不等式高考真题

合集下载

高考不等式经典例题

高考不等式经典例题

高考不等式经典例题【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小.【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a +1a -2(a >2),n =x -2(x ≥12),则m ,n 之间的大小关系为( ) A.m <nB.m >nC.m ≥nD.m ≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递.m =a +1a -2=a -2+1a -2+2≥2+2=4,而n =x -2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ),故f (3)=-53(a -c )+83(4a -c )∈[-1,20].题型三 开放性问题【例3】已知三个不等式:①ab >0;② c a >db;③bc >ad .以其中两个作条件,余下的一个作结论,则能组成多少个正确命题?【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ⇔bc -adab>0.(1)由ab >0,bc >ad ⇒bc -adab>0,即①③⇒②; (2)由ab >0,bc -adab>0⇒bc -ad >0⇒bc >ad ,即①②⇒③; (3)由bc -ad >0,bc -adab>0⇒ab >0,即②③⇒①. 故可组成3个正确命题.【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况:(1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2m.所以不等式的解集为{x |x <-1或x >2m};(2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0, 其对应方程两根为x 1=-1,x 2=2m ,x 2-x 1=2m -(-1)=m +2m.①m <-2时,m +2<0,m <0,所以x 2-x 1>0,x 2>x 1, 不等式的解集为{x |-1<x <2m};②m =-2时,x 2=x 1=-1,原不等式可化为(x +1)2<0,解集为∅; ③-2<m <0时,x 2-x 1<0,即x 2<x 1,不等式解集为{x |2m<x <-1}.【变式训练2】解关于x 的不等式ax -1x +1>0. 【解析】原不等式等价于(ax -1)(x +1)>0.当a =0时,不等式的解集为{x |x <-1};当a >0时,不等式的解集为{x |x >1a或x <-1};当-1<a <0时,不等式的解集为{x |1a<x <-1};当a =-1时,不等式的解集为∅;当a <-1时,不等式的解集为{x |-1<x <1a}.【例3】已知ax 2+bx +c >0的解集为{x |1<x <3},求不等式cx 2+bx +a <0的解集. 【解析】由于ax 2+bx +c >0的解集为{x |1<x <3},因此a <0, 解得x <13或x >1.(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的取值范围. 【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9). (1)易知直线x +2y -4=z 过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21. (2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方, 过点M 作直线AC 的垂线,易知垂足N 在线段AC 上, 故z 的最小值是(|0-5+2|2)2=92.(3)z =2·y -(-12)x -(-1)表示可行域内任一点(x ,y )与定点Q (-1,-12)连线斜率的2倍.因为k QA =74,k QB =38,所以z 的取值范围为[34,72].【例1】(1)设x ,y ∈R +,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .x +y ≤2(2+1) C. x +y ≤2(2+1)2 D. x +y ≥(2+1)2 (2)已知a ,b ∈R +,则ab ,a +b2,a 2+b 22,2aba +b的大小顺序是 . 【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(x +y 2)2,所以(x +y 2)2≥1+(x +y ).解得x +y ≥2(2+1)或x +y ≤2(1-2). 因为x +y >0,所以x +y ≥2(2+1). (2)由a +b2≥ab 有a +b ≥2ab ,即a +b ≥2abab,所以ab ≥2aba +b . 又a +b2=a 2+2ab +b 24≤2(a 2+b 2)4,所以a 2+b 22≥a +b2, 所以a 2+b 22≥a +b2≥ab ≥2aba +b. 【变式训练1】设a >b >c ,不等式1a -b +1b -c >λa -c恒成立,则λ的取值范围是 . 【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1a -b +1b -c )=[(a -b )+(b -c )](1a -b +1b -c)≥4,所以λ<4. 【例2】(1)已知x <54,则函数y =4x -2+14x -5的最大值为 ;【解析】(1)因为x <54,所以5-4x >0. 所以y =4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立. 所以x =1时,y max =1.【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求(a +b )2cd的取值范围.【解析】由等差数列、等比数列的性质得a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =2+x y +y x ,当y x >0时,(a +b )2cd ≥4;当y x <0时,(a +b )2cd≤0,故(a +b )2cd的取值范围是(-∞,0]∪[4,+∞).例4642y xx y x y x y +=+++ ⎪=”例解:=”例解:述不等式取“=”,代解此时36。

高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。

不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题14不等式1.【2022年全国乙卷】若x ,y 满足约束条件+O2,+2N4,O0,则=2−的最大值是()A .−2B .4C .8D .122.【2021年乙卷文科】若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为()A .18B .10C .6D .43.【2021年乙卷文科】下列函数中最小值为4的是()A .224y x x =++B .4sin sin y x x=+C .222x xy -=+D .4ln ln y x x=+4.【2020年新课标3卷文科】已知函数f (x )=sin x +1sin x,则()A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称5.【2019年新课标2卷理科】若a >b ,则A .ln(a −b )>0B .3a <3b C .a 3−b 3>0D .│a │>│b │6.【2022年新高考2卷】若x ,y 满足2+2−B =1,则()A .+≤1B .+≥−2C .2+2≤2D .2+2≥17.【2020年新高考1卷(山东卷)】已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D≤8.【2020年新课标1卷理科】若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.9.【2020年新课标2卷文科】若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.10.【2020年新课标3卷理科】若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.11.【2020年新课标3卷理科】关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.12.【2019年新课标2卷文科】若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.13.【2018年新课标1卷理科】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.14.【2018年新课标2卷理科】若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为__________.15.【2018年新课标3卷文科】若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.。

