数字图像处理在人脸识别中的应用
人脸识别技术的发展历程与应用案例

人脸识别技术的发展历程与应用案例近年来,随着技术的不断发展,人工智能技术愈加成熟,人脸识别技术也逐渐走进人们的日常生活。
人脸识别技术是指基于数字图像处理、模式识别和计算机视觉等技术实现的人脸图像自动识别技术。
它应用广泛,从安保、金融、医疗到生活娱乐等领域都有应用。
下面将介绍一下人脸识别技术的发展历程和应用案例。
一、人脸识别技术的发展历程人脸识别技术的起源可以追溯到上世纪60年代,当时人们开始尝试使用计算机对人脸进行特征提取。
但当时的技术受限于计算机处理速度慢,数据量小等因素,无法实现准确的人脸识别。
直到20世纪90年代后,随着摄像头、计算机性能、算法和人工智能技术的不断改进,人脸识别技术才迎来了大发展。
在21世纪初期,人脸识别技术已经成熟到可应用于实际场景中。
其中,基于2D图像的传统人脸识别技术已经广泛应用于警务、金融、教育等领域。
而近年来,基于3D面部识别的技术已经开始发展,并且具有更高的精度和准确性。
二、人脸识别技术的应用案例1.公安领域在公安领域,人脸识别技术被广泛应用于视频监控、刑侦案件排查等方面。
以短视频平台为例,平台可以很好地根据用户的面部特征,快速呈现相关的短视频,这需要人脸识别技术的支持。
在刑侦领域,人脸识别技术有助于公安人员迅速通过视频监控系统辨认犯罪嫌疑人并加以抓捕,提高了破案效率。
2.金融领域在金融领域,人脸识别技术可以应用于ATM机、移动支付等方面,提高用户支付的安全性。
同样,人脸识别技术可以较高的精度通过检测用户脸部的重要性特征来防止账号被盗用。
3.医疗领域在医疗领域,通过人脸识别技术,医生可以在临床中更准确地诊断疾病,减少漏诊和误诊的情况。
同时,该技术可以用于医院内患者的身份识别和在医疗设备启动时的身份核验,提高医院管理运营的效率。
4.生活娱乐领域在生活娱乐领域,人脸识别技术的应用更多是智能家居、人脸支付、虚拟游戏等领域。
例如,在智能家居中,人脸识别可以根据个人的面部特征,配置家庭的创意和娱乐环境,提高居住体验。
图像处理技术在人脸识别中的应用

图像处理技术在人脸识别中的应用随着科技不断地进步,现代社会对于人脸识别技术的需求也越来越高。
很多行业都涉及到了人脸识别技术,例如安防、金融、社交等领域。
为了更好地应对这些需求,图像处理技术在人脸识别中的应用也越来越广泛。
一、人脸检测人脸检测技术是指在多个图像中找到人脸的技术。
在人脸识别过程中,首先需要进行人脸检测。
常用的方法有基于颜色、形状和纹理等特征的检测方法。
与传统方法不同,现代图像处理技术将深度学习算法应用于人脸检测中,例如卷积神经网络(CNN)。
CNN是一种基于人工神经网络的深度学习算法,可以对输入的图像进行分类和识别。
在人脸检测中,CNN可以预训练,从而得到一个检测器。
这个检测器可以检测出输入图像中的人脸,并用一个矩形框圈出。
二、人脸特征提取人脸特征提取技术是指从图像中提取出能够区分不同人脸的特征。
通常有以下几种方法:1. Haar特征检测:通过对图像中的像素点进行积分,得到图像的不同区域之间的差异,从而提取出特征。
2. LBP(局部二值模式)特征:用局部信息表示整幅图像,通过比较邻域像素值的大小来计算每个像素的二值码,从而提取出特征。
3. HOG(方向梯度直方图)特征:通过计算图像中每个像素点周围像素的梯度信息,得到图像的梯度直方图,从而提取出特征。
三、人脸识别人脸识别是指通过识别人脸的特征,并将其与存储在数据库中的特征进行匹配从而实现身份认证的过程。
现代图像处理技术主要采用机器学习算法和人工神经网络的方法实现人脸识别。
人脸识别的常用方法包括:1.基于特征比对的人脸识别方法:该方法是将提取出的人脸特征与存储在数据库中的人脸特征进行比对,从而实现识别。
基于特征比对的人脸识别方法有SIFT、SURF等。
2. 基于深度学习的人脸识别方法:通过卷积神经网络等深度学习算法进行人脸特征提取和识别。
