模糊数学模型
财务指标评判的模糊数学模型应用

分析与评价, 为企业的各种相关者 了解企
运 营 能 力 : 动 资 产 周 转 率 (9, 流 u) 应 业 的过 去 、 价 企 业 的现 状 、 测 企 业 的 收账 款周 转率 (。 ,固定 资产 周转 率 评 预 u) 0 未来 、 出正确 决策 , 做 提供准确信 息的经 ( I 。 u1 )
偿债能力反映了上 市公 成 对 比较法 比较尺 度 的取值方 法如表 1 体 系相结合, 通过模糊聚类分析 筛选评价 持续发展 的源泉, 表 ) 而经营能力是上市 公司 所 示。( 1 指标 , 建立 了一个评价公 司财务状 况的财 司资产的安全性;
务综合 能力评价模糊数 学 型, 模 争取 能为 日常 经 营 能力 的表现 。依 据 这 四个 方 面 ,
的依 据 。
在 我 们 选 取 其 中 一 个 专 业 人 员 所 给
再直接给出平 投 资决策与企 业经营管理提供 更加 合理 确定其在 上市公司经营业绩 综合评价 中 的盈利能力指标数据为例 , 的重要性 。 结合当前的财务理论与应用实 均 化 后 的 结 果 。其 余 的 打 分 情 况 类 似 处
盈利 能力 : 资产收 益率 (。, 净 u 成本 标 的权 重 a (, .a ,分别是上述 四种 ) = a, 3 t f, ) 偿债 能力 : 速动 比率 (4, u 资产 负债 其 余同理可得 :O50 , . 9 , . 0 ) ) (. 0 01 3 0 27 , 7 0 3
( .3 6 01 3 , .9 9 05 9 , .6 5 02 6 ) ( .7 , .0 3 03 0 ) 05 01 01 9 , .2 6 ( .0 4 01 3 , .91 ) o6 5 , .O 1 02 5 ( .7 9 01 3 , .1 4 05 4 , . 1 8 03 1 )
模糊数学模型在评价物业公司中的应用

如 果评价 的 因素较 多 , 用一级 评价 模 型可 能使 权重 分配 过小 使得 使 评价 结果 不容 易分 辨 , 果减 少考虑 因素 , 据 扎得运 算B AoR公式 , 如 根 =
可能 丢失 一些 重要信 息 , 使得评 价 结果 不准确 或者 失真 , 为了减 少以 上 问 题, 将单 层次 模 型拓展 为多层次 评价 模 型。
‘ 结果 为综 合评 价 物 业管理 水平 的结论 。
【 关键 词】: 糊 数学 ; 综合 评 价 ; 物业管 理 模
经过 2 年 的发展 , 国物 管 行业 从开 发商物 业走 上了市场 化 物业 的 0 我
发展 轨 道, 评价 、 选择 物业 公司成 了普 遍需 求 本 文针对 我 国物 管行业 的 现状 , 出了对物 业 管 理公司 综 合评 价 的意 义 , 述了物 业管 理 公司综 合 提 论
4 综合 评价 数学 理论基 础 . 4 1 数学定 义 : . 由模 糊 数学原 理可知 , 模糊 目标 或灰 色 目 不等 于 标
B 4 C 4 1 C 4 2 3 。 C 4N 3 3 , 3 , C 43 3 ,
合计 5 .物 业管 理指 标 评价 体系 的建立
∑d J C 4= 3= 三
专家 评判 法评 定权 重 评 价 指标 专家 1专 家2 专家 3… 专家 N
B1 Cl l C1 2 C1 3 C1 N
均值
c=
l
归一化
C1 =
结 , 交相应 的综 合评 价报 告。 提
34 . 决策阶 段
c l
指 出不足之处 和整 改意 见 , 公布评 价 结果 。
T : I
目标 不明确 。 定非 空分 明集x,所 谓x 上 的一 个模糊 集 A ,实 际上是 给
模糊数学模型

模糊数学模型
模糊数学模型是一种基于模糊集合理论,将模糊概念引入数学模型中,用来解决模糊
不确定性问题的数学方法。
模糊数学模型具有在模糊情况下进行决策和优化的能力,可以
有效地处理模糊性和不确定性的问题。
模糊数学模型最早是由L.A. Zadeh于1965年提出的,它可以被广泛地应用于工程、
管理、经济、环境等领域。
通过构建模糊数学模型,可以将人类对事物的模糊认知转化为
数学形式,用数学语言来描述和解决实际问题。
模糊数学模型基本元素包括:模糊集合、隶属函数和运算。
其中,模糊集合是一种比
传统集合更为广泛的概念,它可以描述某个事物与某种属性之间的关系。
隶属函数是模糊
集合的核心,它用来描述每个元素与模糊集合之间的隶属关系,通常用数学函数来表示。
运算则是针对模糊集合进行的各种运算,包括交、并、补、复合等。
在实际应用中,模糊数学模型可以用来解决许多具有模糊性和不确定性的问题。
