金融行业大数据应用
大数据技术在金融领域的应用及发展趋势

大数据技术在金融领域的应用及发展趋势
一、大数据技术在金融领域的应用
1、大数据提升了风险模型的准确性
大数据技术为金融机构提供了规模化、多维度、实时更新信息的数据库,可以有效地提升风险模型的准确性。
例如,在用于信贷风险管理的大
数据风险模型中,可以采用巨大的交易记录、客户信息和市场数据进行准
确的风险识别。
这可以更好地了解客户行为,并且可以通过过去的历史数
据来预测未来的可能性。
2、大数据的应用提升了客户体验
大数据分析可以为金融机构提供更个性化的客户体验,这可以提升客
户满意度。
采用大数据分析,金融机构可以对客户的行为和偏好进行分析,并在此基础上提供最符合客户需求的产品和服务。
此外,通过大数据分析,金融机构还能够更多地了解自身的市场表现,有效提升业务发展的效率和
效果。
3、大数据技术改善金融犯罪侦查
大数据可以收集和汇总大量金融信息,利用机器学习和其他计算技术
来分析数据,从而提升金融犯罪的发现和侦查效率。
大数据分析可以帮助
金融机构识别金融交易的异常模式,检测高风险的金融行为,并且及时发
现财务欺诈行为。
二、大数据技术在金融领域的发展趋势。
金融行业的大数据应用案例及解决方案

金融行业的大数据应用案例及解决方案清晨的阳光透过窗帘的缝隙,洒在我的键盘上,指尖轻触键盘,思绪如大数据般涌现。
今天,我们要聊聊的是金融行业的大数据应用案例及解决方案。
这是一个充满挑战和机遇的话题,让我们一起走进这个奇妙的世界。
一、大数据在金融行业的应用案例1.风险控制记得有一次,我帮助一家银行构建风险控制模型。
通过分析海量数据,我们发现,借款人的还款能力与他们的社交网络、购物习惯等息息相关。
于是,我们设计了一个基于大数据的风险控制模型,将借款人的这些信息纳入评估体系。
这样一来,银行在发放贷款时,能够更加精准地判断借款人的还款能力,降低风险。
2.客户画像在金融行业,了解客户是至关重要的。
一家保险公司通过大数据分析,为客户构建了详细的画像。
他们发现,不同年龄、职业、地域的客户,对保险产品的需求差异很大。
于是,公司根据这些数据,推出了一系列针对不同客户群体的保险产品,大大提高了销售额。
3.资产配置一家基金公司利用大数据,对全球股市、债市、商品市场等进行分析,为投资者提供最优的资产配置方案。
他们通过实时数据监控,调整投资组合,降低投资风险。
这种方法,让投资者在市场波动中,始终保持稳健的收益。
二、大数据在金融行业的解决方案1.数据采集与清洗大数据的第一步,是采集和清洗数据。
金融行业涉及的数据量巨大,包括客户信息、交易记录、市场行情等。
我们需要通过技术手段,将这些数据进行整合、清洗,为后续分析提供准确的基础数据。
2.数据存储与管理金融行业的数据存储与管理,需要考虑安全性、稳定性、可扩展性等因素。
我们可以采用分布式存储、云计算等技术,确保数据的安全和高效访问。
3.数据分析与挖掘数据分析与挖掘是大数据的核心。
金融行业可以利用机器学习、深度学习等技术,对数据进行深入分析,挖掘出有价值的信息。
4.应用场景拓展大数据在金融行业的应用场景非常广泛。
我们可以将大数据技术应用于风险控制、客户服务、投资决策等方面,提高金融服务的质量和效率。
大数据在金融领域的应用有哪些

大数据在金融领域的应用有哪些在当今数字化的时代,大数据已经成为金融领域的一项关键技术,为金融机构带来了诸多变革和创新。
从风险管理到市场预测,从客户关系管理到欺诈检测,大数据的应用无处不在,深刻影响着金融行业的运作方式和竞争力。
首先,大数据在风险管理方面发挥着重要作用。
金融机构面临着各种各样的风险,如信用风险、市场风险、操作风险等。
通过收集和分析大量的客户数据,包括信用记录、收入水平、负债情况等,金融机构能够更准确地评估借款人的信用风险,从而做出更明智的贷款决策。
例如,银行可以利用大数据分析来预测客户违约的可能性,提前采取措施降低损失。
此外,大数据还可以帮助金融机构监测市场波动,及时调整投资组合,降低市场风险。
对于操作风险,大数据能够识别潜在的风险点和异常交易,加强内部控制,保障金融机构的稳健运营。
