∵AB∥DE,CF∥AB∴AB∥DE∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD=∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.16.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A .①B .②C .③D .④【答案】B【解析】【分析】 依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .17.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.18.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.19.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.。

中考数学总复习训练 平行线的判定与性质(含解析)(2021-2022学年)

中考数学总复习训练 平行线的判定与性质(含解析)(2021-2022学年)

平行线的判定与性质1.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有个.2.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有()A.4对B.8对C.12对ﻩ D.16对3.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求证:AB∥EF.4.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.5.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;ﻬ(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?6.如图所示,已知AB∥CD,EF交AB于M交CD于F,MN⊥EF于M,MN交CD于N,若∠BME=110°,则∠MND=.7.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2﹣∠3=90°,∠4=115°,那么∠3=.8.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=度.9.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.ﻬ10.如图,下列条件中,不能判断直线l1∥l2的是( )A.∠1=∠3ﻩ B.∠2=∠3ﻩ C.∠4=∠5D.∠2+∠4=180°11.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有( )A.1条ﻩB.2条 C.3条D.4条12.已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是()A.①③ﻩB.②④C.①③④ﻩD.①②③④13.如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个ﻩB.5个 C.4个ﻩD.2个14.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.15.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.16.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是.17.若平面上4条直线两两相交且无三线共点,则共有同旁内角对.18.如图,已知l1∥l2,AB⊥l1,∠ABC=130°,则∠α= .19.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.20.如图,D、G是△ABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( )A.4对ﻩ B.5对ﻩC.6对 D.7对21.如图,若AB∥CD,则( )A.∠1=∠2+∠3B.∠1=∠3﹣∠2C.∠1+∠2+∠3=180°ﻩD.∠l﹣∠2+∠3=180°22.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°B.270°ﻩ C.360°ﻩ D.450°23.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°24.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.25.如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α26.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?27.如图,直线CB∥OA,∠C=∠BAO=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.平行线的判定与性质参考答案与试题解析1.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有 3 个.【考点】平行线的性质;余角和补角.【分析】本题考查互余的概念,和为90度的两个角互为余角,结合图形和平行线的性质作答.【解答】解:AB∥CD,AC⊥BC,则图中与∠CAB互余的角有3个,∠CBA,∠BCD,和∠CBA的对顶角.【点评】此题属于基础题,较简单,主要记住互为余角的两个角的和为90度.2.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有( )A.4对ﻩ B.8对 C.12对D.16对【考点】同位角、内错角、同旁内角.【专题】几何图形问题.【分析】每一个“三线八角"基本图形都有两对同旁内角,从对原图形进行分解入手可知同旁内角共有对数.【解答】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;ﻬ直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故选D.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.3.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求证:AB∥EF.【考点】平行线的判定与性质.【专题】证明题.【分析】解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角"或作出与AB或CD平行的直线,利用平行线的性质和判定求证.【解答】解:过C点作CG∥AB,过点D作DH∥AB,则CG∥DH,∵∠B=25°,∴∠BCG=25°,∵∠BCD=45°,∴∠GCD=20°,∵CG∥HD,∴∠CDH=20°,∵∠CDE=30°,∴∠HDE=10°∴∠HDE=∠E=10°,∴DH∥EF,∴DH∥AB,∴AB∥EF.【点评】此题考查平行线的判定和性质,辅助线是常见的作法,证明过程注意选用有用的条件作为证明的依据.4.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.【考点】平行线的性质;垂线.【分析】先运用垂直于同一条直线的两直线平行,得出∠BDF=∠BCE,∠FDE=∠DEC,再根据平行线的性质得出∠DEC=∠ACE,然后利用角平分线等量代换即可得出两角的关系.【解答】解:∠EDF=∠BDF.∵CE⊥AB于E,DF⊥AB于F∴DF∥CE (垂直于同一条直线的两直线平行),∴∠BDF=∠BCE (两直线平行,同位角相等),∠FDE=∠DEC(两直线平行,内错角相等)又∵AC∥ED,∴∠DEC=∠ACE(两直线平行,内错角相等),∵CE是∠ACB的角平分线,∴∠ACE=∠ECB(角平分线的定义),∴∠EDF=∠BDF(等量代换).【点评】本题主要运用了平行线的性质和垂线的性质,解答本题的关键是熟练掌握平行线的性质:两直线平行内错角、同位角相等.ﻬ5.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?【考点】平行线的判定与性质.【分析】已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.【解答】解:(1)过E作EF∥AB,则∠B=∠BEF,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)若∠B+∠D=∠E,由EF∥AB,∴∠B=∠BEF,∵∠E=∠BEF+∠DEF=∠B+∠D,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(3)若将点E移至图b所示位置,过E作EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∠E+∠B+∠D=360°;(4)∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B;(5)∵AB∥CD,∴∠E+∠G=∠B+∠F+∠D;(6)由以上可知:∠E1+∠E2+…+∠E n=∠B+∠F1+∠F2+…+∠Fn﹣1+∠D;【点评】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.6.如图所示,已知AB∥CD,EF交AB于M交CD于F,MN⊥EF于M,MN交CD于N,若∠BME=110°,则∠MND=20° .【考点】平行线的性质.【分析】根据对顶角相等求出∠AMF,再求出∠AMN,然后根据两直线平行,内错角相等求解即可.【解答】解:∵∠BME=110°,∴∠AMF=∠BME=110°,∵MN⊥EF于M,∴∠NMF=90°,∴∠AMN=∠AMF﹣∠NMF=110°﹣90°=20°,∵AB∥CD,∴∠MND=∠AMN=20°.故答案为:20°.【点评】本题考查了平行线的性质,对顶角相等的性质,以及垂直的定义,是基础题,熟记性质并准确识图是解题的关键.7.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2﹣∠3=90°,∠4=115°,那么∠3= 65°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1+∠3=90°,∠2﹣∠3=90°,可得∠1+∠2=180°,则可得出a∥b,根据同旁内角互补即可得出答案.【解答】解:∵∠1+∠3=90°,∠2﹣∠3=90°,∴∠1+∠2=180°,∴∠1的对顶角+∠2=180°,∴a∥b,∴∠3+∠4的对顶角=180°,∵∠4=115°,∴∠3=180°﹣∠4=65°,故答案为:65°.【点评】本题考查了平行线的判定与性质,属于基础题,关键是正确理解与运用平行线的判定与性质.8.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=40度.ﻬ【考点】平行线的性质.【专题】计算题.【分析】过点F作EF∥AB,由平行线的性质可先求出∠3与∠4,再利用平角的定义即可求出∠α.【解答】解:如图,过点F作EF∥AB,∴∠1+∠3=180°.∵∠1=100°,∴∠3=80°.∵AB∥CD,∴CD∥EF,∴∠4+∠2=180°,∵∠2=120°,∴∠4=60°.∴∠α=180°﹣∠3﹣∠4=40°.故应填40.【点评】本题的难点在于用辅助线构造平行线;关键点在于利用平行线的性质进行角的转化.9.已知两个角的两边分别平行,其中一个角为40°,那么另一角是 40或140 度.【考点】平行线的性质.【分析】两个角的两边分别平行,则两个角可能是同位角,也可能是同旁内角,所以应分情况讨论.【解答】解:当两个角是同位角时,则另一个角也等于40°;若两个角是同旁内角时,则另一个角是140°.故应填:40或140.【点评】会利用平行线性质求解角的大小,能够分析讨论一些简单的问题.ﻬ10.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3ﻩ C.∠4=∠5D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.11.已知线段AB=10cm,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有( )A.1条 B.2条ﻩ C.3条D.4条【考点】点到直线的距离.【分析】根据从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.画出图形进行判断.【解答】解:在线段AB的两旁可分别画一条满足条件的直线;作线段AB的垂线,将线段AB分成6cm,4cm两部分,所以符合条件的直线l有3条,故选C.