不等式高考试题精选

不等式高考试题精选

不等式高考试题精选(2)一.填空题(共40小题)1.已知a>0,b>0,且2a+b=4,则的最小值是.2.已知正数a,b满足4a+b=ab,则a+b的最小值为.3.函数f(x)=x+(x>0)的最小值为.4.已知,那么y的最小值是.5.设x,y∈R+且x+y=2,则+的最小值为.6.均值不等式已知x+3y=4xy,x>0,y>0则x+y的最小值是.7.若x>0,y>0,且xy=4,则的最小值为.8.若实数x满足x>﹣4,则函数f(x)=x+的最小值为.9.若实数a,b满足2a+2b=1,则a+b的最大值是.10.若x>1,则x+的最小值是.11.已知a>0,b>0且a+b=2,则的最小值为.12.若x,y>0,且,则x+3y的最小值为.13.若x≥0,则y=x+的取值范围为.14.若x∈(1,+∞),则y=x的最小值是.15.已知x>0,y>0,且2x+y=1,则+的最小值是.16.已知正实数x,y满足2x+y=1,则xy的最大值为.17.若x>0,y>0,x+xy=2,则x+y的最小值是.18.若x,y∈R,且3x+9y=2,则x+2y的最大值是.19.已知正数x,y满足,则log2x+log2y的最小值为.20.已知a>0,b>0,a+2b=3,则+的最小值为.21.已知x>0,则的最小值为.22.已知ab>0,且a+4b=1,则的最小值为.23.当x>0时,不等式x+≥a恒成立,则实数a的取值范围是.24.若正数x,y满足x+2y﹣9=0,则的最小值为.25.已知不等式对一切x∈(1,+∞)恒成立,则实数m的取值范围是.26.已知正数x,y满足2x+y=1,则+的最小值为.27.已知x>0,则的最小值等于.28.若正数x,y满足=5,则4x+3y的最小值为.29.若不等式x2﹣log a x<0对一切恒成立,则a的取值范围为.30.若正实数{a n}满足a+2b=1,则+的最小值为.31.已知x,y∈R*,且x+4y=1,则+的最小值为.32.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=.33.已知x>0,则函数f(x)=7﹣x﹣的最大值为.34.已知=1,且x>0,y>0,则x+y的最小值是.35.若直线ax+by﹣2=0(a>0,b>0)过点(1,2),则的最小值为.36.已知x>0,y>0,4x+y=1,则+的最小值为.37.设x≥0,y≥0,若2x+y=2,则xy2的最大值是.38.已知实数x,y满足y=2,则+的最小值为.39.若实数a,b满足2a=5b=λ且,则λ的值为.40.不等式(x﹣3)2﹣2﹣3<0的解是.不等式高考试题精选(2)参考答案与试题解析一.填空题(共40小题)1.已知a>0,b>0,且2a+b=4,则的最小值是.【解答】解:因为a>0,b>0,所以,所以.故答案为.2.已知正数a,b满足4a+b=ab,则a+b的最小值为9.【解答】解:∵正数a,b满足4a+b=ab,即=1.则a+b=(a+b)=5++≥5+2=9,当且仅当b=2a=6时取等号.∴a+b的最小值为9.故答案为:9.3.函数f(x)=x+(x>0)的最小值为4.【解答】解:∵x>0,∴f(x)=x+≥=4,当且仅当x=,即x=2时,函数f(x)=x+(x>0)的最小值为4.故答案为:44.已知,那么y的最小值是3.【解答】解:∵x>1,则y=x﹣1++1≥2+1=3,当且仅当x=2时取等号.故答案为:3.5.设x,y∈R+且x+y=2,则+的最小值为.【解答】解:∵x,y∈R+且x+y=2,∴+===,当且仅当=时取等号.∴+的最小值为.故答案为:.6.均值不等式已知x+3y=4xy,x>0,y>0则x+y的最小值是.【解答】解:x+3y=4xy,x>0,y>0,∴=4.则x+y=(x+y)=≥=,当且仅当x=y=时取等号.故答案为:.7.若x>0,y>0,且xy=4,则的最小值为1.