其次,大数据在市场预测方面具有显著的优势。
金融市场的变化受到众多因素的影响,如宏观经济数据、政治局势、行业动态等。
借助大数据技术,金融机构可以整合和分析来自多个渠道的海量数据,包括社交媒体、新闻报道、交易数据等,以获取更全面、更及时的市场信息。
通过对这些数据的挖掘和分析,金融机构能够发现市场趋势和潜在的投资机会,为投资决策提供有力支持。
例如,通过分析社交媒体上的情绪数据,金融机构可以预测股票市场的短期波动;利用历史交易数据和宏观经济指标,构建复杂的数学模型,预测长期的市场走势。
再者,大数据在客户关系管理方面也有着广泛的应用。
在竞争激烈的金融市场中,客户体验和满意度至关重要。
大数据可以帮助金融机构更好地了解客户需求和行为偏好,实现个性化的产品推荐和服务。
通过收集客户的交易记录、浏览行为、咨询记录等数据,金融机构能够构建客户画像,深入洞察客户的金融需求和消费习惯。
基于这些洞察,金融机构可以为客户提供定制化的金融产品和服务,如个性化的理财建议、专属的信用卡优惠等,从而提高客户的忠诚度和满意度。
此外,大数据还可以用于客户细分,将客户分为不同的群体,针对每个群体制定相应的营销策略,提高营销效果和投资回报率。
金融行业中的大数据应用

金融行业中的大数据应用随着科技的不断进步和发展,大数据作为一种新兴技术,也在金融领域得到了广泛应用。
金融行业中的大数据应用,不仅能够优化金融机构的内部业务流程,提高企业的竞争力和市场份额,还能够为客户提供更加个性化的服务,提高客户满意度和忠诚度。
本文将从金融领域的大数据应用以及影响、应用案例和未来趋势等方面进行探讨。
一、金融行业中的大数据应用1.风险管理金融机构涉及金融、保险等多种业务,很容易发生大额风险,风险控制是金融业的核心。
大数据技术可以通过对数据的全面、深入分析,识别出风险,达到控制风险的目的,提高风险控制的效率和准确率。
2.数据挖掘金融行业涉及的数据非常庞大,如何从中快速发掘出对业务的影响,是需要解决的问题。
大数据技术可以通过对大量数据的挖掘,发掘出符合业务特征的数据,让金融机构能够深入挖掘客户的需求和行为,为客户提供个性化的服务。
3.客户关系管理金融机构需要保持客户的忠诚度,才能维持和扩大市场份额。
大数据技术可以对客户的信息进行分析,了解客户的需求和喜好,让金融机构的营销能够更加精准,提高客户的满意度和忠诚度。
二、大数据应用的影响1.强化金融机构的市场竞争力随着大数据技术的应用,金融机构可以更好地把握市场趋势和客户需求,加强业务的透明度和质量,提高企业市场竞争力和市场份额。
2.提高员工工作效率数据量庞大、复杂的任务,是难以人工有效处理的。
大数据技术的应用,能够帮助员工自动化数据分析,减少繁琐的重复工作,提高员工的工作效率和工作质量。
3.客户利益最大化大数据技术的应用,能够更好地满足客户需求、提供更好的服务,为客户提供更加全面、个性化的金融服务,从而最大化客户利益和满意度。
三、金融行业中的大数据应用案例1.信贷风险评估大数据技术可以对客户的财务情况、征信记录、借贷历史等多方面进行评估,预测客户的信用风险,帮助金融机构更好地把握信贷风险,降低信贷风险,减少金融机构的损失。
2.欺诈检测随着金融业务的不断拓展和发展,欺诈降低的风险也越来越大。
大数据在金融行业的应用

大数据在金融行业的应用随着信息技术的不断发展,大数据技术在金融行业的应用越来越广泛。
大数据技术以其强大的数据处理和分析能力,为金融机构提供了更精准、高效的决策支持,助力金融行业实现数字化转型。
本文将从大数据在金融行业的应用现状、优势和挑战等方面展开探讨。
一、大数据在金融行业的应用现状随着金融业务的不断扩张和金融科技的快速发展,金融机构每天都会产生海量的数据,包括客户交易数据、风险数据、市场数据等。
如何高效地管理和利用这些数据成为金融机构面临的重要问题。
大数据技术的出现为金融行业提供了解决方案。
在金融行业,大数据应用主要集中在以下几个方面:1. 风险管理:金融机构通过大数据技术对客户的信用、交易记录等数据进行分析,建立风险模型,实现对风险的实时监控和预警,提高风险管理的精准度和效率。