【点评】此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.12.已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是( )A.①③ﻩB.②④ﻩC.①③④ D.①②③④【考点】平行线的判定;对顶角、邻补角.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:①∵∠1=∠2,∴a∥b(同位角相等,两直线平行).②∵∠3=∠6,∴a∥b(内错角相等,两直线平行).③∵∠4+∠7=180°,∵∠4=∠6(对顶角相等),∴∠6+∠7=180°,∴a∥b(同旁内角互补,两直线平行).④同理得,a∥b(同旁内角互补,两直线平行).故选D.【点评】正确识别“三线八角"中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个ﻩB.5个C.4个 D.2个【考点】平行线的性质.ﻬ【分析】由AB∥EF得∠FEG=∠1,由EG∥DB可得∠DBG=∠1;设BD与EF相交于点P,由AB∥EF得到∠FPB=∠DBG=∠1,∠DPE=∠DBG=∠1,又AB∥DC可以得到∠CDB=∠DBG=∠1,由此得到共有5个.【解答】解:∵AB∥EF,∴∠FEG=∠1,∵EG∥DB,∴∠DBG=∠1,设BD与EF相交于点P,∵AB∥EF,∴∠FPB=∠DBG=∠1,∠DPE=∠DBG=∠1,∵AB∥DC,∴∠CDB=∠DBG=∠1.∴共有5个.故选B.【点评】本题主要利用了由平行得到的内错角相等以及同位角相等,注意不要漏解.14.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.【考点】平行线的性质.【专题】探究型.【分析】由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.【解答】证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).【点评】本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.15.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.【考点】平行线的判定与性质.【专题】证明题.【分析】由已知易得∠1=∠BDC,则AE∥CF,所以∠EBC=∠BCD,又∠BAD=∠BCD,故∠EBC=∠BAD,可得AD∥BC,再用角平分线的定义和平行线的性质求证即可.【解答】证明:∵∠1十∠2=180°,∠1+∠EBD=180°,∴∠2=∠EBD,∴AE∥CF,∴∠FDB=∠DBE,∠BAD=∠ADF,又∵∠BAD=∠BCD,∴∠BCD=∠ADF,∴AD∥BC,∴∠DBC=∠BDA=∠FDB=∠DBE,∴BC平分∠DBE.ﻬ【点评】此题考查了平行线的判定和性质,综合利用了角平分线的定义,要充分利用已知条件.16.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是垂直.【考点】垂线;平行线.【专题】压轴题;规律型.【分析】a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.根据此规律可求a1与a2002的位置关系是垂直.【解答】解:∵a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.∴(2002﹣1)÷4=500余1,故答案为:垂直.【点评】本题难点在规律的探索,要认真观察即可得出规律.17.若平面上4条直线两两相交且无三线共点,则共有同旁内角24对.【考点】同位角、内错角、同旁内角.【专题】几何图形问题.【分析】一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有3×4=12条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.【解答】解:∵平面上4条直线两两相交且无三线共点,∴共有3×4=12条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角12×2=24对.故答案为:24.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.ﻬ18.如图,已知l1∥l2,AB⊥l1,∠ABC=130°,则∠α=40°.【考点】平行线的性质.【专题】计算题.【分析】过点B作EF∥l1∥l2,再根据平行线的性质不难求得∠α的度数.【解答】解:过点B作EF∥l1∥l2∵EF∥l1∥l2,AB⊥l1∴∠ABF=90°∵∠ABC=130°∴∠FBC=40°∵EF∥l1∥l2∴∠FBC=∠α=40°故答案为:40°【点评】此题主要考查平行线的性质定理:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.19.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是40°.【考点】平行线的性质;三角形的外角性质;多边形内角与外角.【专题】计算题.【分析】作辅助线:延长PM、EG交于点K;PM延长线交AB于点L.利用平行线性质进行求解.【解答】解:辅助线延长PM、EG交于点K,PM延长线交AB于点L.如图:∵AB∥CD,∴∠ALM=∠LND=50°;∴∠MKG=∠BFG+∠ALM=80°.∵∠HMN=30°,∴∠HMK=150°;∵∠FGH=90°,∴∠GHM=360°﹣∠HMK﹣∠MKG﹣∠MGH=360°﹣150°﹣80°﹣90°=40°.【点评】考查了平行线的性质的应用.本题综合性较强.20.如图,D、G是△ABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( )A.4对B.5对 C.6对D.7对【考点】平行线的性质.【分析】可利用平行线内错角相等,同位角相等的性质得出图中相等的角.【解答】解:由DE∥BC,可得∠ADE=∠ABC,∠AED=∠ACB,∠EDC=∠DCB,由GH∥DC,可得∠BDC=∠BGH,∠HGD=∠ADC,∠DCB=∠GHB,∵∠EDC=∠DCB,∠DCB=∠GHB,∴∠EDC=∠BHG,∴题中共有7对相等的角.故选D.【点评】本题主要考查平行线的性质,即同位角相等,内错角相等,所以熟练掌握平行线的性质.21.如图,若AB∥CD,则( )A.∠1=∠2+∠3 B.∠1=∠3﹣∠2C.∠1+∠2+∠3=180°ﻩD.∠l﹣∠2+∠3=180°【考点】平行线的性质.【分析】先根据平行线的性质由AB∥CD得到∠3=∠4,再根据三角形外角性质得∠1=∠2+∠4,等量代换后得到∠1=∠2+∠3.【解答】解:延长BA交EC于F,如图,∵AB∥CD,∴∠3=∠4,∵∠1=∠2+∠4,∴∠1=∠2+∠3.故选A.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.22.如图:已知AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于()A.180°ﻩB.270°C.360°D.450°【考点】平行线的性质.【专题】计算题.【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF的度数即可.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF﹣∠HEF=360°﹣90°=270°.故选B.【点评】本题主要考查了平行线的性质:两直线平行同旁内角互补.23.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( )A.β=α+γﻩB.α+β+γ=180° C.α+β﹣γ=90°ﻩ D.β+γ﹣α=180°【考点】平行线的性质.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.【点评】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.24.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.【考点】平行线的性质;三角形的外角性质.【分析】可过点O作OM∥CD,利用内错角相等,再通过转化即可得出结论.【解答】解:∠HOP=∠AGF﹣∠HPO,过点O作OM∥CD,如图,则∠AGF=∠HOM,∠HPO=∠POM,∠HOP=∠HOM﹣∠POM,∴∠HOP=∠AGF﹣∠HPO.【点评】本题主要考查平行线的性质,能够熟练运用平行线的性质求解角之间的关系问题.25.如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α【考点】平行线的判定与性质;多边形内角与外角.【专题】证明题.【分析】此题的关键是过点C作AB的平行线,再利用平行线的性质和判定,得出∠A+∠E=180°,∠B+∠C+∠D=360°,即可证明.【解答】证法1:∵AB∥ED,∴α=∠A+∠E=180°(两直线平行,同旁内角互补)过C作CF∥AB(如图1)∵AB∥ED,∴CF∥ED(平行于同一条直线的两条直线平行)∵CF∥AB,∴∠B=∠1,(两直线平行,内错角相等)又∵CF∥ED,∴∠2=∠D,(两直线平行,内错角相等)∴β=∠B+∠C+∠D=∠1+∠BCD+∠2=360°(周角定义)∴β=2α(等量代换)证法2:∵AB∥ED,∴α=∠A+∠E=180°(两直线平行,同旁内角互补)过C作CF∥AB(如图2)∵AB∥ED,∴CF∥ED(平行于同一条直线的两条直线平行)∵CF∥AB,∴∠B+∠1=180°,(两直线平行,同旁内角互补)又∵CF∥ED,∴∠2+∠D=180°,(两直线平行,同旁内角互补)∴β=∠B+∠C+∠D=∠B+∠1+∠2+∠D=180°+180°=360°,∴β=2α(等量代换)【点评】此题考查平行线的判定和性质,辅助线的作法很关键,也是常见作法,需掌握.26.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,21,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?【考点】平行线;相交线.【专题】规律型.【分析】从平行线的角度考虑,先考虑六条直线都平行,再考虑五条、四条,三条,二条直线平行,都不平行作出草图即可看出.ﻬ从画出的图形中归纳规律即可得到答案.【解答】解:(1)如图1所示;交点共有6个,(2)如图2,3.(3)当n=6时,必须有6条直线平行,都与一条直线相交.如图4,当n=21时,必须使7条直线中的每2条直线都相交(即无任何两条直线平行)如图5,当n=15时,如图6,(4)当我们给出较多答案时,从较多的图形中,可以总结出以下规律:①当7条直线都相互平行时,交点个数是0,这是交点最少,②当7条直线每两条均相交时,交点个数为21,这是交点最多.ﻬ【点评】此题主要考查了平行线与相交线,关键是根据一定的规律画出图形,再再根据图形归纳规律.27.如图,直线CB∥OA,∠C=∠BAO=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质;三角形内角和定理;角平分线的性质;平移的性质.【专题】几何图形问题.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,再根据角平分线的定义求出∠EOB=∠AOC,代入数据即可得解;(2)根据两直线平行,内错角相等可得∠OBC=∠BOA,从而得到∠OBC=∠FOB,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OFC=2∠OBC,从而得解;(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣120°=60°,∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠AOC=×60°=30°;(2)∠OBC:∠OFC的值不会发生变化,为1:2,ﻬ∵CB∥OA,∴∠OBC=∠BOA,∵∠FOB=∠AOB,∴∠OBC=∠FOB,∴∠OFC=∠OBC+∠FOB=2∠OBC,∴∠OBC:∠OFC=1:2;(3)当平行移动AB至∠OBA=45°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵∠OEC=∠CBO+∠EOB=x+30°,∠OBA=180°﹣∠A﹣∠AOB=180°﹣120°﹣x=60°﹣x,∴x+30°=60°﹣x,∴x=15°,∴∠OEC=∠OBA=60°﹣15°=45°.【点评】本题考查了平行线的性质,平移的性质,角平分线的定义,三角形的内角和定理,图形较为复杂,熟记性质并准确识图是解题的关键.。

北师大版数学八年级上册期末考试考前复习高频考点专题练习一遍过:《平行线性质》(二)

