通信原理硬件实验报告(最新-哈工程)

合集下载

哈工程通信原理硬件实验一

哈工程通信原理硬件实验一

实验报告哈尔滨工程大学教务处制一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB2的编码规则.3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

四、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。

(1)示波器的两个探头CH1和CH2分接信源单元的NRZ-OUT 和HDB3单元的(AMI)HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码和HDB3码;再将K1、K2、K3置为全0,观察全0码对应AMI码HDB3码。

观察AMI码时将HDB3单元的开关K4置于A端,观察HDB3码时将K4置于H端,观察时应注意AMI、HDB3码是占空比于0.5的双极性归零码。

哈工程现代实验报告

哈工程现代实验报告

实验名称:光纤通信实验实验时间:2023年4月15日实验地点:哈工程物理实验室一、实验目的1. 了解光纤通信的基本原理和系统组成。

2. 熟悉光纤通信设备的使用方法。

3. 掌握光纤通信的实验操作技能。

4. 分析光纤通信系统的性能指标。

二、实验原理光纤通信是利用光纤作为传输介质,通过光波在光纤中的全反射原理进行信息传输的一种通信方式。

光纤通信具有传输速率高、抗干扰能力强、信号衰减小等优点。

三、实验仪器与设备1. 光纤通信实验系统2. 光纤跳线3. 光功率计4. 光衰减器5. 光纤连接器6. 光源四、实验步骤1. 连接实验设备:将光纤跳线连接光源和光功率计,确保连接牢固。

2. 设置实验参数:根据实验要求设置光功率计的量程和单位。

3. 测量光纤通信系统性能:a. 测量光功率:打开光源,调整光功率至适当值,记录光功率计的读数。

b. 测量光纤损耗:将光衰减器插入光纤通信系统,测量不同衰减值下的光功率,计算光纤损耗。

c. 测量传输速率:通过传输测试软件,测量光纤通信系统的传输速率。

4. 分析实验数据:对实验数据进行整理和分析,得出实验结论。

五、实验结果与分析1. 光纤损耗:实验中,光纤损耗约为0.3dB/km,符合理论预期。

2. 传输速率:实验中,光纤通信系统的传输速率达到100Mbps,满足实验要求。

3. 抗干扰能力:通过实验验证,光纤通信系统具有良好的抗干扰能力。

六、实验结论1. 光纤通信系统具有传输速率高、抗干扰能力强、信号衰减小等优点。

2. 光纤通信实验设备操作简单,实验结果与理论预期相符。

七、实验总结本次实验使我们对光纤通信的基本原理和系统组成有了更深入的了解,掌握了光纤通信的实验操作技能。

在实验过程中,我们注重了实验数据的准确性,并对实验结果进行了详细分析。

通过本次实验,提高了我们的实践能力和创新意识。

实验报告撰写人:[你的姓名]实验指导教师:[指导教师姓名]实验日期:2023年4月15日。

通信原理的实验报告

通信原理的实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。

2. 掌握模拟通信和数字通信的基本技术。

3. 熟悉调制、解调、编码、解码等基本过程。

4. 培养实际操作能力和实验技能。

三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。

1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。

模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。

2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。

数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。

五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。

2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。

(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。

2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。

(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。

通信原理硬件实验报告(-哈工程施工)

通信原理硬件实验报告(-哈工程施工)

实验报告工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。

a)单极性不归零码,无电压表示"0",恒定正电压表示"1",每个码元时间的中间点是采样时间,判决门限为半幅电平。

b)双极性不归零码,"1"码和"0"码都有电流,"1"为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。