2. 金融营销:利用大数据技术,金融机构可以更好地了解客户的需求和行为习惯,精准推送个性化的金融产品和服务,提升客户满意度和忠诚度。
3. 交易监控:大数据技术可以帮助金融机构实现对交易数据的实时监控和分析,发现异常交易行为,防范金融风险,维护金融市场的稳定和安全。
4. 信贷评估:通过大数据技术对客户的个人信息、信用记录等数据进行分析,金融机构可以更准确地评估客户的信用风险,提高信贷决策的准确性和效率。
5. 产品创新:大数据技术可以帮助金融机构分析市场趋势和客户需求,快速推出符合市场需求的金融产品,提升竞争力和创新能力。
二、大数据在金融行业的优势大数据技术在金融行业的应用具有以下优势:1. 数据处理能力强:大数据技术可以快速处理海量的结构化和非结构化数据,实现对数据的高效管理和分析,为金融机构提供更全面、准确的信息支持。
2. 决策支持更精准:通过大数据分析,金融机构可以更好地了解客户需求和市场变化,制定更科学、精准的决策,提高业务运营效率和风险控制能力。
3. 个性化服务更优质:大数据技术可以帮助金融机构实现对客户的精准画像,提供个性化的金融产品和服务,提升客户体验和满意度。
大数据技术在金融行业的应用

大数据技术在金融行业的应用随着金融行业的不断发展,数据量猛增,大数据技术越来越受到金融机构的关注,这种技术可以帮助金融机构更好地了解客户需求并提高服务质量。
大数据技术的应用有助于优化风险管理、提升运营效率和创造新的商业模式。
一.大数据技术在金融行业中的应用(一)风险管理金融行业的主要任务之一就是管理风险。
大数据技术可以帮助金融机构进行更精准地风险控制,进而更好地避免财务风险。
通过大数据对各类金融风险进行监控、分析、预测,包括信用风险、市场风险和操作风险等,可以提高风险识别能力,有效保障风险控制的准确性和及时性。
同时,通过对大数据的分析,还可以发现潜在的风险和识别不良客户。
比如在信贷市场上,金融机构可以通过大数据技术对客户信用记录和还款情况进行分析,以便预测客户可能出现的信用风险问题,防范不良借款行为。
(二)运营效率金融行业需要处理大量的数据,比如财务数据、客户数据、市场数据和交易数据等。
这些数据是非常庞大的,使用传统的手工方式处理容易出错而且效率低下。
大数据技术可以使金融机构更加精细化地处理数据,从而提高工作效率。
金融机构可以运用大数据技术对客户进行分类,以便更好地进行市场营销和推广,并对客户行为进行分析,以获取更多的客户信息和行业趋势等有用信息。
此外,大数据还可以帮助金融机构更好地管理库存、预测需求等,并进一步提高供应链管理效率。
(三)创造新商业模式大数据技术的应用还可以带来新的商业模式和增长方式,使金融机构更加快速发展。
比如,大数据可以通过对客户行为模式分析来提供更加个性化的服务,同时也能够开拓新市场并获得更多的利润。
另外,大数据还可以用于支付结算,通过支付交易中的数据分析,金融机构可以快速识别和处理非法交易并降低其风险。
二.大数据技术在国内金融行业的应用(一)互联网金融互联网金融行业是当今最受关注的新兴业务之一,它的数据量非常庞大,但同时包含了非常多的有效信息。
大数据技术在互联网金融行业中得到了广泛的应用。
金融行业的大数据应用了解大数据技术如何推动金融行业的创新与发展

金融行业的大数据应用了解大数据技术如何推动金融行业的创新与发展金融行业的大数据应用:了解大数据技术如何推动金融行业的创新与发展金融行业作为全球经济的重要组成部分,随着科技的发展,大数据技术的应用日益普及。
本文将探讨大数据技术在金融行业中的应用,以及如何推动金融行业的创新与发展。
一、大数据技术在金融行业的应用1. 风险管理与预测大数据技术可以帮助金融机构更好地进行风险管理与预测。
通过对大量的历史交易数据进行分析,金融机构可以发现潜在的风险,并及时采取措施进行应对。
例如,通过分析个人消费数据和信用评分,银行可以预测客户未来的还款能力,从而更准确地决定是否放款。
2. 金融市场分析大数据技术使得金融市场分析更加准确和高效。
传统的金融市场分析通常基于有限的数据和经验判断,而大数据技术可以通过对海量的市场数据进行分析,揭示市场的潜在规律和趋势。