北师大版数学八年级上册期末考试考前复习高频考点专题练习一遍过:《平行线性质》(二)

八年级上册期末考试考前复习高频考点专题练习一遍过:《平行线性质》(二)1.如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G作GQ ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.2.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.3.如图1,已知直线l 1∥l 2,且l 3和l 1、l 2分别相交于A 、B 两点,l 4和l 1、l 2分别交于C 、D 两点,∠ACP 记作∠1,∠BDP 记作∠2,∠CPD 记作∠3.点P 在线段AB 上.(1)若∠1=20°,∠2=30°,请你求出∠3的度数.(2)请你根据上述问题,请你找出图1中∠1、∠2、∠3之间的数量关系,并说明理由.(3)如果点P 在直线l 3上且在A 、B 两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P 和A 、B 两点不重合),写出你的结论并说明理由.4.已知AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,过点B 作BD ⊥AM 于点D ,∠BAD 与∠C 有何数量关系,并说明理由;(2)如图2,在(1)问的条件下,点E ,F 在DM 上,连接BE ,BF ,CF ,若BF 平分∠DBC ,BE 平分∠ABD ,∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠ABE 的度数.5.已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.6.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M 的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为°(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数.②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).7.如图把一个含有30°角的直角三角板的直角顶点A放在直线a上,a∥b,B、C两点在平面上移动,请根据如下条件解答:(1)如图1,若点C在直线b上,点B在直线b的下方,∠2=20°,则∠1=;(2)如图2,若点C在平行直线a,b内部,点B在直线b的下方,∠2=n°,求∠1的度数.8.如图,AB∥CD,直线EF交直线AB、CD于点M、N,NP平分∠ENC交直线AB于点P,∠EMB =76°.(1)求∠PNC的度数;(2)若PQ将∠APN分成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.9.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若α=90°,判断入射光线EF与反射光线GH的位置关系,并说明理由.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)10.如图,AB∥CD,点E在直线CD上,射线EF经过点B,BG平分∠ABE交CD于点G.(1)求证:∠BGE=∠GBE;(2)若∠DEF=70°,求∠FBG的度数.参考答案1.解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵GE平分∠AEF,GF平分∠EFC,∴∠AEG=∠FEG=∠AEF,∠CFG=∠GFE=∠CFE,∴∠FEG+∠GFE=90°,即EG⊥FG;(2)∵分别过M,N作MG∥AB,NH∥AB,∵AB∥CD,∴AB∥MG∥NH∥CD,∴∠AEM=∠EMG,∠GMF=∠MFC,∠AEN=∠ENH,∠HNF=∠NFC,∴∠EMF=∠AEM+∠MFC,∠ENF=∠AEN+∠NFC,同理:∠EPF=∠AEP+∠PFC,∴∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,∵EM平分∠AEN,FN平分∠MFC,∴∠AEM=∠AEN,∠NFC=∠MFC,∴∠EMF+∠ENF=∠AEN+∠MFC+∠MFC+∠AEN=(∠MFC+∠AEN),∵∠AEP=∠AEF,∠CFP=∠EFC,∴∠MFC+∠AEN=(∠AEF+∠EFC)=×180°=72°,∴∠EMF+∠ENF=(∠MFC+∠AEN)=×72°=108°;(3)∠FGQ=∠EHF.证明:∵AB∥CD,∴∠EHF+∠CFH=180°,∵GQ⊥MF,∴∠FGQ=90°﹣∠GFQ,∵FG平分∠EFH,MF平分∠EFC,∴∠GFE=∠EFH,∠QFE=∠CFE,∴∠GFQ=∠CFH=(180°﹣∠EHF)=90°﹣∠EHF,∴∠FGQ=90°﹣(90°﹣∠EHF)=∠EHF.2.解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.3.解:(1)∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=50°;(2)∠1+∠2=∠3,理由:∵l 1∥l 2,∴∠1+∠PCD +∠PDC +∠2=180°,在△PCD 中,∠3+∠PCD +∠PDC =180°,∴∠1+∠2=∠3;(3)当P 点在A 的外侧时,如图2,过P 作PF ∥l 1,交l 4于F ,∴∠1=∠FPC ,∵l 1∥l 4, ∴PF ∥l 2,∴∠2=∠FPD ,∵∠3=∠FPD ﹣∠FPC ,∴∠3=∠2﹣∠1,当P 点在B 的外侧时,如图3,过P 作PG ∥l 2,交l 4于G , ∴∠2=∠GPD ,∵l 1∥l 2,∴PG ∥l 1,∴∠1=∠CPG ,∵∠3=∠CPG ﹣∠GPD ,∴∠3=∠1﹣∠2.4.解:(1)如图1,过点B 作BG ∥DM ,∵BD ⊥AM ,∴∠ABD +∠BAD =90°,DB ⊥BG ,即∠ABD +∠ABG =90°, 又∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如图2,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=9°,∴∠ABE=9°.5.解:(1)过A作AQ∥EM,∴∠E+∠EAQ=180°,∵EM∥BN,∴AQ∥BN,∴∠QAB+∠B=180°,∵∠EAB=∠EAQ+∠QAB,∴∠E+∠EAB+∠B=360°;(2)①由(1)知∠AEM+∠A+∠ABN=360°,∵∠A=120°,∠AEM=140°,∴∠ABN=100°,∵∠AEM与∠ABN的角平分线相交于点F,∴∠DEF=70°,∠FBC=50°,∵EM∥BN,∴∠EDF=∠FBC=50°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣70°﹣50°=60°,故答案为60°;②由(1)知∠AEM+∠A+∠ABN=360°,∴∠ABN=360°﹣∠AEM﹣∠A,∵∠AEM与∠ABN的角平分线相交于点F,∴∠DEF=∠AEM,∠FBC=∠ABN,∵EM∥BN,∴∠EDF=∠FBC=∠ABN,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣∠AEM﹣∠ABN=180°﹣(360°﹣∠A)=∠A,即∠A=2∠EFD;(3)设∠EFD=x,则∠A=2x,由题意得4•2x=3(90+x),解得x=54°,答:∠EFB的度数为54°.6.解:(1)设∠H的4系补周角的度数为x°,根据新定义得,120+4x=360,解得,x=60,∠H的4系补周角的度数为60°,故答案为60;(2)①过E作EF∥AB,如图1,∴∠B=∠BEF,∵AB∥CD,∴EF∥CD,∠D=60°,∴∠D=∠DEF=60°,∵∠B+60°=∠BEF+∠DEF,即∠B+60°=∠BED,∵∠B是∠BED的3系补周角,∴∠BED=360°﹣3∠B,∴∠B+60°=360°﹣3∠B,∴∠B=75°;②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.7.解:由题意可知:∠BAC=90°,∠B=30°,则∠ACB=60°.(1)如图1,∵a∥b,∴∠1=∠3,∵∠2+∠3=∠ACB=60°,∠2=20°,∴∠3=40°,故答案为40°;(2)如图2,过C作c∥a,∴∠1=∠4,∵a∥b,∴c∥b,∴∠2=∠5,∵∠4+∠5=∠ACB=60°,∴∠1+∠2=60°,∵∠2=n°,∴∠1=(60﹣n)°.8.解:(1)∵AB∥CD,∴∠END=∠EMB=76°,∴∠ENC=180°﹣∠END=104°,∵NP平分∠ENC,∴∠PNC=ENC=52°;(2)∵∠APQ:∠QPN=1:3,∴∠QPN=3∠APQ,∵AB∥CD,∴∠MPN=∠PNC=52°,∴∠APN=180°﹣∠MPN=128°,∴∠APQ+∠QPN=128°,∴4∠APQ=128°,∴∠APQ=32°,∴∠PQD=∠APQ=32°.则∠PQD的度数为32°.9.解:(1)EF∥GH,理由如下:在△BEG中,∠2+∠3+α=180°,α=90°,∴∠2+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∵∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,∴∠FEG+∠EGH=180°,∴EF∥GH;(2)β=2α﹣180°,理由如下:在△BEG中,∠2+∠3+α=180°,∴∠2+∠3=180°﹣α,∵∠1=∠2,∠1=∠MEB,∴∠2=∠MEB,∴∠MEG=2∠2,同理可得,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,∴β=180°﹣(∠MEG+∠MGE)=180°﹣(2∠2+2∠3)=180°﹣2(∠2+∠3)=180°﹣2(180°﹣α)=2α﹣180°;(3)90°+m或150°.理由如下:①当n=3时,如下图所示:∵∠BEG=∠1=m,∴∠BGE=∠CGH=60°﹣m,∴∠FEG=180°﹣2∠1=180°﹣2m,∠EGH=180°﹣2∠BGE=180°﹣2(60°﹣m),∵EF∥HK,∴∠FEG+∠EGH+∠GHK=360°,则∠GHK=120°,则∠GHC=30°,由△GCH内角和,得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,如下图所示:根据三角形外角定义,得∠G=γ﹣60°,由EF∥HK,且由(1)的结论可得,∠G=γ﹣60°=90°,则γ=150°.综上所述:γ的度数为:90°+m或150°.10.解:(1)证明:∵AB∥CD,∴∠ABG=∠BGE,∵BG平分∠ABE,∴∠ABG=∠GBE,∴∠BGE=∠GBE;(2)∵AB∥CD,∴∠ABE=∠DEF=70°,∴∠ABF=180°﹣∠ABE=110°,∵BG平分∠ABE,∴∠ABG=ABE=35°,∴∠FBG=∠ABF+∠ABG=110°+35°=145°.答:∠FBG的度数为145°.。