四、人脸识别的应用人脸识别技术在现代社会中有着广泛的应用,主要体现在以下几个方面:1. 安防:人脸识别技术可以应用于各类安防场景,例如门禁、监控等,实现重点区域的智能访问控制。
人脸识别技术的发展历程与应用

人脸识别技术的发展历程与应用随着科技的不断发展,人们的生活越来越依赖于科技,人脸识别技术也是近年来快速发展的一项技术。
对于许多人来说,人脸识别技术已经不是陌生的概念了。
人脸识别技术早在上世纪70年代就开始应用于生活中,而近年来随着技术不断改进和应用场景越来越广泛,人脸识别技术的发展历程也变得越来越迅速。
一、人脸识别技术的发展历程人脸识别技术的起源可以追溯到上世纪70年代,当时的技术还十分原始,只能识别二值图像上的特征点。
80年代初,随着电视技术,数字图像处理以及计算机技术的快速发展,人脸识别技术逐渐得到了改进。
1991年,首个基于人脸识别技术的商业项目诞生。
1992年,美国M.I.T推出了名为"Eigenface"的人脸识别技术,这一技术不但可以在识别人脸的基础上还可以通过图像数据的处理生成人脸图像。
进入21世纪,随着深度学习、机器学习等相关技术的快速发展,人脸识别技术的性能得到了很大的提升。
2010年,美国M.I.T 的Ryan、Evan等人提出了DeepFace系统,这一技术在Labeled Faces in the Wild(LFW)数据集进行测试,识别率达到了97.35%。
随着科技的进步,现在的人脸识别技术已经非常成熟,准确率远高于人类,而且还可以通过增加数据量和改进深度学习算法等方式提高技术的识别准确率。
二、人脸识别技术在生活中的应用1. 安防领域人脸识别技术在安防领域中得到了广泛应用,如在银行、机场、地铁站等公共场所可以看到人脸识别技术的应用。
这种技术可以通过对比数据库中的人脸信息进行识别,从而达到防止恶意进入、保障人员安全等目的。
另外,人脸识别技术还能够高效地识别危险人物,为公共安全保驾护航。
2. 消费支付领域人脸识别技术也被广泛应用在消费支付领域。
通过人脸识别技术,用户就可以直接扫描自己的脸部进行付款。
虽然这种支付方式一开始存在一定的安全隐患,但是随着技术的不断改进以及数据加密等技术的应用,许多用户便开始接受这种支付方式。
数学与人脸识别

数学与人脸识别人脸识别技术是一种通过数学算法和模型来识别和验证人脸的技术。
它已经在各个领域得到了广泛的应用,包括安全监控、身份识别、手机解锁等。
这项技术的成功离不开数学的支持,数学在人脸识别中发挥着关键的作用。
1. 统计学与人脸识别在人脸识别中,统计学发挥着重要的作用。
首先,人脸图像是通过摄像头捕捉到的数据,而这些数据往往受到环境的干扰,比如光照条件、角度变化等。
统计学可以对这些变化进行建模,通过建立概率模型来描述不同环境下的人脸图像特征分布。
通过统计学方法,可以对人脸进行建模,提取出具有代表性的特征。
2. 线性代数与特征提取在人脸识别中,线性代数也发挥着重要的作用。
线性代数中的矩阵运算可以对人脸图像进行降维和特征提取。
通过将人脸图像表示为矩阵,可以利用线性代数方法对人脸图像进行操作。
例如,主成分分析(PCA)是一种常用的线性代数方法,通过对人脸图像矩阵进行奇异值分解,可以得到人脸图像的主要特征。
3. 概率论与人脸匹配人脸识别中的关键问题之一是如何进行人脸匹配。
概率论可以提供对人脸匹配的理论支持。
通过概率论方法,可以对人脸特征进行建模,利用概率推理方法进行人脸匹配。
例如,通过建立人脸特征向量的概率分布模型,可以计算两个人脸特征向量之间的相似性,从而进行人脸匹配。
4. 数字图像处理与人脸识别数学在人脸识别中的另一个重要应用领域是数字图像处理。
数字图像处理技术可以对人脸图像进行预处理、增强和修复,使得人脸识别算法可以更好地处理图像。
例如,通过数字图像处理技术可以对人脸图像进行去噪、边缘检测、图像增强等操作,提高人脸识别的准确度和鲁棒性。
5. 机器学习与人脸识别机器学习是人脸识别中不可或缺的一部分,它通过数学模型和算法来实现人脸识别。