金融机构可以利用大数据技术对市场进行实时监测和分析,以便更好地进行投资决策和资产配置。
3. 个性化金融服务大数据技术为金融机构提供了更多个性化金融服务的可能性。
通过对客户的个人信息、历史交易数据和行为模式进行分析,金融机构可以更好地了解客户需求,并根据客户的特点提供相应的金融产品和服务。
例如,银行可以根据客户的消费习惯和收入情况,为其量身定制信用卡额度和还款计划。
二、大数据技术推动金融行业创新与发展的途径1. 提升金融机构运营效率大数据技术可以帮助金融机构提升运营效率。
通过自动化数据收集、处理和分析,金融机构可以更快速地获取和处理相关信息。
例如,利用大数据技术,银行可以实现快速的贷款审批流程,提高客户满意度和贷款效率。
2. 推动金融产品创新大数据技术为金融产品创新提供了新的可能性。
通过对大数据的分析,金融机构可以更好地了解客户需求,并据此创造出更加创新和个性化的金融产品。
例如,一些金融科技公司利用大数据技术和区块链技术开发出了基于区块链的数字货币,为用户提供更安全、高效和便捷的支付方式。
30. 大数据在金融行业中的应用有哪些?

30. 大数据在金融行业中的应用有哪些?30、大数据在金融行业中的应用有哪些?在当今数字化时代,大数据已成为金融行业创新和发展的重要驱动力。
它正在重塑金融机构的运营模式、风险管理策略以及客户服务方式。
接下来,让我们深入探讨一下大数据在金融行业中的具体应用。
一、风险管理信用风险评估是金融机构的关键任务之一。
以往,银行等金融机构主要依赖于客户的财务报表、信用记录等有限的信息来评估信用风险。
但如今,通过大数据分析,金融机构可以获取更广泛的数据来源,包括社交媒体数据、网络交易数据、移动支付数据等。
这些数据能够提供更全面、更实时的客户画像,帮助金融机构更准确地预测客户的还款能力和违约风险。
例如,通过分析客户在社交媒体上的言论和行为,可以了解其消费习惯、社交圈子以及个人信用观念。
如果一个客户经常在社交媒体上抱怨债务问题,或者其社交圈子中存在较多信用不良的人员,那么这可能暗示着该客户存在较高的信用风险。
市场风险预测也是大数据的重要应用领域。
金融市场波动频繁,传统的风险预测模型往往难以应对复杂多变的市场环境。
而大数据技术可以整合海量的市场数据,包括股票价格、汇率波动、商品期货数据等,并结合宏观经济数据、政策变化等因素,进行更精确的市场风险预测。
这有助于金融机构及时调整投资组合,降低市场风险带来的损失。
此外,操作风险的管理也因大数据而得到改善。
金融机构每天处理大量的交易和业务流程,其中可能存在各种人为失误、系统故障等操作风险。
通过对业务流程中产生的大量数据进行分析,可以及时发现潜在的操作风险点,并采取相应的防范措施。
二、精准营销大数据使金融机构能够实现更精准的客户细分和营销。
传统的客户细分方法通常基于年龄、收入、职业等有限的几个维度,而大数据可以综合考虑客户的消费行为、投资偏好、风险承受能力等众多因素,将客户细分为更小、更具相似性的群体。
比如,对于有定期储蓄习惯且风险承受能力较低的客户,可以向他们推荐稳健型的理财产品;对于喜欢频繁进行股票交易且风险承受能力较高的客户,可以推荐更具进取性的投资产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据在金融行业的发展应用一、金融行业大数据发展概述数据显示,中国大数据IT应用投资规模以五大行业最高,其中以互联网行业占比最高,占大数据IT应用投资规模的28.9%,其次是电信领域(19.9%),第三为金融领域(17.5%),政府和医疗分别为第四和第五。
金融行业位居第三,主要是由于大数据在金融行业的应用起步相对稍晚,其应用深度和广度还有很大的扩展空间。
根据国际知名咨询公司麦肯锡的报告显示:在大数据应用综合价值潜力方面,信息技术、金融保险、政府及批发贸易四大行业潜力最高高。
具体到行业内每家公司的数据量来看,信息、金融保险、计算机及电子设备、公用事业四类的数据量最大。
不同行业应用大数据技术潜在价值评估数据来源:麦肯锡《大数据的下一个前沿:创新、竞争和生产力》报告可以看出,无论是投资规模和应用潜力,信息行业(互联网和电信)和金融行业都是大数据应用的重点行业。