比如,在工程中,可以利用模糊数学模型来设计模糊控制器,对不确定的系统进行控制;在管理中,可以利用模糊数学模型进行模糊决策,对模糊问题进行分析和解决;在经济学中,可
以利用模糊数学模型进行模糊预测,对经济变量进行分析和预测。
总之,模糊数学模型是一种能够应对模糊不确定性、处理大量信息、解决复杂问题的
有效工具,具有非常广泛的应用前景。
模糊数学模型在土壤重金属污染评价中的应用

s o i l , w h i c h o v e r e o m e d t h e s h o r t c o mi n g s i n t h e t r a d i t i o n a l s i n g l e i n d e x e v l a u a t i o n m e t h o d .I t i s m o r e o b j e c t i v e a n dபைடு நூலகம் a c c u r a t e
第3 5卷第 6期 2 0 1 3年 l 2月
甘
肃
冶
金
Vo 1 . 3 5 No. 6 De c ., 201 3
GANS U M ETALLURGY
文章编号 : 1 6 7 2 - 4 4 6 1 ( 2 0 1 3 ) 0 6 - 0 1 0 3 - 0 4
模 糊 数 学模 型 在 土壤 重 金属 污 染 评 价 中的应 用
Ap p l i c a t i o n o f Fu z z y Mo de l i n Ev a l u a t i o n o f He a v y Me t a l S o i l Po l l u t i o n
ZHU Ho n g,W U S h i — y a n g,L I We i — d o n g,DU Xi a o — l i a n g,W ANG Li — y u a n
( N o  ̄ h w e s t R e s e a r c h I n s t i t u t e o f Mi n i n g a n d Me t a l l u r g y , B a i y i n 7 3 0 9 0 0, C h i n a )
Ab s t r a c t :F u z z y mo d e l h a s b e e n e s t a b l i s h e d w h i c h s u i t s f o r Ca d mi u m i n t h e s o i l a n d s o me s e r i o u s h e a v y me t a l p o l l u t i o n.i n v i e w o f l a c k o f u n i t y a n d q u a n t i i f c a t i o n or f q u a n t i t a t i v e i n d i c a t o r s or f t h e e v a l u a t i o n s t a n d a r d o f h e a v y me t l a p o l l u t i o n .Ma t — l a b — F I S i n t h e Ma t l a b mo d e l wa s u s e d i n a n a l y z i n g t h e s o i l h e a v y me t l a p o l l u t o n i n Ba i y i n n e rb a y .T h e e v lu a a t i o n r e s u h s h o we d t h a t a c e r t a i n d e g r e e o f s o i l h e a v y me t l a p o l l u t i o n h a s b e e n s u f f e r e d i n t h i s re a a .T h e d e re g e o f t h e c o n t a mi n a t i o n i n
第22章 模糊数学模型

25
0
1 100 + x ∫25
[1 + (
x − 25 2 −1 ) ] 5 x
常用取大“∨”和取小“∧”算子来定义 Fuzzy 集之间的运算。 定义 2 对于论域 X 上的模糊集 A , B ,其隶属函数分别为 μ A ( x) , μ B ( x ) 。
i) 若对任意 x ∈ X ,有 μ B ( x) ≤ μ A ( x ) ,则称 A 包含 B ,记为 B ⊆ A ; ii) 若 A ⊆ B 且 B ⊆ A ,则称 A 与 B 相等,记为 A = B 。 定义 3 对于论域 X 上的模糊集 A , B ,