机器学习方法可以通过建立训练数据集,对人脸特征进行学习和训练,从而实现人脸识别的自动化。
常用的机器学习方法包括支持向量机(SVM)、人工神经网络(ANN)等。
结论综上所述,数学在人脸识别中起着至关重要的作用。
人脸识别技术研究及其应用

人脸识别技术研究及其应用随着技术的不断发展,人类已经进入了信息化时代,各种智能设备和应用也随之出现。
在这方面,人脸识别技术是一种比较新的技术,它可以通过对人脸图像的采集、分析、处理等一系列技术手段来识别出人物身份。
人脸识别技术不仅具有高精准度、高效率、易操作等优点,而且在各个领域有广泛的应用。
一、人脸识别技术的研究人脸识别技术的研究可以追溯到上世纪六七十年代,但当时技术水平相对较低,只能对一些简单的人脸图像进行处理,实现人脸的自动识别还有一定的困难。
随着计算机技术的不断发展,人脸识别技术也得到了快速的发展和应用。
在研究方法上,人脸识别技术主要是采用数字图像处理技术、模式识别技术、人工智能技术等手段进行研究。
数字图像处理技术可以对图像进行预处理,增强图像的质量和信息量。
模式识别技术可以对图像进行分类和识别,从而达到人脸识别的目的。
人工智能技术可以模拟人类的思维和认知过程,更加精准地进行识别。
二、人脸识别技术的应用人脸识别技术在各个领域都得到了广泛应用。
下面就一些典型的应用进行介绍:1. 安防领域在安防领域,人脸识别技术可以用于门禁系统、监控系统等。
门禁系统可以通过人脸识别技术自动辨识员工,并记录工作考勤时间等信息。
监控系统则可以通过人脸识别技术识别出重点人员,并及时采取措施,保护重要场所的安全。
2. 社会管理人脸识别技术在社会管理领域也有广泛应用。
例如,在警务系统中,可以将犯罪嫌疑人的照片通过人脸识别技术快速匹配到人口系统中的信息,从而加快犯罪的侦查速度。
在人口普查中,人脸识别技术可以对人口数据进行核验和更新。
3. 金融领域人脸识别技术在金融领域也有广泛应用,尤其是在ATM机、网银等领域。
通过人脸识别技术可以对用户进行身份验证,进一步保证用户财产的安全。
4. 医疗领域在医疗领域,人脸识别技术可以用于病人的身份验证和医生的考勤系统中。
通过人脸识别技术可以避免医疗事故和病人身份混淆。
三、人脸识别技术存在的问题随着人脸识别技术的广泛应用,也暴露出了一些问题,例如:1. 精度问题人脸识别技术存在识别精度不够高的问题。
数字图像处理在人脸识别中的应用

数字图像处理在人脸识别中的应用随着人们对科技的追求以及生活水平的提高,人脸识别技术已经越来越普及。
无论是在社会领域还是在个人生活方面,人脸识别技术在保障人民安全、提高用户体验等方面有非常广泛的应用。
而数字图像处理技术正是构建人脸识别系统的核心技术,因此深入研究数字图像处理在人脸识别中的应用具有重要的意义。
数字图像处理技术是指通过计算机对数字图像进行操作和处理的技术。
这种技术通常包含了图像采集、预处理、特征提取以及分类识别等几个步骤。
而当它与人脸识别技术结合时,数字图像处理技术将起到至关重要的作用。
在数字图像处理技术中,最为重要的一步是特征提取。
特征提取的目的是通过不同方式提取出图像中的特征信息,以便于人脸识别算法能够准确地识别不同人脸的特征。
数字图像处理技术中较为常见的人脸特征提取方式包括基于颜色、形态和纹理等几个方面。
其中,基于颜色的人脸识别方式是基于人脸的颜色特征进行识别,比如通过提取人脸区域的颜色直方图,以提高人脸识别的准确度。
除了基于颜色的人脸识别方式之外,基于形态和纹理的人脸识别方式也很重要。
基于形态的人脸识别方式是通过提取人脸的特征形态信息,如轮廓、脸型、面积等来进行识别。
而基于纹理的人脸识别方式是基于人脸纹理特征进行识别,比如通过提取人脸的纹理特征来提高人脸识别的准确率。
这些特征的提取和分类,离不开数字图像处理的强大支持。
在实际的人脸识别应用中,数字图像处理技术的作用更凸显。
人脸检测是人脸识别系统的第一步。
通过技术手段提取图像中有关的人脸数据,挑选其中的特定点,限定面部的形状,并进行相关的计算处理。
这对于后续的人脸识别来说,非常重要。