金融行业的大数据应用有很多的障碍需要克服,比如银行企业内各业务的数据孤岛效应严重、大数据人才相对缺乏以及缺乏银行之外的外部数据的整合等问题。
可喜的是,金融行业尤其是以银行的中高层对大数据渴望和重视度非常高,相信在未来的两三年内,在互联网和移动互联网的驱动下,金融行业的大数据应用将迎来突破性的发展。
二、金融行业大数据应用当前,数据是重要资产的观念已经在金融行业成为共识,随着金融业务的载体与社交媒体、电子商务的融合越来越紧密,仅对原有15%的结构化数据进行分析已经不能满足发展的需求,急需借助大数据战略打破数据边界,囊括85%的大数据分析,来构建更为全面的企业运营全景视图。
大数据能够解决金融领域海量数据的存储、查询优化及声音、影像等非结构化数据的处理。
金融系统可以通过大数据分析平台,导入客户社交网络、电子商务、终端媒体产生的数据,从而构建客户视图。
依托大数据平台可以进行客户行为跟踪、分析,进而获取用户的消费习惯、风险收益偏好等。
针对用户这些特性,银行等金融部门能够实施风险及营销管理。
总结可以看出,金融机构大数据应用主要在四个领域:风险管理、渠道优化、客户管理及运营优化。
大数据服务于金融领域的五种应用类型包括:互联网获客、个性化推荐、精准化营销、大数据征信及信用评级体系:参考赛迪网发布的中国金融行业大数据投资结构,银行以占比41.10%位居第一为,证券占比35.10%和保险占比23.80%分列第二和第三位。
下面分别对银业、保险业、证券业进行大数据运用解析。
1、银行业大数据运用国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。
总的来看银行大数据应用可以分为四大方面:第一方面:客户画像应用。
客户画像应用主要分为个人客户画像和企业客户画像。
个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。
值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。
比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。
但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。
所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。
包括:(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。
通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;(3)企业客户的产业链上下游数据。
如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
第二方面:精准营销。
在客户画像的基础上银行可以有效的开展精准营销,包括:(1)实时营销。
实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;(2)交叉营销。
即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;(3)个性化推荐。
银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;(4)客户生命周期管理。
客户生命周期管理包括新客户获取、客户防流失和客户赢回等。
如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
第三方面:风险管控。
包括中小企业贷款风险评估和欺诈交易识别等手段。
(1)中小企业贷款风险评估。
银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。
银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。