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

一、选择题1.下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a∥b,b⊥c,那么a⊥c,其中真命题的个数是()A.4个B.3个C.2个D.以上都不对B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.3.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒D解析:D【分析】 如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】如图,过点C 作//CF AB ,//AB DE ,////AB DE CF ∴,,180BCF B DCF D ∴∠=∠∠+∠=︒,50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒,故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键. 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.5.在同一平面内,有3条直线a,b,c,其中直线a与直线b相交,直线a与直线c平行,那么b与c的位置关系是()A.平行B.相交C.平行或相交D.不能确定B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确;C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确;故选C .考点:平行线的判定.8.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

2023年中考数学二轮复习之相交线与平行线(含解析)

2023年中考数学二轮复习之相交线与平行线(含解析)

2023年中考数学二轮复习之相交线与平行线一.选择题(共10小题)1.(2022秋•鄞州区期末)下列说法中,正确的是( )A.相等的角是对顶角B.若AB=BC,则点B是线段AC的中点C.在同一平面内,过一点有且仅有一条直线垂直于已知直线D.一个锐角的补角大于等于该锐角的余角2.(2022秋•慈溪市期末)下列四个说法:①两点确定一条直线;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离,其中正确的说法的个数是( )A.1B.2C.3D.43.(2022秋•南安市期末)下列图形中,∠1和∠2是同位角的是( )A.B.C.D.4.(2022秋•微山县期末)下列说法:①把一个角分成两个角的射线叫角的平分线;②两点确定一条直线;③若线段AM等于线段BM,则点M是线段AB的中点;④垂线段最短.其中正确的是( )A.①③B.②④C.②③D.①④5.(2023•碑林区校级模拟)如图,AB∥CD,CE平分∠BCD,若∠ABC=58°,则∠ECD 的度数为( )A.39°B.29°C.38°D.28°6.(2022秋•宜阳县期末)下列说法错误的是( )A.对顶角相等B.两直线平行,内错角相等C.立方等于本身的数只有两个D.两点之间线段最短7.(2022秋•孟村县校级期末)平面内两两相交的6条直线,交点个数最少为m个,最多为n个,则m+n等于( )A.12B.16C.20D.228.(2022秋•榕城区期末)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为( )A.100°B.110°C.120°D.130°9.(2022秋•龙华区期末)如图,A,B,C,D,E分别在∠MON的两条边上,若∠1=20°,∠2=40°,∠3=60°,AB∥CD,BC∥DE,则下列结论中错误的是( )A.∠4=80°B.∠BAO=100°C.∠CDE=40°D.∠CBD=120°10.(2022秋•抚州期末)如图,AB∥CD,AE平分∠BAC,若∠AEC=66°,则∠C的度数为( )A.42°B.44°C.46°D.48°二.填空题(共8小题)11.(2022秋•宜阳县期末)如图,直线AB、CD相交于点O,OE⊥CD,∠EOB=25°,则∠AOD= .12.(2022秋•丰泽区期末)如图,AB⊥CD于点O,OE平分∠AOC,若∠BOF=20°,则∠EOF的度数为 .13.(2022秋•岳阳县期末)在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,AB=10,则点C到AB的距离为 .14.(2022秋•卫辉市期末)如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2= 度.15.(2022秋•徐州期末)如图,将长方形纸条折叠,若∠1=50°,则∠2= °.16.(2022秋•镇平县期末)如图,点O在直线AB上,OC⊥OD.若∠AOC=125°,则∠BOD = 度.17.(2022秋•海口期末)如图,直线l2、l3被直线l1所截,∠CAB和∠DAB的角平分线与直线l3分别交于点E、F,若l2∥l3,∠AEF=56°,则∠AFE= 度.18.(2022秋•湘潭县期末)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠2=67°30',那么∠1= .三.解答题(共3小题)19.(2022秋•连平县校级期末)填空,将本题补充完整.如图,已知EF∥AD,∠1=∠2,∠BAC=75°,将求∠AGD的过程填写完整.解:∵EF∥AD(已知),∴∠2= ,又∵∠1=∠2(已知),∴∠1= (等量代换),∴AB∥GD( ),∴∠BAC+ =180°( ),∵∠BAC=75°(已知),∴∠AGD= °.20.(2022秋•海口期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE于点O.(1)若∠COF=2∠DOF,求∠BOE的度数;(2)试说明∠AOF=∠BOC.21.(2023•市北区校级开学)如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.2023年中考数学二轮复习之相交线与平行线参考答案与试题解析一.选择题(共10小题)1.(2022秋•鄞州区期末)下列说法中,正确的是( )A.相等的角是对顶角B.若AB=BC,则点B是线段AC的中点C.在同一平面内,过一点有且仅有一条直线垂直于已知直线D.一个锐角的补角大于等于该锐角的余角【考点】对顶角、邻补角;两点间的距离;余角和补角.【专题】线段、角、相交线与平行线;应用意识.【分析】根据对顶角相等,线段中点及垂线与余角和补角的关系依次判断即可.【解答】解:A.相等的角不一定是对顶角,选项错误,不符合题意;B.若AB=BC,则点B不一定是线段AC的中点,当点A、B、C不在同一直线上时,选项错误,不符合题意;C.在同一平面内,过一点有且仅有一条直线垂直于已知直线,正确,符合题意;D.一个锐角的补角大于该锐角的余角,选项错误,不符合题意;故选:C.【点评】本题考查对顶角相等,线段中点及垂线与余角和补角的关系,熟练掌握这些基础知识点是解题关键.2.(2022秋•慈溪市期末)下列四个说法:①两点确定一条直线;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离,其中正确的说法的个数是( )A.1B.2C.3D.4【考点】点到直线的距离;直线的性质:两点确定一条直线;垂线;垂线段最短.【专题】线段、角、相交线与平行线;推理能力.【分析】根据两点确定一条直线,垂线的性质,垂线段最短,点到直线的距离的定义,逐项分析即可求解.【解答】解:①两点确定一条直线,正确,符合题意;②同一平面内,过直线上一点有且只有一条直线垂直于已知直线,不正确,不符合题意;③连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,符合题意;④从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不正确,不符合题意.故选:B.【点评】本题考查了两点确定一条直线,垂线的性质,垂线段最短,点到直线的距离的定义,掌握以上知识是解题的关键.3.(2022秋•南安市期末)下列图形中,∠1和∠2是同位角的是( )A.B.C.D.【考点】同位角、内错角、同旁内角.【专题】线段、角、相交线与平行线;几何直观.【分析】根据同位角的概念求解即可.【解答】解:A选项中∠1和∠2是同位角,故选:A.【点评】本题主要考查同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.4.(2022秋•微山县期末)下列说法:①把一个角分成两个角的射线叫角的平分线;②两点确定一条直线;③若线段AM等于线段BM,则点M是线段AB的中点;④垂线段最短.其中正确的是( )A.①③B.②④C.②③D.①④【考点】垂线段最短;直线的性质:两点确定一条直线;两点间的距离;角平分线的定义.【专题】线段、角、相交线与平行线;几何直观.【分析】由线段中点,角平分线的概念,直线的性质,垂线的性质,即可判断.【解答】解:①把一个角分成两个相等角的射线叫角的平分线,故①不符合题意;②两点确定一条直线,正确,故②符合题意;③若线段AM等于线段BM,则点M不一定是线段AB的中点,故③不符合题意;④垂线段最短,正确,故④符合题意.∴其中正确的是②④.故选:B.【点评】本题考查线段中点,角平分线的概念,直线的性质,垂线的性质,掌握以上知识点是解题的关键.5.(2023•碑林区校级模拟)如图,AB∥CD,CE平分∠BCD,若∠ABC=58°,则∠ECD 的度数为( )A.39°B.29°C.38°D.28°【考点】平行线的性质.【专题】线段、角、相交线与平行线;运算能力.【分析】先利用平行线的性质可得∠ABC=∠BCD=58°,然后再利用角平分线的定义进行计算即可解答.【解答】解:∵AB∥CD,∠ABC=58°,∴∠ABC=∠BCD=58°,∵CE平分∠BCD,∴∠ECD=∠BCD=29°,故选:B.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.(2022秋•宜阳县期末)下列说法错误的是( )A.对顶角相等B.两直线平行,内错角相等C.立方等于本身的数只有两个D.两点之间线段最短【考点】平行线的性质;线段的性质:两点之间线段最短;对顶角、邻补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据平行线的性质,线段的性质,对顶角、邻补角,逐一判断即可解答.【解答】解:A、对顶角相等,故A不符合题意;B、两直线平行,内错角相等,故B不符合题意;C、立方等于本身的数有三个:0和±1,故C符合题意;D、两点之间线段最短,故选:C.【点评】本题考查了平行线的性质,线段的性质,对顶角、邻补角,熟练掌握这些数学知识是解题的关键.7.(2022秋•孟村县校级期末)平面内两两相交的6条直线,交点个数最少为m个,最多为n个,则m+n等于( )A.12B.16C.20D.22【考点】相交线.【专题】线段、角、相交线与平行线;几何直观.【分析】根据直线相交的情况判断出m和n的值后,代入运算即可.【解答】解:当六条直线相交于一点时,交点最少,则m=1,当任意两条直线相交都产生一个交点时交点最多,∵且任意三条直线不过同一点,∴此时交点为:6×(6﹣1)÷2=15,∴n=15,∴m+n=1+15=16.故选:B.【点评】本题主要考查了直线相交的交点情况,找出交点个数是解题的关键.8.(2022秋•榕城区期末)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为( )A.100°B.110°C.120°D.130°【考点】平行线的性质;余角和补角.【专题】计算题;线段、角、相交线与平行线;推理能力.【分析】先根据互余计算出∠3=90°﹣40°=50°,再根据平行线的性质由a∥b得到∠2=180°﹣∠3=130°.【解答】解:∵a∥b,∴∠2=∠1+90°=90°+40°=130°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.9.(2022秋•龙华区期末)如图,A,B,C,D,E分别在∠MON的两条边上,若∠1=20°,∠2=40°,∠3=60°,AB∥CD,BC∥DE,则下列结论中错误的是( )A.∠4=80°B.∠BAO=100°C.∠CDE=40°D.∠CBD=120°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据两直线平行,同位角相等可得∠BAC=∠3=60°,根据平角180度,得出∠BAO=180°﹣60°=120°;根据三角形的内角和定理求出∠ACB,然后根据两直线平行,同位角相等可得∠4=∠ACB,然后根据三角形内角和定理求出∠CDE,根据平角的定义列式计算求出∠CBD即可.