其次,从确定的关键点坐标中确定人脸位置,以更精细的方式分割出该部分人脸。
接下来,对人脸图像进行预处理,移除噪声和图像背景等无关信息,提高图像质量的同时保护人脸的完整性和特征性。
当人脸图像预处理后,我们需要从中提取有用的特征信息。
人脸识别应用中,数字图像处理技术最为重要的一部分就是特征提取。
数字图像处理课程设计人脸检测与识别

数字图像处理课程设计人脸检测与识别课程设计一、简介人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。
人脸识别是模式识别研究的一个热点, 它在身份鉴别、信用卡识别, 护照的核对及监控系统等方面有着广泛的应用。
人脸图像由于受光照、表情以及姿态等因素的影响, 使得同一个人的脸像矩阵差异也比较大。
因此, 进行人脸识别时, 所选取的特征必须对上述因素具备一定的稳定性和不变性. 主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一个列向量, 经过PCA 变换后, 不仅可以有效地降低其维数, 同时又能保留所需要的识别信息, 这些信息对光照、表情以及姿态具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设计具有良好分类能力和鲁棒性的分类器. 支持向量机(SVM ) 模式识别方法,兼顾训练误差和泛化能力, 在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。
本此课程设计基于MATLAB,将检测与识别分开进行。
其中检测部分使用实验指导书上的肤色模型算法进行,不进行赘述。
识别部分采用PCA算法对检测出的人脸图像进行特征提取, 再利用最邻近距离分类法对特征向量进行分类识别,将在后文具体表述。
仿真结果验证了本算法是有效的。
二、人脸检测1.源码img=imread('D:\std_test_images\face3.jpg');figure;imshow(img);R=img(:,:,1);G=img(:,:,2);B=img(:,:,3);faceRgn1=(R>95)&(G>40)&(B>20)&max(img,[],3)-min(img,[], 3)>15&abs(R-G)>15&R>B;figure;imshow(faceRgn1);r=double(R)./double(sum(img,3));g=double(G)./double(sum(img,3));Y=0.3*R+0.59*G+0.11*B;faceRgn2=(r>0.333)&(r<0.664)&(g>0.246)&(g<0.398)&(r>g)&g>=0.5-0.5*r;figure;imshow(faceRgn2);Q=faceRgn1.*faceRgn2;P=bwlabel(Q,8);BB=regionprops(P,'Boundingbox');BB1=struct2cell(BB);BB2=cell2mat(BB1);figure;imshow(img);[s1 s2]=size(BB2);mx=0;for k=3:4:s2-1p=BB2(1,k)*BB2(1,k+1);if p>mx&(BB2(1,k)/BB2(1,k+1))<1.8mx=p;j=k;hold on;rectangle('position',[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB 2(1,j+1)],'linewidth',3,'edgecolor','r');hold off;end end2.处理过程三、人脸识别1.算法简述在Matlab 2012a版本中添加了对PCA算法的支持,由于水平有限我选择直接调用。
数字图像处理技术在图像识别中的实际应用

数字图像处理技术在图像识别中的实际应用数字图像处理技术是一种将数字图像进行处理和分析的技术手段,广泛应用于图像识别领域。