c)单极性归零码,当发"1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。

d)双极性归零码,其中"1"码发正的窄脉冲,"0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。

归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理硬件实验报告

通信原理硬件实验报告

通信原理硬件实验报告通信原理硬件实验报告一、引言通信原理是现代通信领域的重要基础课程,通过实验可以更好地理解和掌握通信原理的基本原理和技术。

本次实验主要涉及通信原理的硬件实验,旨在通过搭建实际的通信系统,验证理论知识,并进一步加深对通信原理的理解。

二、实验目的本次实验的主要目的是通过搭建一个简单的通信系统,实现信号的传输和接收,并对实验结果进行分析和验证。

具体目标如下:1. 理解调制和解调的基本原理;2. 掌握通信系统中常用的调制和解调技术;3. 熟悉通信信号的传输和接收过程;4. 进一步巩固通信原理的理论知识。

三、实验原理1. 调制原理调制是指将要传输的信息信号(基带信号)通过一定的调制方式转换成适合传输的信号(载频信号)。

常见的调制方式有调幅(AM)、调频(FM)和调相(PM)等。

2. 解调原理解调是指将接收到的调制信号还原为原始的信息信号。

解调过程与调制过程相反,常见的解调方式有包络检波、相干解调和频率解调等。

3. 通信信号的传输和接收通信信号的传输和接收过程包括信号的发射、传输和接收三个环节。

发射端通过调制将信息信号转换为适合传输的信号,然后通过信道传输到接收端,接收端再通过解调将信号还原为原始的信息信号。

四、实验步骤1. 搭建实验平台首先,搭建实验所需的硬件平台,包括信号发生器、调制解调器、示波器等设备,确保设备连接正确并稳定。

2. 设置信号参数根据实验要求,设置信号发生器的频率、幅度和调制深度等参数,以及调制解调器的解调方式和解调增益等参数。

3. 进行调制实验将待传输的信息信号输入到调制解调器的调制端口,观察调制后的信号波形,并通过示波器进行实时监测和记录。

4. 进行解调实验将调制后的信号输入到调制解调器的解调端口,观察解调后的信号波形,并通过示波器进行实时监测和记录。

5. 分析和验证实验结果通过对实验数据的分析和对比,验证实验结果是否与理论知识相符,并进一步探讨实验中可能存在的误差和改进方法。

通信原理实验报告答案(3篇)

通信原理实验报告答案(3篇)

第1篇一、实验目的1. 理解通信系统的基本原理和组成。

2. 掌握通信系统中的调制、解调、编码、解码等基本技术。

3. 熟悉实验仪器的使用方法,提高动手能力。

4. 通过实验,验证通信原理理论知识。

二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。

2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。

3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。

三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。

2. 信号源:提供调制、解调所需的信号。

3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。

四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。

(2)将信号源信号输入调制器,观察调制后的信号波形。

(3)调整解调器参数,如解调方式、解调频率等。

(4)将调制信号输入解调器,观察解调后的信号波形。

2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。

(2)将调制信号输入解调器,观察解调后的信号波形。

(3)调整调制器参数,如调制方式、调制频率等。

(4)将解调信号输入调制器,观察调制后的信号波形。

3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。

(2)将信息信号输入编码器,观察编码后的数字信号。

(3)设置解码器参数,如解码方式、解码长度等。

(4)将编码信号输入解码器,观察解码后的信息信号。

4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。

(2)将信号源信号输入传输线路,观察传输过程中的信号变化。

(3)调整传输线路参数,如衰减、反射等。

(4)观察传输线路参数调整对信号传输的影响。

五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。

2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。

通信原理硬件实验报告

通信原理硬件实验报告

通信原理硬件实验报告实验二抑制载波双边带的产生一.实验目的:1.了解抑制载波双边带(SC-DSB)调制器的基本原理。

2.测试SC-DSB 调制器的特性。

二.实验步骤:1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按图连接。

2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V。

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波信号。

4.测量乘法器的输出电压,并绘制其波形。

见下图:5.调整音频振荡器的输出,重复步骤4。

见下图:6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按图连接。

8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。

LPF 截止频率最大的时候输出:(频响)9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。

10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率(fh=fc+F)。

11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)只通过单一频率的LPF 输出:12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11。

OSC=500HZOSC=800HZ 的频响:三、思考题1、如何能使示波器上能清楚地观察到载波信号的变化?答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。