【解答】解:x>0,y>0,且xy=4,则≥2=1,当且仅当x=y=2时取等号,故选:18.若实数x满足x>﹣4,则函数f(x)=x+的最小值为2.【解答】解:∵x>﹣4,∴x+4>0,∴f(x)=x+=x+4+﹣4≥2﹣4=2当且仅当x+4=即x=﹣1时取等号,故答案为:2.9.若实数a,b满足2a+2b=1,则a+b的最大值是﹣2.【解答】解:∵2a+2b=1,∴=,即,∴a+b≤﹣2,当且仅当,即a=b=﹣1时取等号,∴a=b=﹣1时,a+b取最大值﹣2.故答案为:﹣2.10.若x>1,则x+的最小值是3.【解答】解:∵x>1,∴x+=x﹣1++1+1=3,当且仅当x﹣1=即x=2时取等号,∴x=2时x+取得最小值3,故答案为:3.11.已知a>0,b>0且a+b=2,则的最小值为2.【解答】解:∵a>0,b>0且a+b=2,则===2,当且仅当a=b=1时取等号.因此其最小值为2.故答案为:2.12.若x,y>0,且,则x+3y的最小值为16.【解答】解:∵x,y>0,且,∴x+3y==10+≥10+6=16,当且仅当x+3y=1,即=y取等号.因此x+3y的最小值为16.故答案为16.13.若x≥0,则y=x+的取值范围为[3,+∞).【解答】解:∵x≥0,则y=x+=x+1+﹣1≥2﹣1=3,当且仅当x=1时取等号.∴y=x+的取值范围为[3,+∞).故答案为:[3,+∞).14.若x∈(1,+∞),则y=x的最小值是5.【解答】解:∵x∈(1,+∞),∴x﹣1>0,∴y=x+=x﹣1++1≥2 +1=4+1=5,当且仅当x=3时取等号,∴y=x+的最小值是5,故答案为:5.15.已知x>0,y>0,且2x+y=1,则+的最小值是3+2.【解答】解:∵x>0,y>0,且2x+y=1,则+=(2x+y)=3+≥3+2=3+2,当且仅当y==﹣1时取等号.其最小值为3+2.故答案为:3+2.16.已知正实数x,y满足2x+y=1,则xy的最大值为.【解答】解:根据题意,正实数x,y满足2x+y=1,则xy=(2x)y≤[]2=×=,当且仅当2x=y=,时等号成立,即xy的最大值为;故答案为:.17.若x>0,y>0,x+xy=2,则x+y的最小值是2﹣1.【解答】解:∵x>0,y>0,x+xy=2,∴y=﹣1,∴x+y=x+﹣1﹣1=2﹣1,当且仅当x=时取等号.故答案为:2﹣1.18.若x,y∈R,且3x+9y=2,则x+2y的最大值是0.【解答】解:∵3x+9y=2,∴2=3x+9y≥2=2,当且仅当x=0,y=0时取等号,∴3x+2y≤1=30,∴x+2y≤0,∴则x+2y的最大值是0,故答案为:019.已知正数x,y满足,则log2x+log2y的最小值为2.【解答】解:正数x,y满足+=xy,∴xy=+≥2=,当且仅当y=16x时,即x=取等号,∴(xy)3≥43,解得xy≥4,∴log2x+log2y=log2xy≥log24=2,故答案为:2.20.已知a>0,b>0,a+2b=3,则+的最小值为.【解答】解:∵a>0,b>0,a+2b=3,∴+=(+)(a+2b)×=≥+=,(当且仅当=即a=,b=时取等号),∴+的最小值为;故答案为:.21.已知x>0,则的最小值为4.【解答】解:∵x>0,∴=4,当且仅当x=时取等号.因此的最小值为4.故答案为4.22.已知ab>0,且a+4b=1,则的最小值为9.【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4++≥5+2=9,当且仅当a=,b=时取等号,∴的最小值为9,故答案为:9.23.当x>0时,不等式x+≥a恒成立,则实数a的取值范围是(﹣∞,2] .【解答】解:当x>0时,不等式x+≥2=2,当且仅当x=1时取等号,∵不等式x+≥a恒成立,∴a≤2,故答案为:(﹣∞,2]24.若正数x,y满足x+2y﹣9=0,则的最小值为1.【解答】解:,x=y=3时取等号.所以的最小值为1.