图像识别是指通过计算机对图像中的目标进行自动识别和分类的过程。
在现代社会中,图像识别技术在人脸识别、车牌识别、图像搜索、安防监控等领域起到了重要作用。
本文将探讨数字图像处理技术在图像识别中的实际应用。
数字图像处理技术在图像识别中的一个重要应用领域是人脸识别。
人脸识别技术旨在通过计算机系统自动识别和鉴定图像或视频中的人脸。
在人脸识别技术中,数字图像处理技术可以应用于人脸图像的预处理、特征提取和匹配等过程。
在预处理阶段,数字图像处理技术可以用于去除图像中的噪声、调整图像的亮度和对比度,以及对图像进行图像增强,从而提高人脸识别的准确性。
在特征提取阶段,数字图像处理技术可以提取人脸图像中的特征点和特征描述符,例如眼睛、鼻子和嘴巴等特征,以便于后续的人脸匹配和识别。
在匹配阶段,数字图像处理技术可以将预处理和特征提取的结果与数据库中的人脸图像进行比对,以判断是否匹配。
通过数字图像处理技术的应用,人脸识别技术在安防领域、人脸支付以及社交娱乐等方面得到了广泛应用。
另外一个重要的实际应用领域是图像搜索。
在互联网时代,图像搜索技术成为了一项重要的研究方向。
图像搜索技术旨在通过对图像进行分析和比对,找到与其相似或相关的其他图像。
数字图像处理技术在图像搜索中发挥着重要的作用。
首先,数字图像处理技术可以对图像进行特征提取和描述,例如提取图像的颜色、纹理和形状等特征,从而实现对图像的内容理解和比对。
其次,数字图像处理技术可以建立图像特征的数据库,对图像进行索引和分类,从而实现高效的图像搜索。
通过数字图像处理技术的应用,图像搜索技术在电商平台、社交媒体、图片存储和检索等领域得到了广泛应用。
此外,数字图像处理技术在车牌识别领域也发挥着重要的作用。
车牌识别技术旨在通过对图像中的车牌进行自动识别和分类。
数字图像处理技术可以用于车牌图像的预处理、字符分割和字符识别等过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于肤色的人脸检测摘要本文介绍了人脸图像识别中所应用MATLAB对图像进行预处理,应用该工具箱对图像进行经典图像处理,通过实例来应用matlab图像处理功能,对某一特定的人脸图像处理,进而应用到人脸识别系统。
本文在总结分析人脸识别系统中几种常用的图像预处理方法基础上,利用MATLAB实现了一个集多种预处理方法于一体的通用的人脸图像预处理仿真系统,将该系统作为图像预处理模块可嵌入在人脸识别系统中,并利用灰度图像的直方图比对来实现人脸图像的识别判定。
关键词:脸部定位,特征提取,图像处理,MATLABAbasractThis paper introduces the application of MATLAB in face image recognition of image preprocessing,the application of the toolkit for classical image processing, application MATLAB image processing function through instance,for a particular face image processing,and then applied to the face recognition system.In face recognition system based on the summary analysis of several commonly used image preprocessing method based on the MATLAB implements a collect a variety of pretreatment method for the integration of the universal facial image preprocessing simulation system,the system as the image