(union) 和交 (intersection) , i) 称 Fuzzy 集 C = A U B ,D = A I B 为 A 与 B 的并 即
C = ( A U B)( x) = max{A( x), B( x)} = A( x) ∨ B( x) D = ( A I B( x) = min{A( x), B( x)} = A( x) ∧ B( x)
C
例3
已知
X = {1,2,3,4,5,6,7,8, } ,
A= 0.3 0.5 0.8 0.4 0.1 , + + + + 1 2 3 4 5 0.2 0.3 0.9 0.5 , B= + + + 3 4 5 6
则有
-260-
0.3 0.5 0.8 0.4 0.9 0.5 , + + + + + 1 2 3 4 5 6 0.2 0.3 0.1 AI B = , + + 3 4 5 0.7 0.5 0.2 0.6 0.9 1 1 1 AC = + + + + + + + 。 1 2 3 4 5 6 7 8 AU B =
模糊数学方法及其应用

i=j i≠j i , j=1,2,…,n
适当选取M,使得0≤rij≤1。 (2)欧氏距离 欧氏距离 见相似性度量聚类中的相似系数。 见相似性度量聚类中的相似系数。
12
(3)切比雪夫距离 切比雪夫距离
d ij = ∨ xik − x jk
k =1
m
(i, j = 1,2, L , n)
建立模糊相似矩阵的其他方法,就不再介绍了。 建立模糊相似矩阵的其他方法 就不再介绍了。 就不再介绍了 三、聚类 1.模糊等价矩阵 模糊等价矩阵 给定U上的一个模糊关系Rij=[rij]n×n, 若它满足: × 若它满足 (1)自反性 rij=1 ); 自反性( 自反性 ; (2)对称性 rij=rji ); 对称性( 对称性 ; (3)传递性 R o R ⊆ R ); 传递性( 传递性 ; 上的一个模糊等价矩阵 模糊等价矩阵。 则称R是U上的一个模糊等价矩阵。
第j类中第 个变量的平均值 x 类中第k个变量的平均值 类中第 个变量的平均值:
x
( j) k
( j) k
1 = nj
( xikj ) ∑ i =1
nj
( (k = 1,2,L, m); x ( j ) = ( x1( j ) , x 2( j ) , L, x mj ) )
1 n x k = ∑ xik (k = 1,2, L , m); x = ( x1 , x 2 , L , x m ) n i =1
第十一章 模糊数学方法及其应用
§1 模糊聚类分析(参考内容) §2 模糊模型识别(参考内容)
1
前言 模糊数学是用数学方法研究和处理具有“模糊性” 模糊数学是用数学方法研究和处理具有“模糊性” 现象的数学。 现象的数学。所谓的模糊性主要是指客观事物差异 的中间过渡界线的“不分明性” 的中间过渡界线的“不分明性”。如储层的含油气 油田规模的大小,成油地质条件的优劣, 性、油田规模的大小,成油地质条件的优劣,圈闭 的形态,岩石的颜色等。 的形态,岩石的颜色等。这些模糊变量的描述或定 义是模糊的,各变量的内部分级没有明显的界线。 义是模糊的,各变量的内部分级没有明显的界线。 地质作用是复杂的, 地质作用是复杂的,对其产生的地质现象有些可 以采用定量的方法来度量, 以采用定量的方法来度量,有些则不能用定量的数 值来表达, 值来表达,而只能用客观模糊或主观模糊的准则进 行推断或识别。 行推断或识别。
数学建模常用算法模型

数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
教学质量评价的模糊数学模型及应用研究

、
评价因素集 U
本 模 型 不 同于 传 统 的 单 纯 的 平 均 算 法 , 是 使 用 了模 而 糊 综 合 评 判 的方 法 , 方 法 相 对 普 通 的 评 估 方 法 更 能 权 衡 该
各 类 因素 , 保 信 息 最 大 程 度 保 留 , 实 地 使 参 与 评 估 过 确 真 程 当 中 的每 一 个 人 的 评 价 信 息 都 能 够 发 挥 相 应 的作 用 , 做
第 9卷 第 5期
21 0 0年 1 月 0
淮 北 职 业 技 术 学 院 学报
J ouRNAL OF HUAI EIP ) S 1 B R(FE S 0NAI AND TECHNI CAL COIIE GE
Vo1 9 N O . .5 0 c . 01 t2 0
一
级 指 标
二 级 指 标 观 点 阐 述 准 确 B1 0 3 ; 略 得 宜 , 度 (. )详 进
教 学 内 容 B( . 5 02)
适当 B (.) 2 O 2 重难点突出 B ( . ) 联 系 实 际 , 对 性 s0 3 ; 针
强 B4 0 2 (.)