2.用频率计直接读SC—DSB 信号,将会读出什么值。

答:围绕一个中心频率来回摆动的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。

a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。

b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。

c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。

d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。

归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。

单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。

AMI码的编码规则是“0"码不变,“1"码则交替地转换为+1和-1。

当码序列是100100011101时,AMI码就变为:+100-1000+1-1+10-1。

这种码型交替出现正、负极脉冲,所以没直流分量,低频分量也很少,它的频谱如图5—1所示,AMI码的能量集中于f0/2处(f0为码速率)。

信息代码:1 0 0 1 1 0 0 0 1 1 1……AMI码: +1 0 0—1+1 0 0 0—1+1—1……由于AMI码的传号交替反转,故由于它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。

这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。

除了上述特点以外,AMI码还有编译码电路简单以及便于观察误码情况等优点,它是以种基本的线路码,在高密度信息流得数据传输中,得到广泛采用。

但是,AMI码有一个重要缺点,即当它用来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。

(2)HDB3码HDB3码是对AMI码的一种改进码,它的全称是三阶高密度双极性码。

其编码规则如下:用B脉冲来保证任意两个相连取代节的V脉冲间“1”的个数为奇数。

当相邻V脉冲间“1”码数为奇数时,则用“000V”取代,为偶数个时就用“B00V”取代。

在V脉冲后面的“1”码和B码都依V脉冲的极性而正负交替改变。

为了讨论方便,我们不管“0”码,而把相邻的信码“1”和取代节中的B码用B1B2 .。

.。

Bn表示,Bn后面为V,选取“000V”或“B00V”来满足Bn的n为奇数。

当信码中的“1”码依次出现的序列为VB1B2B3。

..BnVB1时,HDB3码为+-+-。

.――+或为-+-+。

..++―.由此看出,V脉冲是可以辩认的,这是因为Bn和其后出现的V有相同的极性,破坏了相邻码交替变号原则,我们称V脉冲为破坏点,必要时加取代节BOOV,保证n永远为奇数,使相邻两个V码的极性作交替变化。

由此可见,在HDB3码中。

相邻两个V码之间或是其余的“1”码之间都符合交替变号原则,而取代码在整修码流中不符合交替变号原则。

经过这样的变换,既消除了直流成分,又避免了长连“0”时位定时不易恢复的情况,同时也提供了取代信息。

图5—2给出了HDB3码的频谱,此码符合前述的对频谱的要求.例如:代码: 1 0 0 0 0 1 0 0 0 0 1 1 000 0 1 1AMI码: -1 0 0 0 0 +1 0 0 0 0 —1 +1 000 0 —1 +1HDB3码:—1 0 0 0 —V +1 0 0 0 +V —1 +1 —B00 -V +1 -1HDB3码的特点是明显的,它除了保持AMI码的优点外,还增加了使连0串减少到至多3个的优点,而不管信息源的统计特性如何。

这对于定时信号的恢复是十分有利的。

HDB3码是CCITT推荐使用的码型之一。

五、实验步骤(2)将K1、K2、K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的 AMI 码和HDB3码。

(3)将K1、K2、K3置于任意状态,K4先置A (AMI)端再置H (HDB3)端,CH1接信源单元的NRZ—OUT,CH2依次接HDB3单元的DET、BPF、BS—R和NRZ ,观察这些信号波形。

观察时应注意:HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ—OUT 信号(编码输入)8个码元。

DET是占空比等于0。

5的单极性归零码。

BPF信号是一个幅度和周期都不恒定的正弦信号,BS-R是一个周期基本恒定(等于一个码元周期)的TTL电平信号。

信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的 Q值越高,因而越难于实现),而HDB3码则不存在这种问题.本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的位同步信号,因此不能完成正确的译码(由于分离参数的影响,各实验系统的现象可能略有不同。