【解答】解:∵AB∥CD,∴∠BAC=∠3=60°,∴∠BAO=180°﹣60°=120°,故B选项错误,符合题意;∵∠2=40°,∴∠ACB=180°﹣∠2﹣∠BAC=180°﹣40°﹣60°=80°,∵BC∥DE,∴∠4=∠ACB=80°,故A选项正确,不符合题意;∵∠3=60°,∴∠CDE=180°﹣∠3﹣∠4=180°﹣60°﹣80°=40°,故C选项正确,不符合题意;∠CBD=180°﹣∠1﹣∠2=180°﹣20°﹣40°=120°,故D选项正确,不符合题意.故选:B.【点评】本题考查了平行线的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.10.(2022秋•抚州期末)如图,AB∥CD,AE平分∠BAC,若∠AEC=66°,则∠C的度数为( )A.42°B.44°C.46°D.48°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据平行线的性质,得到:∠EAB=∠AEC=66°,根据角平分线平分角,得到∠BAC=2∠EAB,再根据两直线平行,同旁内角互补,求出∠C的度数即可.【解答】解:∵AB∥CD,∴∠EAB=∠AEC=66°,∵AE平分∠BAC,∴∠BAC=2∠EAB=132°,∵AB∥CD,∴∠C=180°﹣∠CAB=48°;故选:D.【点评】本题考查利用平行线的性质求角度.熟练掌握平行线的性质以及角平分线平分角,是解题的关键.二.填空题(共8小题)11.(2022秋•宜阳县期末)如图,直线AB、CD相交于点O,OE⊥CD,∠EOB=25°,则∠AOD= 115° .【考点】垂线;对顶角、邻补角.【专题】几何图形;应用意识.【分析】先根据垂直的定义求出∠AOE=90°,然后求出∠DOB度数,再根据邻补角的定义求出∠AOD的度数.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠BOE=25°,∴∠DOB=∠DOE﹣∠BOE=90°﹣25°=65°,∴∠AOD=180°﹣∠DOB=180°﹣65°=115°.故答案为:115°.【点评】本题考查了垂线的定义,邻补角的和等于180°,要注意领会由垂直得直角这一要点.12.(2022秋•丰泽区期末)如图,AB⊥CD于点O,OE平分∠AOC,若∠BOF=20°,则∠EOF的度数为 115° .【考点】垂线;角平分线的定义.【专题】线段、角、相交线与平行线;推理能力.【分析】先根据AB⊥CD于点O,OE平分∠AOC得出∠COE的度数,再由∠BOF=20°求出∠COF的度数,进而可得出结论.【解答】解:∵AB⊥CD于点O,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠COE=45°.∵∠BOF=20°,∴∠COF=90°﹣20°=70°,∴∠EOF=∠COE+∠COF=45°+70°=115°.故答案为:115°.【点评】本题考查了垂直、角平分线的的定义及角的和差关系,掌握垂直的定义、角平分线的的定义是关键.13.(2022秋•岳阳县期末)在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,AB=10,则点C到AB的距离为 4.8 .【考点】点到直线的距离.【专题】等腰三角形与直角三角形;运算能力.【分析】设点C到AB的距离为h,再根据三角形的面积公式求解即可.【解答】解:设点C到AB的距离为h,∵∠ACB=90°,AC=6,BC=8,AB=10,∴10h=6×8,∴h==4.8.故答案为:4.8.【点评】本题考查的是点到直线的距离,直线外一点到直线的垂线段的长度,叫做点到直线的距离.14.(2022秋•卫辉市期末)如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2= 70 度.【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据长方形性质得出平行线,根据平行线的性质求出∠DEF,根据折叠求出∠FEG,即可求出答案.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=55°,∵沿EF折叠D到D′,∴∠FEG=∠DEF=55°,∴∠AEG=180°﹣55°﹣55°=70°,故答案为:70.【点评】本题考查了平行线的性质,折叠性质,矩形的性质的应用,注意:平行线的性质有:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.15.(2022秋•徐州期末)如图,将长方形纸条折叠,若∠1=50°,则∠2= 80 °.【考点】平行线的性质.【专题】线段、角、相交线与平行线;平移、旋转与对称;运算能力.【分析】根据平行线的性质、折叠的性质解答即可.【解答】解:根据平行线的性质、折叠的性质可得:∠1+∠2=180°﹣∠1,∵∠1=50°,∴50°+∠2=180°﹣50°,∠2=80°.故答案为:80.【点评】本题考查了角的计算、平行线的性质、折叠的性质,熟练掌握平行线的性质、折叠的性质是解题的关键.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(2022秋•镇平县期末)如图,点O在直线AB上,OC⊥OD.若∠AOC=125°,则∠BOD = 35 度.【考点】垂线.【专题】线段、角、相交线与平行线;运算能力.【分析】根据平角的意义求出∠BOC的度数,再根据垂直的意义求出答案.【解答】解:∵∠AOC+∠BOC=180°,∠AOC=125°,∴∠BOC=180°﹣125°=55°,又∵OC⊥OD,∴∠COD=90°,∴∠BOD=∠COD﹣∠BOC=90°﹣55°=35°,故答案为:35.【点评】本题考查平角及垂直的意义,理解互相垂直的意义是解决问题的关键.17.(2022秋•海口期末)如图,直线l2、l3被直线l1所截,∠CAB和∠DAB的角平分线与直线l3分别交于点E、F,若l2∥l3,∠AEF=56°,则∠AFE= 34 度.【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】由角平分线定义得到∠EAF=∠CAD=×180°=90°,而∠AEF=56°,即可求出∠AFE的度数.【解答】解:∵AE,AF分别平分∠CAB,∠BAD,∴∠EAB=∠CAB,∠BAF=,∴∠EAB+∠BAF=(∠CAB+∠BAD),∴∠EAF=∠CAD=×180°=90°,∵∠AEF=56°,∴∠AFE=90°﹣56°=34°.故答案为:34.【点评】本题考查角的计算,关键是掌握角平分线的定义.18.(2022秋•湘潭县期末)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠2=67°30',那么∠1= 22°30' .【考点】平行线的性质;度分秒的换算.【专题】线段、角、相交线与平行线;推理能力.【分析】根据余角的定义计算即可.【解答】解:∵∠1+∠2=90°,∠2=67°30',∴∠1=22°30'.故答案为:22°30'.【点评】本题考查了余角的计算,熟练掌握余角计算的要领是解题的关键.三.解答题(共3小题)19.(2022秋•连平县校级期末)填空,将本题补充完整.如图,已知EF∥AD,∠1=∠2,∠BAC=75°,将求∠AGD的过程填写完整.解:∵EF∥AD(已知),∴∠2= ∠3 ,又∵∠1=∠2(已知),∴∠1= ∠3 (等量代换),∴AB∥GD( 内错角相等,两直线平行 ),∴∠BAC+ ∠AGD =180°( 两直线平行,同旁内角互补 ),∵∠BAC=75°(已知),∴∠AGD= 105 °.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;推理能力.【分析】先利用平行线的性质可得∠2=∠3,从而利用等量代换可得∠1=∠3,然后利用平行线的判定可得AB∥GD,从而利用平行线的性质可得∠BAC+∠AGD=180°,进行计算即可解答.【解答】解:∵EF∥AD(已知),∴∠2=∠3,又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥GD(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=75°(已知),∴∠AGD=105°.故答案为:∠3;∠3;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;105.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.20.(2022秋•海口期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE于点O.(1)若∠COF=2∠DOF,求∠BOE的度数;(2)试说明∠AOF=∠BOC.【考点】垂线;角平分线的定义;对顶角、邻补角.【专题】线段、角、相交线与平行线;运算能力;推理能力.【分析】(1)用∠COF=2∠DOF和折两角之和是平角,算出两角的度数,然后用平分和垂直计算即可;(2)计算出所求角的度数,进行比较即可.【解答】解:(1)∠COF=2∠DOF,∠COF+∠DOF=180°,∴∠DOF=60°,∠COF=120°,∵OF⊥OE于点O,∴∠DOE=90°﹣∠DOF=90°﹣60°=30°,∵,OE平分∠BOD,∴∠BOE=∠DOE=30°;(2)∵∠BOE=∠DOE=30°,∴∠DOB=30°+30°=60°,∠AOD=180°﹣∠DOB=180°﹣60°=120°,∵∠DOF=60°,∴∠AOF=∠AOD﹣∠DOF=120°﹣60°=60°,∴∠AOF=∠AOD∵∠AOD=∠BOC(对顶角相等),∴∠AOF=∠BOC.【点评】本题考查的是垂直,角平分线,对顶角和邻补角,解题的关键是用∠COF和∠DOF的关系,算出度数.21.(2023•市北区校级开学)如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;推理能力.【分析】(1)依据平行线的判定与性质,即可得到∠1与∠ABD的数量关系;(2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB为直角,即可得出∠ACF.【解答】解:(1)CF∥DB,理由:∵BC⊥AE,DE⊥AE,∴BC∥DE,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴∠2=∠CBD,∴CF∥DB.(2)∵∠1=70°,CF∥DB,∴∠ABD=70°,又∵BC平分∠ABD,∴∠DBC=∠ABD=35°,∴∠2=∠DBC=35°,又∵BC⊥AG,∴∠ACF=90°﹣∠2=90°﹣35°=55°.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.考点卡片1.直线的性质:两点确定一条直线(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.2.线段的性质:两点之间线段最短线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.3.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.4.度分秒的换算(1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.5.角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.6.余角和补角(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.(3)性质:等角的补角相等.等角的余角相等.(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联.注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.7.相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).8.对顶角、邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.9.垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质在平面内,过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.10.垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.11.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.12.同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.13.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.14.平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.。