合 考 量 最 后 的评 价 结 果 。但 是 , 目前 教 学 质 量 评 估 体 系 在 建 立 、 用 和 评 估 结 果 分 析 的 过 程 中 仍 然 存 在 一 些 没 有 完 使
到 全 面 和 动 态 的 评 价 。要 实 现 该 评 价 模 型 的 功 能 目标 , 即 全面评价教师 的教学 质量 , 先必 须确 定评 价指 标体 系 。 首 目前 的 调 查 结 果 发 现 大 多 数 院 校 使 用 的 还 是 定 量 教 学 质 量 评 估 指 标 体 系 , 就 是 对 教 师 的 教 学 内容 、 学 方 法 、 也 教 教 学 态 度 、 学 效 果 和 讲 授 能 力 等 内容 进 行 评 估 。下 表 列 出 教 的 是 本 评估 模 型 采 用 的 教 学 质 量 评 估 体 系 的 一 级 指 标 和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六部分模糊数学第十五章模糊数学模型模糊数学的起源15.1.1数学是精确的数学是关于物质世界的空间形式和数量关系的科学。
在二十世纪三十年代,数学的发展被划分成三个阶段:第一阶段:数学是数,量,几何图形的科学;第二阶段:数学是研究量的变化和几何图形变换的科学;第三阶段:数学是作为关于现实世界一切普遍性的数量形式和空间形式的科学。
近代科学技术的发展同精确数学方法的发展和应用是密切相关的,牛顿力学为其经典。
到了19世纪,天文,力学,屋里,化学等理论自然科学先后在不同程度上走向定量化,数学化,形成一个被称为“精密科学”的学科群。
大量使用数学方法,反过来又推动了数学的巨大进步。
19世纪是精确科学方法飞速发展的时期。
20世纪以来,精确数学及其应用以更大的规模和速度发展着。
相对论,量子力学,分子生物学,原子能,电子计算机和空间技术等邻域的创建和开发为精确方法奏响了一曲又一曲的凯歌,但也进一步助长了对精确方法的盲目崇拜。
人们愈加相信,一切都应当精确化,只有现在还没有实现精确化的问题,没有不需要或不可能精确化的问题。
客观而言,精益求精是科学工作者的美德,是评价研究工作科学性的一条准则,但是,这种对精确方法的崇拜,似乎被当作一种不言而喻的真理,在很长的历史时期中未受到人们的怀疑。
科学方法论中的这种绝对化的观点,也反映到哲学中。
例如,一些分析哲学家提倡把一切概念,包括日常用语都加以精确化,这种现象的发生是值得深思的。
但是,实践是检验真理的唯一标准,任何理论上的片面性和绝对化,迟早会在实践中暴露其错误而得到纠正。
15.1.2精确数学的局限性人脑的思维活动一般说来具有两方面的特征:(1)直觉性跟严格性的有机结合,可以进行整体性和平行性的思考,例如联想过程,这些是具有模糊性的;(2)逻辑推理过程,它具有逻辑和顺序的特点,因而又是形式化的。
关于形式化思维,可以用数理逻辑的方法把它数学化,这样就能把它变成一系列的数学符号,可以用计算机去解。
最突出的成果就是1976年美国人阿贝尔和哈肯利用电子计算机解决有名的数学难题——四色问题,这一难题的解决使不少人惊叹:这简直是电脑对人脑的嘲弄!真是这样吗?从另一个角度来看,譬如,看电视的时候,要把图像调得“更清楚一些”,或者,说一个人比另一个人更好看一些或更丑一些,这对于人来说是件容易的事,但是对于电脑来说,却是个大难题。
从这个角度来说,电脑的“智力”还不如一个小孩子。
为什么会出现这样的情况呢?因为用传统数学的方法处理模糊食物,首先要求将对象简化,舍弃对象固有的模糊性,在本来没有明确界限的对象之间认为地挂定界限,变模糊数量关系为清晰数量关系。
例:西瓜因大小不同而价格不登,但大瓜与小瓜并无天然的界限,认为地规定6斤以上者为大瓜,6斤以下者为小瓜,就有了区分大小瓜的精确判据。
对于模糊性较弱的事物,或者日常生活的简单话题,这样处理是许可的,方便的。
但人为地划定界限毕竟是对本来相互联系的食物的性质的一种歪曲,特别是在分界线附近,这种描述的失真性更明显。
当研究的对象相当复杂时,这种处理方法便不适用了。