如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯第四方面:运营优化。
(1)市场和渠道分析优化。
通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。
同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。
如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。
同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
2、保险行业大数据运用由于保险行业的代理人的特点,所以在传统的个人代理渠道,代理人的素质及人际关系网是业务开拓的最为关键因素,而大数据在在新客户开发和维系中的作用就没那么突出。
但随着互联网、移动互联网以及大数据的发展,网络营销、移动营销和个性化的电话销售的作用将会日趋显现,越来越多的保险公司注意到大数据在保险行业中的作用。
总的来说,保险行业的大数据应用可以分为三大方面:客户细分及精细化营销、欺诈行为分析和精细化运营。
第一方面:客户细分和精细化营销(1)客户细分和差异化服务。
风险偏好是确定保险需求的关键。
风险喜好者、风险中立者和风险厌恶者对于保险需求有不同的态度。
一般来讲,风险厌恶者有更大的保险需求。
在客户细分的时候,除了风险偏好数据外,要结合客户职业、爱好、习惯、家庭结构、消费方式偏好数据,利用机器学习算法来对客户进行分类,并针对分类后的客户提供不同的产品和服务策略。
(2)潜在客户挖掘及流失用户预测。
保险公司可通过大数据整合客户线上和线下的相关行为,通过数据挖掘手段对潜在客户进行分类,细化销售重点。
通过大数据进行挖掘,综合考虑客户的信息、险种信息、既往出险情况、销售人员信息等,筛选出影响客户退保或续期的关键因素,并通过这些因素和建立的模型,对客户的退保概率或续期概率进行估计,找出高风险流失客户,及时预警,制定挽留策略,提高保单续保率。
(3)客户关联销售。
保险公司可以关联规则找出最佳险种销售组合、利用时序规则找出顾客生命周期中购买保险的时间顺序,从而把握保户提高保额的时机、建立既有保户再销售清单与规则,从而促进保单的销售。
除了这些做法以外,借助大数据,保险业可以直接锁定客户需求。
以淘宝运费退货险为例。
据统计,淘宝用户运费险索赔率在50%以上,该产品对保险公司带来的利润只有5%左右,但是有很多保险公司都有意愿去提供这种保险。
因为客户购买运费险后保险公司就可以获得该客户的个人基本信息,包括手机号和银行账户信息等,并能够了解该客户购买的产品信息,从而实现精准推送。
假设该客户购买并退货的是婴儿奶粉,我们就可以估计该客户家里有小孩,可以向其推荐关于儿童疾病险、教育险等利润率更高的产品。
(4)客户精准营销。
在网络营销领域,保险公司可以通过收集互联网用户的各类数据,如地域分布等属性数据,搜索关键词等即时数据,购物行为、浏览行为等行为数据,以及兴趣爱好、人脉关系等社交数据,可以在广告推送中实现地域定向、需求定向、偏好定向、关系定向等定向方式,实现精准营销。
第二方面:欺诈行为分析基于企业内外部交易和历史数据,实时或准实时预测和分析欺诈等非法行为,包括医疗保险欺诈与滥用分析以及车险欺诈分析等。
(1)医疗保险欺诈与滥用分析。
医疗保险欺诈与滥用通常可分为两种,一是非法骗取保险金,即保险欺诈;另一类则是在保额限度内重复就医、浮报理赔金额等,即医疗保险滥用。
保险公司能够利用过去数据,寻找影响保险欺诈最为显著的因素及这些因素的取值区间,建立预测模型,并通过自动化计分功能,快速将理赔案件依照滥用欺诈可能性进行分类处理。
(2)车险欺诈分析。
保险公司够利用过去的欺诈事件建立预测模型,将理赔申请分级处理,可以很大程度上解决车险欺诈问题,包括车险理赔申请欺诈侦测、业务员及修车厂勾结欺诈侦测等。
第三方面:精细化运营(1)产品优化,保单个性化。
过去在没有精细化的数据分析和挖掘的情况下,保险公司把很多人都放在同一风险水平之上,客户的保单并没有完全解决客户的各种风险问题。