preprocessing module can be embedded in a face recognition system,and use the gray histogram of the image matching to realize the face image recognition.Key words:face positioning,feature extraction,picture processing,MATLAB目录1绪论 (1)1.1研究背景 (1)1.2人脸识别技术的研究现状 (1)1.3人脸识别的应用前景 (3)2基于肤色的人脸检测技术研究 (4)2.1人脸检测技术概述 (4)2.2肤色检测技术 (4)2.3人脸识别系统的构成 (5)2.4基于肤色的人脸检测 (5)2.4.1人脸图像预处理 (5)2.4.2色彩空间转换 (6)2.4.3RGB颜色模型 (6)2.4.4YCbCr颜色模型 (6)3图像处理的Matlab实现 (8)3.1MATLAB简介 (8)3.2数字图像处理及过程 (8)3.2.1图像处理的基本操作 (8)3.2.2图像类型的转换 (8)3.2.3图像增强 (8)3.2.4边缘检测 (9)3.3图像处理功能的Matlab实现实例 (9)4基于肤色的人脸检系统设计 (14)4.1系统结构设计 (14)4.2人脸检测系统算法分析 (14)4.2.1光线补偿 (14)4.2.2肤色建模 (15)4.2.3去掉非人脸区域 (17)4.2.4人脸区域标定 (17)4.3系统实现 (19)5总结与展望 (20)致谢 (22)参考文献 (23)1绪论1.1研究背景自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。
在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。
人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。
如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。
同时,进行人脸图像识别研究也具有很大的使用价依。
如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。
现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。
人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。
并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。
使得同一个人,在不同的环境下拍摄所得到的人脸图像不同,有时更会有很大的差别,给识别带来很大难度。
因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。
国外对于人脸图像识别的研究较早,现己有实用系统面世,只是对于成像条件要求较苛刻,应用范围也就较窄,国内也有许多科研机构从事这方而的研究,并己取得许多成果。
1.2人脸识别技术的研究现状近10多年来,计算机人脸识别技术有了很大的进展,各种人脸识别方法层出不穷。
根据人脸表征方式的不同,通常将人脸正面识别技术分为三大类基于几何特征的识别方法、基于代数特征的识别方法和基于连接机制的识别方法。
基于几何特征的人脸正面图像识别方法是通过人脸面部拓扑结构几何关系的先验知识,利用基于结构的方法在知识的层次上提取人脸面部主要器官的特征,将人脸用一组几何特征矢量表示,识别归结为特1征矢量之间的匹配,基于欧式距离的判决是最常用的识别方法。
基于代数特征的人脸识别方法主要有特征脸法(PAC)和隐马尔科夫模型(HMM)法特征脸法是基于变换的人脸识别方法。
隐马尔可夫模型是用于描述信号统计特征的一组统计模型。