1965年,美国自动控制论专家,加利福尼亚大学教授查德根据动作中的体会写出了《模糊集合》一文,开始用数学的观点来刻画模糊事物,这标志着模糊数学这门新学科的诞生。
模糊数学决不是把已经很精确的数学变得模模糊糊,而是用精确的数学方法来处理过去无法用数学描述的模糊事物。
模糊集合论的基础知识15.2.1模糊子集和它的运算模糊概念不能用普通集合来描述,是因为不能绝对地区别“属于”或“不属于”,而只能问属于的程度,就是论域上的元素符合概念的程度不是绝对的0或1,而是介于0和1之间的一个实数。
查德1965年给出的定义:定义 从论域U 到闭区间[]0,1的任意一个映射:[]:0,1A U →,对任意u U ∈,()A u A u −−→,()[]0,1A u ∈,那么A 叫做U 的一个模糊子集,()A u 叫做u 的隶属函数,也记做()A u μ。
根据定义,我们知道所谓模糊集合,实质上是论域U 到[]0,1上的一个映射,而对于模糊子集的运算,实际上可以转换称为对隶属函数的运算:()0A A x μ=∅⇔=,()1A A U x μ=⇔=()()A B A B x x μμ⊆⇔≤,()()A B A B x x μμ=⇔= ()()1A A A x x μμ⇔=-()()()max ,C A B A B C x x x μμμ⎡⎤⋃=⇔=⎣⎦ ()()()min ,D A B A B D x x x μμμ⎡⎤⋂=⇔=⎣⎦假设给定有限论域{}12,,,n U a a a =,它的模糊子集A 可以用查德给出的表示法:()()()()1212A A A i A n ina a a a A a a a a μμμμ=+++++其中i a U ∈(1,2,,i n =)为论域里的元素,()A i a μ是i a 对A 的隶属函数,()01A i a μ≤≤。
上式表示一个有n 个元素的模糊子集。
“+”叫做查德记号,不是求和。
[例题] 设论域{}1234,,,E x x x x =,12340.50.30.40.2A x x x x =+++, 12340.200.61B x x x x =+++, 意思是1234,,,x x x x 对模糊子集A 的隶属度分别是,,,;对模糊子集B 的隶属度分别是,0,,1。
[例题] 设以人的岁数作为论域[]0,120U =,单位是“岁”,那么“年轻”,“年老”,都是U 上的模糊子集。
隶属函数如下:()A u μ=“年轻”(u )=()()121025*********u u u -⎧<≤⎪⎪⎡⎤⎨-⎛⎫+<<⎢⎥⎪ ⎪⎝⎭⎢⎥⎪⎣⎦⎩ ()()B u μ=“年老”(u )=()()121050251501205u u u --⎧<≤⎪⎪⎡⎤⎨-⎛⎫+<<⎢⎥⎪ ⎪⎝⎭⎢⎥⎪⎣⎦⎩() ()表示:不大于25岁的人,对子集“年轻”的隶属函数值是1,即一定属于这一子集;而大于25岁的人,对子集“年轻”的隶属函数值按122515u -⎡⎤-⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦来计算,例如,40岁的人,隶属函数值()1240254010.15A u μ-⎡⎤-⎛⎫==+=⎢⎥⎪⎝⎭⎢⎥⎣⎦。
同理,由()可得:()550.5B u μ==,()600.8B u μ==。
模糊子集的隶属函数值的确定通常是根据经验或统计,常常带有主观性,但大家也较容易接受。
15.2.2λ截集和支集[例题] 某医生今天给五个发烧病人看病,设为{}12345,,,,x x x x x ,其体温分别为:38.9C ,37.2C ,37.8C ,39.2C ,38.1C 。
医生在统计表上就可以这样写:37C 以上的五人,{}12345,,,,x x x x x ; 38C 以上的三人,{}145,,x x x ; 39C 以上的一人,{}1x ;如果规定37.5C 以下的不算发烧,问有多少发烧病人?医生就可以回答:{}1345,,,x x x x ,但所谓“发烧”实际上是一个模糊概念,它存在程度上的不同,也就是说要用隶属函数来描述。