故答案为:125.已知不等式对一切x∈(1,+∞)恒成立,则实数m的取值范围是[﹣5,+∞).【解答】解:不等式可得:(x﹣1)+>﹣1﹣m.∵x>1,∴x﹣1>0,∴(x﹣1)+≥2=4,当且仅当x=3时取等号.即:4≥﹣1﹣m,解得:m≥﹣5.实数m的取值范围是[﹣5,+∞).故答案为:[﹣5,+∞).26.已知正数x,y满足2x+y=1,则+的最小值为.【解答】解:正数x,y满足2x+y=1,则+=(2x+y)=2+++≥+2=,当且仅当x=y=时取等号.∴+的最小值为.故答案为:.27.已知x>0,则的最小值等于2+4.【解答】解:≥2+2=2+4,当且仅当x=时取等号,故最小值为.故答案为:2+428.若正数x,y满足=5,则4x+3y的最小值为5.【解答】解:正数x,y满足=5,则4x+3y=(4x+3y)=≥=5,当且仅当y=2x=1时取等号.∴4x+3y的最小值为5.故答案为:5.29.若不等式x2﹣log a x<0对一切恒成立,则a的取值范围为[).【解答】解:不等式x2﹣log a x<0对一切恒成立,即x2<log a x在内图象二次函数在下方,对数函数在上方;由此可知:0<a<1,当时,y=x2,这二次函数是递增函数,最大值小于.而y=log a x对数函数是减函数,其最小值大于log a.∴log a解得:a≥.∴a的取值范围为[)故答案为[).30.若正实数{a n}满足a+2b=1,则+的最小值为9.【解答】解:+=(a+2b)(+)=1+4++≥5+2=5+4=9,当且仅当a=b=,故+的最小值为9.故答案为:9.31.已知x,y∈R*,且x+4y=1,则+的最小值为9.【解答】解:已知x,y∈R*,且x+4y=1,则+=≥5+4=9.故答案为:9.32.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=36.【解答】解:∵x>0,a>0,∴f(x)=4x+≥2=4,当且仅当4x=即x=时取得等号.∴,解得a=36.故答案为:36.33.已知x>0,则函数f(x)=7﹣x﹣的最大值为1.【解答】解:∵x>0,则函数f(x)=7﹣x﹣=7﹣≤7﹣=1,当且仅当x=3时取等号.故答案为:1.34.已知=1,且x>0,y>0,则x+y的最小值是25.【解答】解:∵=1,且x>0,y>0,∴x+y=()(x+y)=13++≥13+2=25当且仅当=即x=10且y=15时取等号.故选答案为:25.35.若直线ax+by﹣2=0(a>0,b>0)过点(1,2),则的最小值为.【解答】解:直线ax+by﹣2=0(a>0,b>0)过点(1,2),∴a+2b=2.则=+=≥=,当且仅当a=b=时取等号.故答案为:.36.已知x>0,y>0,4x+y=1,则+的最小值为16.【解答】解:∵x>0,y>0,4x+y=1,则+=(4x+y)=8+≥8+2=16,当且仅当y=4x=时取等号.其最小值为16.故答案为:16.37.设x≥0,y≥0,若2x+y=2,则xy2的最大值是.【解答】解:∵x≥0,y≥0,2x+y=2,∴2=2x++≥,化为:xy2≤,当且仅当4x=y=时取等号.则xy2的最大值是.故答案为:.38.已知实数x,y满足y=2,则+的最小值为.【解答】解:实数x,y满足y=2,∴y==,即xy=4.则+≥2=2=,当且仅当x=2y=2时取等号.故答案为:.39.若实数a,b满足2a=5b=λ且,则λ的值为10.【解答】解:∵2a=5b=λ,∴a=log2λ,b=log5λ,故=logλ2,=logλ5,故=logλ10,解得:λ=10,故答案为:10.40.不等式(x﹣3)2﹣2﹣3<0的解是(0,6).【解答】解:设=t,则原不等式化为t2﹣2t﹣3<0,(t≥0),所以t∈[0,3),即∈[0,3),所以(x﹣3)2<9,解得﹣3<x﹣3<3,所以0<x<6,故原不等式的解集为(0,6);故答案为:(0,6).。