2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)

2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)

2023年中考数学二轮专题复习——几何图形初步与相交线、平行线(测试时间:60分钟分数:100分)一、选择题(本题共8小题,共40分)1.(2021·四川巴中)某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.2.(2022·浙江金华)如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.3.(2022·广西柳州)如图,直线a,b被直线c所截,若,∠1=70°,则∠2的度数是( )A.50°B.60°C.70°D.110°4.如图,直线相交于点射线平分若,则等于()A.B.C.D.5.(2022·辽宁营口)如图,直线的顶点B,C分别在上,若,则的大小为( )A.B.C.D.6.两个直角三角板如图摆放,其中,,,AB 与DF交于点M.若,则的大小为()A.B.C.D.7.如图,点D、E分别在线段、上,连接、.若,,,则的大小为()A.60°B.70°C.75°D.85°8.(2021·四川德阳)如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=( )A.30°B.60°C.120°D.150°二、填空题(本题共5小题,每空3分,共15分)9.(2022·广西玉林)已知∠α=60°,则∠α的余角等于____度.10.如图,两直线交于点O,若∠1+∠2=76°,则∠1= 度.11.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A = .12.(2021·湖南益阳)如图,与相交于点O,是的平分线,且恰好平分,则_______度.13.(2021·辽宁阜新)如图,直线,一块含有30°角的直角三角尺顶点E位于直线CD 上,EG平分,则的度数为_________°.三、解答题(本题共3小题,共45分)14.(2021·湖北武汉)如图,,,直线与,的延长线分别交于点,.求证:.15.如图,,AD是内部一条射线,若,于点E,于点F.求证:.16.(2020·江苏镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.参考答案:1.A2.C3.C4.A5.C6.C7.B8.D9.3010.3811.20°12.6013.6014.证明:∵,∴.∵,∴.∴.∴.15.证明:∵,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF,∴.16.证明:(1)在△BEF和△CD A中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题2 平行线章末重难点题型【考点1 同位角、内错角、同旁内角的判断】【方法点拨】直线AB,CD被第三条直线EF所截。

这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;【例1】(2019春•巴州区校级期中)如图,下列说法中错误的是()A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠2和∠5是内错角【分析】根据同位角,同旁内角,对顶角以及内错角的定义进行判断.【答案】解:A、∠3和∠5是同位角,故本选项不符合题意.B、∠4和∠5是同旁内角,故本选项不符合题意.C、∠2和∠4是对顶角,故本选项不符合题意.D、∠2和∠5不是内错角,故本选项符合题意.故选:D.【点睛】考查了同位角、内错角、同旁内角以及对顶角.解答此类题确定三线八角是关键,可直接从截线入手.【变式1-1】(2019春•西湖区校级月考)同学们可仿照图用双手表示“三线八角”图形(两大拇指代表被截直线,食指代表截线).下面三幅图依次表示()A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【答案】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:B.【点睛】本题考查了同位角、内错角、同旁内角,解题的关键是掌握同位角、内错角、同旁内角,并能区别它们.【变式1-2】(2019春•闵行区期中)如图,同位角共有()对.A.6B.5C.8D.7【分析】根据同位角的概念解答即可.【答案】解:同位角有5对,∠4与∠7,∠3与∠8,∠1与∠7,∠5与∠6,∠2与∠9,∠1与∠3,故选:A.【点睛】此题考查同位角,关键是根据同位角解答.【变式1-3】(2019春•九龙坡区校级期中)如图,下列结论正确的是()A.∠4和∠5是同旁内角B.∠3和∠2是对顶角C.∠3和∠5是内错角D.∠1和∠5是同位角【分析】根据同旁内角,对顶角,内错角以及同位角的定义解答.【答案】解:A、∠4和∠5是邻补角,不是同旁内角,故本选项错误.B、∠3和(∠1+∠2)是对顶角,故本选项错误.C、∠3和∠5是内错角,故本选项正确.D、∠1和(∠1+∠2)是同位角,故本选项错误.故选:C.【点睛】考查了同位角、内错角、同旁内角以及对顶角的定义,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.【考点2 平行线公理及其推论】【方法点拨】平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。