一般将信源代码置成只有1码的状态贯彻信号输出。

若24位信源代码全为“ 0”码,则更不可能从AMI信号(亦是全0信号)得到正确的位同步信号。

六、实验结果观察到单极性码、双极性码、归零码、不归零码等基带信号波形符合其特点,验证了基本原理观察AMI、HDB3码波形可知代码全1时:1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1AMI码为: +1 —1 +1 —1 +1 -1 +1 —1 +1 -1 +1 -1 +1 —1 +1 -1 HDB3码为: +1 -1 +1 —1 +1 —1 +1 -1 +1 —1 +1 -1 +1 -1 +1 —1代码全0时:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0AMI码为: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0HDB3码为: 0 0 0 +V -B 0 0 -V +B 0 0 +V -B 0 0 -V代码为: 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0AMI码为: 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0HDB3码为: 0 0 0 +V -1 +1 -B 0 0 -V +1 0 0 0 +V 0实验结果分析:示波器显示HDB3码,可见对应每一符号都有零电位的间隙产生观察得到各种NRZ码,即单极性非归零码示波器观测得到的延时8个码元的波形验证了单极性码、双极性码、归零码、不归零码、AMI、HDB3等基带信号特点七、思考题1、根据实验观察和纪录回答:(1)不归零码和归零码的特点是什么?(2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同?为什么?答:(1)不归零码的0电平和1电平宽度相等,归零码的0电平和1电平的宽度不相等,而且1电平的宽度小于0电平的宽度,即不归零码的占空比等于0.5而归零码的占空比小于0.5。

(2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。

因信源代码中的“1”码对应的AMI码“1"、“—1"相间出现,而HDB3码中的“1",“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。

举例:信源代码 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1AMI 1 0 0 0 0 -1 1 0 0 0 0 —1 0 0 0 0 0 1HDB3 1 0 0 0 1 -1 1 -1 0 0 —1 1 0 0 0 1 0 -12、设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。

答: 信息代码 1 1 1 1 1 1 1AMI 1 -1 1 -1 1 -1 1HDB3 1 —1 1 -1 1 —1 1信息代码 0 0 0 0 0 0 0 0 0 0 0 0 0AMI 0 0 0 0 0 0 0 0 0 0 0 0 0HDB3 0 0 0 1 —1 0 0 1 -1 0 0 1 —1信息代码 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AMI 0 1 —1 1 0 0 -1 0 0 0 0 0 1 —1 0 0 0 0 1 0 0 0 0 0 HDB3 0 1 -1 1 0 0 -1 1 0 0—1 0 1 -1 1 0 0 1 -1 0 0 0 –1 03. 总结从HDB3码中提取位同步信号的原理。

答:HDB3码中不含有离散谱fS (fS 在数值上等于码速率)成分。

整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱fS 成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号cp (t)。

4、 试根据占空比为0。

5的单极性归零码的功率谱密度公式说明为什么信息代码中的连0码越长,越难于从AMI 码中提取位同步信号,而HDB 3码则不存在此问题。

答:τ = 0。

5 T S 时单极性归零码的功率谱密度为:)(|)(|2)(|)(||)(|)1(2)(122222s m s s s s s mf f mfPG f f o PG f f G p p f f P -++-=∑∞=δδ式中f s =1/T s 在数值上等于码速率,P 为“1”码概率,G (f )为τ = T S /2脉冲信号的傅氏变换)2(21)(fsf Sa f f G S π= S S S S f f Sa f f G ππππ12/2sin 21)2(21)(=⋅== )(2)(22S S S f f P f P -=∴δπ 将HDB 3码整流得到的占空比为0.5的单极性归零码中连“0”个数最多为3 ,而将AMI 码整流后得到的占空比为0.5的单极性归零码中连“0”个数与信息代码中连“0"个数相同.所以信息代码中连“0”码越长,AMI 码对应的单极性归零码中“1”码出现概率越小,f S 离散谱强度越小,越难于提取位同步信号.而HDB 3码对应的单极性归零码中“1”码出现的概率大,f S 离散谱强度大,故易于提取位同步信号。

相关文档
最新文档