不等式选件高考题

不等式选件高考题

不等式选件高考题1.已知函数 3f x x a x .(1)当1a 时,求不等式 6f x 的解集;(2)若 f x a ,求a 的取值范围.2.已知函数()2,()2321f x x g x x x .(1)画出 y f x 和 y g x 的图像;(2)若 f x a g x ,求a 的取值范围.3.已知函数()|31|2|1|f x x x .(1)画出()y f x 的图像;(2)求不等式()(1)f x f x 的解集.4.设函数 211f x x x .(1)画出 y f x 的图像;(2)当 0x ∈,, f x ax b ,求a b 的最小值.5.(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数 123f x x x .(Ⅰ)画出 y f x 的图象;(Ⅱ)求不等式 1f x 的解集.6.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式 4f x 的解集;(2)若 4f x ,求a 的取值范围.7.已知()|||2|().f x x a x x x a (1)当1a 时,求不等式()0f x 的解集;(2)若(,1)x 时,()0f x ,求a 的取值范围.8.已知 11f x x ax .(1)当=1a 时,求不等式 1f x 的解集;(2)若 0,1x 时不等式 f x x 成立,求a 的取值范围.9.设函数()52f x x a x .(1)当1a 时,求不等式()0f x 的解集;(2)若()1f x 恒成立,求a 的取值范围.10.已知函数()f x =│x +1│–│x –2│.(1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.11.已知函数2()4f x x ax ,()|1||1|g x x x .(1)当1a 时,求不等式()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围.12.选修4-5:不等式选讲已知函数11()22f x x x,M 为不等式()2f x 的解集.(Ⅰ)求M ;(Ⅱ)证明:当a ,b M 时,1a b ab .13.已知函数()|2|f x x a a .(1)当a=2时,求不等式()6f x 的解集;(2)设函数()|21|g x x .当x R 时,()()3f x g x ,求a 的取值范围.14.已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c;(2)333()()()24a b b c c a .15.已知a ,b ,c 均为正数,且22243a b c ,证明:(1)23a b c ;(2)若2b c ,则113a c.16.已知a ,b ,c 都是正数,且3332221a b c ,证明:(1)19abc;(2)a b c b c a c a b ;17.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c参考答案:1.(1) ,42, .(2)3,2.【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简 f x a ,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a 时, 13f x x x ,13x x 表示数轴上的点到1和3 的距离之和,则 6f x 表示数轴上的点到1和3 的距离之和不小于6,当4x 或2x 时所对应的数轴上的点到13 ,所对应的点距离之和等于6,∴数轴上到13 ,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x 或2x ,所以 6f x 的解集为 ,42, .[方法二]【最优解】:零点分段求解法当1a 时,()|1||3|f x x x .当3x 时,(1)(3)6 x x ,解得4x ;当31x 时,(1)(3)6 x x ,无解;当1x 时,(1)(3)6 x x ,解得2x .综上,|1||3|6 x x 的解集为(,4][2,) .(2)[方法一]:绝对值不等式的性质法求最小值依题意 f x a ,即3a x a x 恒成立,333x a x x a a x ,当且仅当 30a x x 时取等号,3min f x a ,故3a a ,所以3a a 或3a a ,解得32a .所以a 的取值范围是3,2.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a 是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a ,故|3|a a ,下同解法一.[方法三]:分类讨论+分段函数法当3a 时,23,,()3,3,23,3,x a x a f x a a x x a x则min [()]3 f x a ,此时3 a a ,无解.当3a 时,23,3,()3,3,23,,x a x f x a x a x a x a则min [()]3 f x a ,此时,由3a a 得,32a .综上,a 的取值范围为32a .[方法四]:函数图象法解不等式由方法一求得 min 3f x a 后,构造两个函数|3| y a 和y a ,即3,3,3,3a a y a a和y a ,如图,两个函数的图像有且仅有一个交点33,22M ,由图易知|3|a a ,则32a .【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得 3min f x a ,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得 f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求 f x 最小值,要注意函数 f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数 f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.2.(1)图像见解析;(2)112a 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将 y f x 向左平移可满足同角,求得 y f x a 过1,42A时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x ,画出图像如下:34,231()232142,2214,2x g x x x x x x,画出函数图像如下:(2)()|2|f x a x a ,如图,在同一个坐标系里画出 ,f x g x 图像, y f x a 是 y f x 平移了a 个单位得到,则要使()()f x a g x ,需将 y f x 向左平移,即0a ,当 y f x a 过1,42A 时,1|2|42a ,解得112a 或52 (舍去),则数形结合可得需至少将 y f x 向左平移112个单位,112a .【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.3.(1)详解解析;(2)7,6.【分析】(1)根据分段讨论法,即可写出函数 f x 的解析式,作出图象;(2)作出函数 1f x 的图象,根据图象即可解出.【详解】(1)因为 3,1151,1313,3x x f x x x x x,作出图象,如图所示:(2)将函数 f x 的图象向左平移1个单位,可得函数 1f x 的图象,如图所示:由 3511x x ,解得76x .所以不等式()(1)f x f x 的解集为7,6.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.4.(1)见解析(2)5【详解】分析:(1)将函数写成分段函数,再画出在各自定义域的图像即可.(2)结合(1)问可得a ,b 范围,进而得到a+b 的最小值详解:(1) 13,,212,1,23, 1.x x f x x x x xy f x 的图像如图所示.(2)由(1)知, y f x 的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a 且2b 时, f x ax b 在 0, 成立,因此a b 的最小值为5.