如果根据医师的经验规定,对“发烧”来说:体温39C 以上的隶属函数()1x μ=;体温38.5C 以上不到39C 的隶属函数()0.9x μ=; 体温38C 以上不到38.5C 的隶属函数()0.7x μ=; 体温37.5C 以上不到38C 的隶属函数()0.4x μ=; 体温37.5C 以下的隶属函数()0x μ=; 我们用模糊集合来处理这个问题。
设123450.900.410.7A x x x x x =++++ 现在如果问:隶属函数()0.9A x μ≥的有哪些人,用0.9A 来表示这一集合,则{}0.914,A x x =,同理,{}0.814,A x x =,{}0.6145,,A x x x =,{}0.41345,,,A x x x x =。
一般地,用A λ表示()A x μλ≥的集合,这个集合就叫λ截集或λ水平集(){},A A x x x X λμλ=≥∈支集(){}00,A A A x x x X λμ+=⋃=>∈,即所有0λ>的λ截集的并集,本例中即为所有发烧病人。
15.2.3确定隶属函数的原则隶属函数的确定过程,本质上应该说是客观的,但是事实上现在还没有一个完全客观的评定标准。
在许多情况下,常是初步确定粗略的隶属函数,然后通过“学习”和时间检验逐步修改和完善化,而实际效果正是检验和调整隶属函数的依据。
模糊统计是确定隶属函数的一种主要方法,它需要做大量的试验,因此工作量是比较大的。
15.2.4怎样度量模糊性隶属函数的值的确定,虽然有各种方法,本质上应该是客观的,但实际上常常带有主观性,对同一论域上的模糊集合,不同的人或用不同的判断标准,所得出的各元素的隶属度也不尽相同,那么,有没有办法来比较哪一个更正确些呢,这就涉及到怎样来度量模糊性的问题。
下面我们通过一个实例来说明这个问题。
[例题] 假定有甲乙两个顾客商场买衣服,他们主要考虑三个因素: (1) 花色式样(1x ); (2) 耐穿程度(2x ); (3) 价格(3x );甲乙两人就会根据自己的观点,分别给1x 2x 3x 打分,这种打分实际上是模糊的,也就是要确定对这个因素“满意”的隶属度,但是由于两个人的经验,性格和经济情况等都不相同,所以他们对1x 2x 3x 所确定的隶属度也不会相同。
花色式样(1x )耐穿程度(2x )价格(3x )顾客甲确定的隶属度 ()10.8A x μ= ()20.4A x μ= ()30.7A x μ=顾客乙确定的隶属度()10.6B x μ= ()20.6B x μ= ()30.5B x μ=这就得到两个模糊集:1230.80.40.7A x x x =++,1230.60.60.5B x x x =++ 究竟谁的观点正确呢?看来没法确定。
因为各人有各人的经验,各人有各人的道理,这就是怎样度量模糊性的问题。
解决这个问题的研究途径很多,目前用得较多的大致有“距离”,“贴近度”两个。
15.2.4.1 用“距离”来度量模糊性定义 在有限论域X 上有两个模糊子集A 和B ,A 和B 的汉明距离定义如下: 绝对汉明距离:()()()1,nAiBii d A B x x μμ==-∑;相对汉明距离:()()1,,A B d A B nδ=。
例如在例中:(),0.80.60.40.60.70.50.6d A B =-+-+-=()()1,,0.23A B d A B δ==定义 在有限论域X 上有两个模糊子集A 和B ,A 和B 的欧几里得距离定义如下: 绝对欧几里得距离:()()()21,nA iB i i e A B x x μμ=⎡⎤=-⎣⎦∑相对欧几里得距离:()()1,,A B e A B nε= 例中:(),0.23e A B =(),0.2A B ε=怎样用距离来描述一个模糊集合的模糊程度呢?要定义一个跟A 最贴近的集合,这个集合用A 来表示,如果A 里某元素的隶属度0.5>,A 的相应元素的隶属度为1,如果0.5≤,则相应的隶属度为0,即()()()1,0.50,0.5A A A x x x μμμ>⎧⎪=⎨≤⎪⎩, 令()()2,A A A νδ=,()()2,A A A ηε=,用()A ν,()A η来表示模糊集合的模糊度。