【例2】(2018春•城关区校级月考)下列说法中,正确的是()A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行【分析】根据平行线的定义判断A;根据平行线的性质判断B;根据平行公理的推论判断C;根据两条直线的位置关系判断D.【答案】解:A、在同一平面内不相交的两条直线叫做平行线,故本选项错误;B、一条直线的平行线有无数条,故本选项错误;C、若直线a∥b,a∥c,则b∥c,满足平行公理的推论,故本选项正确;D、在同一平面内两条直线不相交就平行,故本选项错误.故选:C.【点睛】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式2-1】(2019春•张店区期末)已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a 与直线c之间的位置关系是()A.相交B.平行C.垂直D.平行或相交【分析】根据平行公理的推论直接判断直线c与直线a的位置关系即可.【答案】解:∵在同一平面内,直线a∥b,直线b∥c,∴直线c与直线a的位置关系是:a∥c.故选:B.【点睛】此题主要考查了平行公理的推论,熟练记忆推论内容是解题关键.【变式2-2】(2019春•龙泉驿区期中)下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c【分析】根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”和“在同一平面内垂直于同一直线的两条直线互相平行”解答即可.【答案】解:A、正确,根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.B、错误,因为“在同一平面内垂直于同一直线的两条直线互相平行”.C、错误,a,b,c是直线,且a∥b,b⊥c则a⊥c;D、错误,b,c是直线,且a∥b,b∥c,则a∥c.故选:A.【点睛】此题考查的是平行线的判定和性质定理,比较简单.【变式2-3】(2019春•邱县期末)下列语句:①不相交的两条直线叫平行线②在同一平面内,两条直线的位置关系只有两种:相交和平行③如果线段AB和线段CD不相交,那么直线AB和直线CD平行④如果两条直线都和第三条直线平行,那么这两条直线平行⑤过一点有且只有一条直线与已知直线平行正确的个数是()A.1B.2C.3D.4【分析】直接利用平行公理以及其推论分析得出答案.【答案】解:①不相交的两条直线叫平行线,必须是在同一平面内,故错误;②在同一平面内,两条直线的位置关系只有两种:相交和平行,正确③如果线段AB和线段CD不相交,那么直线AB和直线CD平行,错误;④如果两条直线都和第三条直线平行,那么这两条直线平行,正确;⑤过直线外一点有且只有一条直线与已知直线平行,故错误,故选:B.【点睛】此题主要考查了平行公理及推论,正确把握定义是解题关键.【考点3 利用平行线的性质求角】【方法点拨】两条直线平行则同位角、内错角相等,同旁内角互补.【例3】(2019春•涧西区校级月考)如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【答案】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC﹣∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选:B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的运用,主要考查学生的推理能力.解题的关键是掌握两直线平行,内错角相等.【变式3-1】(2019春•西湖区校级月考)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【分析】因直尺和三角板得AD∥FE,∠BAC=90°;再由AD∥FE得∠2=∠3;平角构建∠1+∠BAC+∠3=180°得∠1+∠3=90°,已知∠1=32°可求出∠3=58°,即∠2=58°.【答案】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.【点睛】本题综合考查了平行线的性质,直角,平角和角的和差相关知识的应用,重点是平行线的性质.【变式3-2】(2018秋•襄汾县期末)如图,某江段江水流向经过B、C、D三点拐弯后与原来方向相同,若∠ABC=125°,∠BCD=75°,则∠CDE的度数为()A.20°B.25°C.35°D.50°【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【答案】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°﹣125°=55°,∴∠DCF=75°﹣55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.【变式3-3】(2018秋•方城县期末)将AD与BC两边平行的纸条ABCD按如图所示折叠,则∠1的度数为()A.72°B.45°C.56°D.60°【分析】根据折叠的性质得出∠C'EF=62°,利用平行线的性质进行解答即可.【答案】解:∵一张长方形纸条ABCD折叠,∴∠C'EF=∠FEC=62°,∵AD∥BC,∴∠1=∠C'FB=180°﹣62°﹣62°=56°,故选:C.【点睛】本题考查了平行线的性质、翻折变换(折叠问题).正确观察图形,熟练掌握平行线的性质是解题的关键.【考点4 平行线的性质解折叠问题】【例4】(2019春•天宁区校级期中)如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.102°B.108°C.124°D.128°【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a),进一步求得∠BFC=154°﹣26°=128°(图b),进而求得∠CFE=128°﹣26°=102°(图c).【答案】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a),∴∠BFC=154°﹣26°=128°(图b),∴∠CFE=128°﹣26°=102°(图c).故选:A.【点睛】此题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.【变式4-1】(2019春•下城区期中)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知∠EFG=58°,则∠BEG等于()A.58°B.116°C.64°D.74°【分析】根据平行线的:两直线平行,内错角相等.可知∠AFE=∠FEC=58°,再根据EF是折痕可知∠FEG=58°利用平角的性质就可求得所求的角.【答案】解:∵AD∥BC,∴∠AFE=∠FEC=58°.而EF是折痕,∴∠FEG=∠FEC.又∵∠EFG=58°,∴∠BEG=180°﹣2∠FEC=180°﹣2×58°=64°.故选:C.【点睛】本题考查平行线的性质、翻折变换、矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式4-2】(2019春•五华区校级期中)如图把一张长方形线条ABCD沿AF折叠,使D落在D′处使∠ABD=20°,AD′∥DB则∠DAF的度数为()A.60°B.55°C.45°D.30°【分析】先根据直角三角形的性质求出∠ADB的度数,再由平行线的性质求出∠DAD′的度数,根据图形翻折变换的性质即可得出结论.【答案】解:∵四边形ABCD是矩形,∵∠BAD=90°.∵∠ABD=20°,∴∠ADB=90°﹣20°=70°.∵AD′∥DB,∴∠DAD′=180°﹣70°=110°,∴∠DAF=∠DAD′=55°.故选:B.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式4-3】(2019春•西城区校级期中)如图(1)所示为长方形纸带,将纸带沿EF折叠成图;(2)再沿BF折叠成图;(3)继续沿EF折叠成图(4)按此操作,最后一次折叠后恰好完全盖住∠EFG,整个过程共折叠了9次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°【分析】根据最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了9次,可得CF与GF重合,依据平行线的性质,即可得到∠DEF的度数.【答案】解:设∠DEF=α,则∠EFG=α,∵折叠9次后CF与GF重合,∴∠CFE=9∠EFG=9α,如图(2),∵CF∥DE,∴∠DEF+∠CFE=180°,∴α+9α=180°,∴α=18°,即∠DEF=18°.故选:C.【点睛】本题考查了翻折变换以及矩形的性质,解题的关键是找出∠DEF+∠CFE=180°.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.【考点5 平行线的判定】【方法点拨】两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行平行线判定定理2:内错角相等,两直线平行平行线判定定理3:同旁内角互补,两直线平行平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行【例5】(2019春•西湖区校级月考)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.②③④B.②③⑤C.②④⑤D.②④【分析】根据平行线的判定定理,对各小题进行逐一判断即可.【答案】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.【变式5-1】(2019春•西湖区校级月考)如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有()个.A.1个B.2个C.3个D.4个【分析】根据平行线的判定判断即可.【答案】解:(1)∵∠3=∠4,∴BD∥AC;(2)∵∠1=∠2,∴AB∥CD;(3)∵∠A=∠DCE,∴AB∥CD;(4)∵∠D+∠ABD=180°,∴AB∥CD,故选:C.【点睛】此题考查平行线的判定,关键是根据平行线的判定解答.【变式5-2】(2019春•南关区校级月考)如图,下列条件,其中能判定AB∥CD的有()①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC,∠3=∠4;④∠BAD+∠ABC=180°.A.3个B.2个C.1个D.0个【分析】根据平行线的判定方法对四个条件分别进行判断即可.【答案】解:①∵∠1=∠2,∴AD∥BC,不能判定AB∥CD;②∠BAD=∠BCD,不能判定AB∥CD;③∵∠ABC=∠ADC,∠3=∠4;∴∠ABD=∠CDB,∴AB∥CD;④∵∠BAD+∠ABC=180°,∴AD∥BC,不能判定AB∥CD;∴能判定AB∥CD的有1个,故选:C.【点睛】本题考查了平行线判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.【变式5-3】(2019春•吴江区期中)以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠2【分析】根据平行线的判定定理,进行分析,即可解答.【答案】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确.故选:C.【点睛】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.【考点6 利用平行线的判定及性质证明平行】【例6】(2019秋•涡阳县期中)已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)【分析】结合图形,利用平行线的性质及判定逐步分析解答.【答案】证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).【点睛】本题利用了平行线的判定和性质,还利用了对顶角相等,等量代换等知识.【变式6-1】(2019春•江城区期中)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?【分析】结论:AB∥DG.只要证明∠BAD=∠2即可.【答案】解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.【点睛】本题考查平行线的性质和判定,垂线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-2】(2019春•怀宁县期末)如图,已知点A.D,B在同一直线上,∠1=∠2,∠3=∠E,试判断DE、BC有怎样的位置关系,并说明理由.【分析】由∠1=∠2,∠AOE=∠COD可证得∠CDO=∠E;再由∠3=∠E得∠CDO=∠3,即得DE ∥BC(内错角相等,两直线平行).【答案】解:DE∥BC.证明:∵∠1=∠2,∠AOE=∠COD(对顶角相等),∴在△AOE和△COD中,∠CDO=∠E(三角形内角和定理);∵∠3=∠E,∴∠CDO=∠3,∴DE∥BC(内错角相等,两直线平行).【点睛】本题主要考查平行线的判定,涉及到三角形内角和定理、对顶角等知识点.【变式6-3】(2019春•明光市期末)如图:已知∠1+∠2=180°,∠3=∠B,请问AB与DE是否平行,并说明理由.