点睛:本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题.5.(1)见解析(2)11353x x x x或或【详解】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解.试题解析:(Ⅰ)的图像如图所示.(Ⅱ)由的表达式及图像,当时,可得或;当时,可得或,故的解集为;的解集为,所以的解集为.【考点】分段函数的图像,绝对值不等式的解法【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式.6.(1)32x x 或112x ;(2) ,13, .【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x 或112x .(2) 22222121211f x x a x a x a x a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.7.(1)(,1) ;(2)[1,)【分析】(1)根据1a ,将原不等式化为|1||2|(1)0x x x x ,分别讨论1x ,12x ,2x 三种情况,即可求出结果;(2)分别讨论1a 和1a 两种情况,即可得出结果.【详解】(1)当1a 时,原不等式可化为|1||2|(1)0x x x x ;当1x 时,原不等式可化为(1)(2)(1)0x x x x ,即2(1)0x ,显然成立,此时解集为(,1) ;当12x 时,原不等式可化为(1)(2)(1)0x x x x ,解得1x ,此时解集为空集;当2x 时,原不等式可化为(1)(2)(1)0x x x x ,即2(10)x ,显然不成立;此时解集为空集;综上,原不等式的解集为(,1) ;(2)当1a 时,因为(,1)x ,所以由()0f x 可得()(2)()0a x x x x a ,即()(1)0x a x ,显然恒成立;所以1a 满足题意;当1a 时,2(),1()2()(1),x a a x f x x a x x a,因为1a x 时,()0f x 显然不能成立,所以1a 不满足题意;综上,a 的取值范围是[1,) .【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.8.(1)1>2x x;(2) 0,2.【分析】(1)方法一:将=1a 代入函数解析式,求得 11f x x x ,利用零点分段法将解析式化为 2,1,=2,1<<1,2, 1.x f x x x x,分类讨论即可求得不等式的解集;(2)方法一:根据题中所给的 0,1x ,其中一个绝对值符号可以去掉,不等式 f x x 可以化为 0,1x 时11ax ,分情况讨论即可求得结果.【详解】(1)[方法一]:【通性通法】零点分段法当=1a 时, 11f x x x ,即 2,1=2,1<<12,1x f x x x x,所以不等式 1f x 等价于12>1x或1<<12>1x x 或12>1x ,解得:12x .故不等式 1f x 的解集为1>2x x.[方法二]:【最优解】数形结合法如图,当=1a 时,不等式()1f x 即为|1||1|1x x.由绝对值的几何意义可知,|1||1|x x 表示x 轴上的点到1 对应的点的距离减去到1应点的距离.结合数轴可知,当1=2x 时,|1||1|1x x ,当12x 时,|1||1|1x x .故不等式()1f x 的解集为1,2.(2)[方法一]:【通性通法】分类讨论当 0,1x 时,11x ax x 成立等价于当 0,1x 时,11ax 成立.若0a ,则当 0,1x 时,111ax ax ;若0a ,由11ax 得,111ax ,解得:20x a ,所以21a,故02a .综上,a 的取值范围为 0,2.[方法二]:平方法当(0,1)x 时,不等式|1||1|x ax x 成立,等价于(0,1)x 时,11ax 成立,即2211ax 成立,整理得(2)0ax ax .当=0a 时,不等式不成立;当0a 时,(2)0ax ax ,不等式解集为空集;当0a 时,原不等式等价于220a x x a,解得20x a .由>021a a,解得02a .故a 的取值范围为(0,2].[方法三]:【最优解】分离参数法当(0,1)x 时,不等式|1||1|x ax x 成立,等价于(0,1)x 时,|1|1ax 成立,即111ax ,解得:20a x,而22x ,所以02a .故a 的取值范围为(0,2].【整体点评】(1)方法一:利用零点分段法是解决含有两个以及以上绝对值不等式的常用解法,是通性通法;方法二:利用绝对值的几何意义解决特殊类型的绝对值不等式,直观简洁,是该题的最优解.(2)方法一:分类讨论解出绝对值不等式,利用 0,1是不等式解集的子集求出,是通性通法;方法二:本题将绝对值不等式平方,转化为解含参的不等式,利用 0,1是不等式解集的子集求出,虽可解出,但是增加了题目的难度;方法三:利用分离参数,将不等式问题转化为恒成立最值问题,思想简单常见,是该题的最优解.9.(1)[2,3] ;(2) ,62, .【详解】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为|||2|4x a x ,再根据绝对值三角不等式得|||2|x a x 最小值,最后解不等式|2|4a 得a 的取值范围.详解:(1)当1a 时,24,1,2,12,26, 2.x x f x x x x可得 0f x 的解集为{|23}x x .(2) 1f x ≤等价于24x a x .而22x a x a ,且当2x 时等号成立.故 1f x ≤等价于24a .由24a 可得6a 或2a ,所以a 的取值范围是 ,62, .点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.10.(1) 1, ;(2)5,4.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|31211232xx xx,<,,>,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max54,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|31211232xx xx,<,,>,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)22231311232x x xx x xx x x,,<<,,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x121,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x32∈(﹣1,2),∴g(x)≤g(32)9942154;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x12<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max5 4 ,∴m的取值范围为(﹣∞,54 ].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.11.(1){|1x x;(2)[1,1].【详解】试题分析:(1)分1x ,11x ,1x 三种情况解不等式()()f x g x ;(2)()()f x g x 的解集包含[1,1] ,等价于当[1,1]x 时()2f x ,所以(1)2f 且(1)2f ,从而可得11a .试题解析:(1)当1a 时,不等式 f x g x 等价于21140x x x x .①当1x 时,①式化为2340x x ,无解;当11x 时,①式化为220x x ,从而11x ;当1x 时,①式化为240x x,从而112x .所以 f x g x 的解集为1{|1}2x x .(2)当 1,1x 时, 2g x .所以 f x g x 的解集包含 1,1 ,等价于当 1,1x 时 2f x .又 f x 在 1,1 的最小值必为 1f 与 1f 之一,所以 12f 且 12f ,得11a .所以a 的取值范围为 1,1 .点睛:形如||||x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b 和2y c 的图像,结合图像求解.12.(Ⅰ){|11}M x x ;(Ⅱ)详见解析.【详解】试题分析:(I )先去掉绝对值,再分12x ,1122x 和12x 三种情况解不等式,即可得 ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b 时,1a b ab .试题解析:(I )12,,211(){1,,2212,.2x x f x x x x 当12x 时,由()2f x 得22,x 解得1x ;当1122x 时,()2f x ;当12x 时,由()2f x 得22,x 解得1x .所以()2f x 的解集{|11}M x x .(Ⅱ)由(Ⅰ)知,当,a b M 时,11,11a b ,从而22222222()(1)1(1)(1)0a b ab a b a b a b ,因此1.a b ab 【考点】绝对值不等式,不等式的证明.【名师点睛】形如x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数1y x a x b 和2y c 的图象,结合图象求解.13.(1){|13}x x ;(2)[2,) .【详解】试题分析:(1)当2a 时 ()|22|2f x x |22|26x 13x ;(2)由()()|2||12|f x g x x a a x |212|x a x a |1|a a ()()3f x g x 等价于|1|3a a ,解之得2a .试题解析:(1)当2a 时,()|22|2f x x .解不等式|22|26x ,得13x .因此,()6f x 的解集为.(2)当x R 时,()()|2||12|f x g x x a a x |212|x a x a |1|a a ,当12x 时等号成立,所以当x R 时,()()3f x g x 等价于|1|3a a .①当1a 时,①等价于13a a ,无解.当1a 时,①等价于13a a ,解得2a .所以a 的取值范围是[2,) .考点:不等式选讲.14.(1)见解析;(2)见解析【分析】(1)利用1abc 将所证不等式可变为证明:222a b c bc ac ab ,利用基本不等式可证得 2222222a b c ab bc ac ,从而得到结论;(2)利用基本不等式可得3333a b b c c a a b b c c a ,再次利用基本不等式可将式转化为333a b b c c a .【详解】(1)1abc 111111abc bc ac ab a b c a b c2222222222222a b c a b b c c a ab bc ac当且仅当a b c 时取等号22211122a b c a b c,即:222111a b c a b c≥(2) 3333a b b c c a a b b c c a ,当且仅当a b c 时取等号又a b b c a c a b c 时等号同时成立)3333a b b c c a 又1abc 33324a b b c c a 【点睛】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.15.(1)见解析(2)见解析【分析】(1)方法一:根据 22222242a b c a b c ,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c ,即可得到1143a c ,再根据权方和不等式即可得证.【详解】(1)[方法一]:【最优解】柯西不等式由柯西不等式有 222222221112a b c a b c,所以23a b c ,当且仅当21a b c 时,取等号,所以23a b c .[方法二]:基本不等式由222a b ab ,2244b c bc ,2244a c ac ,222222224244349a b c a b c ab bc ac a b c ,当且仅当21a b c 时,取等号,所以23a b c .(2)证明:因为2b c ,0a ,0b ,0c ,由(1)得243a b c a c ,即043a c ,所以1143a c ,由权方和不等式知 22212111293444a c a c a c a c,当且仅当124a c,即1a ,12c 时取等号,所以113a c.【点睛】(1)方法一:利用柯西不等式证明,简洁高效,是该题的最优解;方法二:对于柯西不等式不作为必须掌握内容的地区同学,采用基本不等式累加,也是不错的方法.16.(1)证明见解析(2)证明见解析【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.【详解】(1)证明:因为0a ,0b ,0c ,则320a ,320b ,320c ,所以3332223a b c ,即 1213abc,所以19abc ,当且仅当333222a b c ,即a b c (2)证明:因为0a ,0b ,0c ,所以b c a c ,a b ,所以32a b c 32b ac 32c c a b333333222222a b c a b c a b c b c a c a b 当且仅当a b c 时取等号.17.(1)证明见解析(2)证明见解析.【分析】(1)方法一:由 22222220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)方法一:不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0,a 0,b 0,ca b c34,a a 【详解】(1)[方法一]【最优解】:通性通法 22222220a b c a b c ab ac bc ,22212ab bc ca a b c.1,,,abc a b c 均不为0,则2220a b c , 222120ab bc ca a b c.[方法二]:消元法由0a b c 得 b a c ,则ab bc ca b a c ca 2a c ac22a ac c223024c a c,当且仅当0a b c 时取等号,又1abc ,所以0ab bc ca .[方法三]:放缩法方式1:由题意知0,a 0,a b c ,a c b 222224a c b c b cb bc ,又ab bc ca a b c bc 2a bc 224a a 2304a ,故结论得证.方式2:因为0a b c ,所以 22220222a b c a b c ab bc ca22222212222a b b c c a ab bc ca122222232ab bc ca ab bc ca ab bc ca.即0ab bc ca ,当且仅当0a b c 时取等号,又1abc ,所以0ab bc ca .[方法四]:因为0,1a b c abc ,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c 则 ,a b c 20ab bc ca bc a c b bc a .[方法五]:利用函数的性质方式1: 6b a c ,令 22f c ab bc ca c ac a ,二次函数对应的图像开口向下,又1abc ,所以0a ,判别式222Δ430a a a ,无根,所以 0f c ,即0ab bc ca .方式2:设 31f x x a x b x c x ab bc ca x ,则 f x 有a ,b ,c 三个零点,若0ab bc ca ,则 f x 为R 上的增函数,不可能有三个零点,所以0ab bc ca .(2)[方法一]【最优解】:通性通法不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0,a 0,b 0,ca b c则34,a a .故原不等式成立.[方法二]:不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0a ,且,1,b c a bc a则关于x 的方程210x ax a有两根,其判别式24Δ0a a,即a 故原不等式成立.[方法三]:不妨设 max ,,a b c a ,则0,a ,b a c 1,abc 1,a c ac 2210ac a c ,关于c的方程有解,判别式 22Δ40a a ,则34,a a .故原不等式成立.[方法四]:反证法假设 max ,,a b c 0a b1ab ca b c ,又1132a bmax ,,a b c 证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。