【分析】结论:AB∥DE.首先证明EF∥BC,再证明∠B=∠EDC即可.【答案】解:结论:AB∥DE.理由:∵∠1+∠ADC=180°(平角的定义),又∵∠1+∠2=180°(已知),∴∠ADC=∠2(等量代换),∴EF∥DC(同位角相等两直线平行),∴∠3=∠EDC(两直线平行,内错角相等),又∵∠3=∠B(已知),∴∠EDC=∠B(等量代换),∴AB∥DE(同位角相等两直线平行).【点睛】本题考查平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【考点7 利用平行线的判定及性质证明角相等】【例7】如图,已知BD⊥AC,EF⊥AC,点D,F是垂足,∠1=∠2,求证:∠ADG=∠C.【分析】由BD与EF都与AC垂直,利用垂直于同一条直线的两直线平行得到BD与EF平行,利用两直线平行同位角相等得到一对角相等,再由已知的一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BC平行,利用两直线平行同位角相等即可得证.【答案】证明:∵BD⊥AC,EF⊥AC(已知),∴∠3=∠4=90°(垂直的定义),∴BD∥EF(同位角相等,两直线平行),∴∠2=∠CBD(两直线平行,同位角相等),∵∠1=∠2(已知),∴∠1=∠CBD(等量代换),∴GD∥BC(内错角相等,两直线平行),∴∠ADG=∠C(两直线平行,内错角相等).【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.【变式7-1】(2019春•彭泽县期中)如图,已知:∠ABE+∠DEB=180°,∠1=∠2,则∠F与∠G的大小关系如何?请说明理由【分析】根据平行线的判定得出AC∥DE,根据平行线的性质得出∠CBE=∠DEB,求出∠FBE=∠GEB,根据平行线的判定得出BF∥EG即可.【答案】解:∠F=∠G,理由是:∵∠ABE+∠DEB=180°,∴AC∥ED,∴∠CBE=∠DEB,∵∠1=∠2,∴∠CBE﹣∠1=∠DEB﹣∠2,即∠FBE=∠GEB,∴BF∥EG,∴∠F=∠G.【点睛】本题考查了平行线的性质和判定,能熟练地运用平行线的性质和判定进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.【变式7-2】(2019春•惠阳区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG 交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠D=30°,求∠AED的度数.【分析】(1)根据同位角相等,两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,证出AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)由平行线的性质得出∠DEF=∠D=30°,即可得出答案.【答案】(1)证明:∵∠CED=∠GHD,∴CE∥GF;(2)解:∴∠AED+∠D=180°,理由如下:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)解:∵AB∥CD,∠D=30°,∴∠DEF=∠D=30°,∴∠AED=180°﹣30°=150°.【点睛】本题考查了平行线的判定和性质以及平角的定义等知识;平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.【变式7-3】(2019春•北流市期末)如图,∠1=∠C,∠2+∠D=90°,BE⊥FD于G,证明∠B=∠C.【分析】先根据∠1+∠D=90°,∠2+∠D=90°,即可得到∠1=∠2,进而得出∠2=∠C,判定AB∥CD,即可得到∠1=∠B,即可得到∠B=∠C.【答案】证明:∵BE⊥FD于G,∴∠1+∠D=90°,又∵∠2+∠D=90°,∴∠1=∠2,∵∠1=∠C,∴∠2=∠C,∴AB∥CD,∴∠1=∠B,∴∠B=∠C.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.【考点8 平行线中构造平行线】【例8】(2019春•普宁市期中)已知AB∥CD,点P为平面内一点,连接AP、CP.(1)探究:如图(1)∠P AB=145°,∠PCD=135°,则∠APC的度数是;如图(2)∠P AB=45°,∠PCD=60°,则∠APC的度数是.(2)在图2中试探究∠APC,∠P AB,∠PCD之间的数量关系,并说明理由.(3)拓展探究:当点P在直线AB,CD外,如图(3)、(4)所示的位置时,请分别直接写出∠APC,∠P AB,∠PCD之间的数量关系.【分析】(1)如图1,过P作PE∥AB,依据平行线的性质,即可得到∠APC的度数;如图2,过点P 作PE∥AB,依据平行线的性质,即可得到∠APC的度数;(2)过点P作PE∥AB,依据平行线的性质,即可得出∠APE=∠P AB,∠CPE=∠PCD,进而得到∠APC=∠APE+∠CPE,即可得到∠APC=∠P AB+∠PCD;(3)过点P作PE∥AB,然后根据平行线的性质求解即可.【答案】解:(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠APE+∠P AB=180°,∠CPE+∠PCD=180°,∵∠P AB=145°,∠PCD=135°,∴∠APC=360°﹣145°﹣135°=80°,如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠APE=∠P AB,∠CPE=∠PCD,∵∠APC=∠APE+∠CPE,∴∠APC=∠P AB+∠PCD=105°;故答案为:80°;105°.(2)∠APC=∠P AB+∠PCD.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠APE=∠P AB,∠CPE=∠PCD,∵∠APC=∠APE+∠CPE,∴∠APC=∠P AB+∠PCD;(3)如图3.∠APC=∠PCD﹣∠P AB,如图4.∠APC=∠P AB﹣∠PCD.【点睛】本题考查了平行线的性质,平行公理的应用,此类题目过拐点作平行线是解题的关键.【变式8-1】(2019春•桂平市期末)(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE =130°,求∠C的度数;(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE 与∠C的数量关系,并说明理由.【分析】(1)过E作EK∥AB,则∠ABE+∠1=180°,根据AB∥CD,EK∥AB,即可得到EK∥CD,再根据平行线的性质,即可得到∠C的度数;(2)过E作EK∥AB,则∠ABE+∠1=180°,根据AB∥CD,EK∥AB,即可得到EK∥CD,再根据平行线的性质,即可得到180°﹣∠ABE+∠C=120°,据此可得∠ABE与∠C的数量关系.【答案】解:(1)如图①,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE=50°,∵∠CEF=90°,∴∠2=90°﹣∠1=40°,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2=40°;(2)∠ABE﹣∠C=60°,理由:如图②,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2,∵∠CEF=∠1+∠2=120°,即180°﹣∠ABE+∠C=120°,∴∠ABE﹣∠C=180°﹣120°=60°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.解决问题的关键是作辅助线构造同旁内角以及内错角.【变式8-2】(2019春•金水区校级期中)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF 与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).【分析】(1)根据平行线的性质可知∠1=∠EGD,依据∠2+∠FGE+∠EGD=180°,可求解∠1的度数;(2)过点F作FP∥AB,易得FP∥AB∥CD,通过平行线的性质把∠AEF和∠FGC转化到∠EFG上即可;(3)依据AB∥CD,可知∴∠AEF+∠CFE=180°,再代入∠AEF=α﹣30°,∠CFE=β﹣90°,即可求出α+β=300°.【答案】解:(1)∵AB∥CD,∴∠1=∠EGD.∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD.∴∠AEF=∠EFP,∠FGC=∠GFP.∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG.∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°.即α﹣30°+β﹣90°=180°,整理得α+β=180°+120°=300°.【点睛】本题主要考查了平行线的性质,平行线的性质是几何中角度转化的的重要依据,对于两平行线间有折线的问题,一般在“拐点”处作平行线转化角.【变式8-3】(2019春•费县期中)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.【分析】(1)如图1,分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【答案】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.【考点9 平移变换的运用】【例9】(2019春•西湖区校级月考)如图,将周长为12cm的△ABC沿边BC向右平移3cm得到△A′B′C′,则四边形ABC′A′的周长为()A.17cm B.18cm C.19cm D.20cm【分析】根据平移的定义求得AA'和BC'的长,则四边形的周长即可求解.【答案】解:由题意知,BB'=CC'=AA'=3cm,则四边形ABC'A'的周长=12+3+3=18cm.故选:B.【点睛】本题考查了平移的定义,理解平移的定义求得AA'和BC'的长是关键.【变式9-1】(2019春•西湖区校级月考)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40B.42C.45D.48【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【答案】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48,故选:D.【点睛】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.【变式9-2】(2019春•西湖区校级月考)如图,两个形状、大小完全相同的三角形ABC和三角形DEF重叠在一起,固定三角形ABC不动,将三角形DEF向右平移,当点E和点C重合时,停止移动,设DC 交AC于G.给出下列结论:①四边形ABEG的面积与CGDF的面积相等;②AD∥EC,且AD=EC,则()A.①,②都正确B.①正确,②错误C.①,②都错误D.①错误,②正确【分析】根据平移的性质和平行线的判定以及四边形面积公式解答即可.【答案】解:由平移可得:△ABC的面积=△DEF的面积,所以△ABC的面积﹣△EGC的面积=△DEF的面积﹣△EGC的面积,即四边形ABEG的面积与CGDF的面积相等,故①正确;由平移可得:AD∥EC,AD=BE,故②错误;故选:B.【点睛】此题考查平移的性质,关键是根据平移的性质和平行线的判定以及四边形面积公式解答.【变式9-3】(2019•邢台二模)如图,有两条长分别为a、b的铁丝,其中长为a的铁丝恰好围成一个大正方形;AB是大正方形的对角线,把AB分成n条相等的线段,再以每条线段作为小正方形的对角线,长为b的铁丝恰好能围成n个这样的小正方形;若均不考虑接口情况,则a、b的大小关系是()A.a>b B.a<b C.a=b D.a≥b【分析】在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,平移不改变图形的大小.【答案】解:由平移可得,n个这样的小正方形的边长与大正方形的边长相等,∴a、b的大小关系是a=b,故选:C.【点睛】本题主要考查了平移变换的运用,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.【考点10 利用平移变换作图】【例10】(2019春•西湖区校级月考)作图题.(1)过点M作直线AC的平行线;(2)将三角形ABC平移,使得点B与点B′重合.【分析】(1)利用点A平移到M点,C点平移到N,从而得到AC∥MN;(2)利用点B和B′点的位置关系确定平移的方向与距离,然后利用此平移规律画出A、C的对应点A′、C′即可.【答案】解:(1)如图,MN为所作;(2)如图,△A′B′C′为所作.【点睛】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.【变式10-1】(2019春•西湖区校级月考)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC向左平移5个单位得到△DEF.(1)在正方形网格中,作出△DEF;。

相关文档
最新文档