不等式高考试题及答案

不等式高考试题及答案

不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。

答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。

答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。

答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。

答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。

答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。

基本不等式高考真题汇总

基本不等式高考真题汇总

基本不等式高考真题汇总1.(2022·福建,5)下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 解析 取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,故排除D.应选C. 答案 C2.(2022·湖南,10)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析 ∵x ,y ∈R 且xy ≠0, ∴(x 2+1y 2)·(1x2+4y 2)=5+1x 2y2+4x 2y 2≥5+2×2=9,当且仅当1x 2y2=4x 2y 2,即xy =±22时,取得最小值9. 答案 93.(2022·重庆,3)(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92C .3D.322解析 ∵-6≤a ≤3,∴3-a ≥0,a +6≥0. 而(3-a )+(a +6)=9, 由基本不等式得:(3-a )+(a +6)≥2(3-a )(a +6), 即9≥2(3-a )(a +6),∴(3-a )(a +6)≤92,并且仅当3-a =a +6,即a =-32时取等号.答案 B4.(2022·重庆,7)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B .4C.92D .5解析 ∵2y =2⎝ ⎛⎭⎪⎫1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b=5+4a b +b a,又∵a >0,b >0, ∴2y ≥5+24a b ·ba=9,∴y min =92,当且仅当b =2a 时“=”成立.答案 C5.(2022·上海,15)若a ,b ∈R ,且ab >0.则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +ab≥2解析 由ab >0,可知a 、b 同号.当a <0,b <0时,B 、C 不成立;当a =b 时,由不等式的性质可知,A 不成立,D 成立. 答案 D6.(2022·上海,5)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解析 ∵x 2+2y 2≥2x 2·2y 2=22xy =22,当且仅当x =2y 时取“=”,∴x 2+2y 2的最小值为2 2. 答案 2 27.(2022·天津,14)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.解析 因为a +b =2,所以a +b2·12|a |+|a |b =a +b22|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b =a4|a |+1, 当a >0时,a 4|a |+1=54,12|a |+|a |b ≥54;当a <0时,a 4|a |+1=34,12|a |+|a |b ≥34,当且仅当b =2|a |时,等号成立.因为b >0,所以原式取最小值时b =-2a .又a +b =2,所以a =-2时,原式取得最小值. 答案 -28.(2022·浙江,16)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32·⎝ ⎛⎭⎪⎫2x +y 22,得58(2x +y )2≤1,即|2x +y |≤2105. 当且仅当2x =y =105时,2x +y 达到最大值2105. 答案21059.(2022·山东,12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x+1y -2z的最大值为( )A .0B .1C.94D .3解析 由x 2-3xy +4y 2-z =0得x 2-3xy +4y 2z =1≥2x 2·4y 2-3xy z,即xy z≤1,当且仅当x 2=4y 2时成立, 又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2, 所以2x +1y -2z =-1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1,当1y =1,即y =1时,2x +1y -2x取得最大值为1,故选B.答案 B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学真题分类汇编不等式一、单选题1.(2021·全国(文))下列函数中最小值为4的是( ) A .224y x x =++B .4sin sin y x x=+C .222x x y -=+D .4ln ln y x x=+4.(2021·浙江)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0B .1C .2D .35.(2020·浙江)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( ) A .a <0B .a >0C .b <0D .b >07.(2020·全国(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}9.(2019·浙江)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a => B .当101,104b a =>C .当102,10b a =-> D .当104,10b a =-> 12.(2018·全国(理))设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+16.(2017·山东(理))若a>b>0,且ab=1,则下列不等式成立的是 A .21log ()2a ba ab b +<<+ B .21log ()2a b a b a b<+<+ C . 21log ()2a b a a b b +<+< D . 21log ()2aba b a b +<+< 二、多选题18.(2020·海南)已知a >0,b >0,且a +b =1,则( )A .2212a b +≥ B .122a b ->C .22log log 2a b +≥- D三、填空题19.(2020·天津)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 20.(2020·江苏)已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______..23.(2019·天津(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为________.24.(2019·天津(文)) 设x ∈R ,使不等式2320x x +-<成立的x 的取值范围为_________. 25.(2019·天津(理))设0,0,25x y x y >>+=,______.26.(2018·江苏)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 28.(2018·天津(理))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 29.(2018·天津(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 30.(2017·山东(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为_____. 31.(2017·天津(文))若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.32.(2017·北京(文))能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.33.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 34.(2017·山东(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______.近五年(2017-2021)高考数学真题分类汇编四、不等式(答案解析)1.C 【解析】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242xxx xy -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意;对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .4.C【解析】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2,故选:C. 5.C 【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C 7.D 【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.9.A 【分析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确. 【解析】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+=选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<,故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>,故选项A 正确;选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =,即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误;选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >,则选项D 错误.故选:A.12.B 【解析】.0.30.3log0.2,2a b log ==0.2211log0.3,0.3log a b∴==0.3110.4log a b ∴+= 1101a b ∴<+<,即01a b ab+<< 又a 0,b 0>< ab 0∴<即ab a b 0<+< 故选B.16.B 【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴+= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. 18.ABD 【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 19.4【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=+22a b =+=.故答案为:420.45【解析】∈22451x y y += ∈0y ≠且42215y x y -=∈42222221144+5555y y x y y y y -+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号.∈22x y +的最小值为45.故答案为:45.23.92.【解析】由24x y +=,得24x y +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92.24.2(1,)3-【解析】2320x x +-<,即(1)(32)0x x +-<,即213x -<<,故x 的取值范围是2(1,)3-.25.(1)(2xxy +=0,0,25,0,x y x y xy >>+=>≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为26.9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+=当且仅当23c a ==时取等号,则4a c +的最小值为9. 28.14【解析】由360a b -+=可知36a b -=-,且312228aa bb -+=+,因为对于任意x ,20x >恒成立,结合均值不等式的结论可得:3122224a b-+≥==.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14.29.1,28⎡⎤⎢⎥⎣⎦【解析】∈当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ∈当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合∈∈可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.30.8【解析】因为直线1(00)x y a b a b+=>,>过点(1,2),所以121a b +=,因为00a b >,>,所以()124222248a b a b a b a b b a ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4a bb a=,即2,4a b ==时取等号,所以2a b +的最小值为831.4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号).32.1,2,3---【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题. 33.30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.34.8【解析】1212412(2)()448b a a b a b a b a b a b +=∴+=++=++≥+= ,当且仅当2b a = 时取等号.。

相关文档
最新文档