它使用马尔可夫链来模拟信号统计特征的变化,而这种变化是间接的通过观察序列来描述的。
基于连接机制的人脸识别方法包括一般的神经网络方法(ANN)和弹性图匹配(DLA)方法神经网络的方法在人脸识别上比其他类别的方法有独特的优势,它避免了复杂的特征提取工作,可以通过学习的过程获得其他方法难以实现的关于人脸识别的规律和规则的隐性表达。
但是该方法神经元数目多,训练时间长。
基于弹性图匹配的人脸识别方法采用树形拓扑图来表述人脸模式,通常情况下,属性拓扑图为二维稀疏网络。
属性拓扑图上的每一个顶点均包含一特征矢量,记录了人脸在该顶点位置的分布信息。
属性拓扑图可以采用各种描述局部信息的特征,如小波特征,形态特征和统计特征等。
所以,它应该是介于基于人脸图像部件特征和基于人脸图像整体特征之间的一种人脸识别方法。
它不仅提取了描述人脸图像的局部特征,保留了人脸图像的空间信息,而且在一定程度上可以容忍人脸从三维到二维投影引起的变形,因此它在众多的人脸识别方法中占有重要的地位。
综合比较这些方法,每种方法都各有优缺点。
国外研究机构从事人脸识别的研究与实践较早,在美国、德国、日本等发达国家已经有相关产品问世。
1996年美国的FERET研究机构对现有的各种人脸识别算法进行了测试,结果表明,比较成熟的识别算法对于数千人的图像进行识别检索,识别率可达到90%以上。
1998年德国西门子公司成功开发了“人像及视觉访问控制系统(FaceVACS)”,用于保安系统的访问控制,对几十人的人像库进行识别检索,识别率接近100%。
2001年日E solutio本公司推出的“面孔验证安全系统”,最多可容纳1000人登录。
国内关于人脸识别技术的研究虽然起步较晚,但近年来发展很快,已经成武汉理工大学硕士学位论文为研究的热点。
目前,国内人脸识别理论和方法的研究水平已经达到或接近国际水平,相关的人脸识别产品也开始问世。
国内生产人脸识别产品的企业,主要有四川成都的银晨公司和吉林长春的当代公司,其产品主要应用于安全防范、访问控制、治安管理和信息安全等领域。
清华同方和东大阿尔派也都分别推出了用于犯罪嫌疑人计算机画像的“人像合成系统”。
并且,清华大学电子工程系于2005年1月研制成功一套大型人脸识别系统并通过了公安部组织的专家鉴定,达到国内领先水平和国际先进水平。
然而,人脸识别技术本身还有待进一步发展,现有的人脸识别方法对于人脸姿态变化、光照、表情、遮挡、年龄、模糊等一系列实际情况的鲁棒性还需进一步提高。
另外,由于人脸识别技术的实际应用实时性要求比较高,因此需要设计更高效的识别算法。
还有,在计算机人脸识别系统中,人脸库的存储也是一个必须考虑的问题。
从提高人脸识别系统实用性能的角度,人脸识别技术有以下发展方向:(1)进一步研究面部特征抽取和识别算法,提高识别精度;(2)3D形变模型可以处理多种变化因素,具有很好的发展前景;(3)提高系统的鲁棒性,降低对环境的条件限制;(4)多特征融合和多分类器融合的方法;(5)提高系统的识别速度,研究对海量人像数据的分布式检索比对方法;(6)采用DSP或嵌入式硬件和软件平台,研制开发便携的应用产品;(7)研究海量数据的存储、压缩和加密技术。
在一些高级信息安全的应用中,还需要研究人脸识别与指纹、虹膜、语音等识别技术融合的方法,这也是生物特征识别技术的发展趋势。
1.3人脸识别的应用前景人脸图像识别除了具有重大的理论价值以及极富挑战性外,还其有许多潜在的应用前景,利用人脸图像来进行身份验证,可以不与目标相接触就取得样本图像,而其它的身份验证手段,如指纹、眼睛虹膜等必须通过与目标接触或相当接近来取得样木,在某些场合,这些识别手段就会有不便之处。
人脸识别可应用在公安、国防、金融、部队、政府部门等需要高度保密的行业,这些行业需要对进出人员进行严格的管理和控制。
在这些行业使用人脸识别系统后,其管理效率可以得到最大限度的提高,能更好的保障企业安全。
而对于普通的企业来说,基于人脸识别技术的门禁和考勤系统,可彻底杜绝以往他人冒用门禁卡、盗用密码等手段冒充本人代考勤或者进出入的方式,真正实现行政管理工作的安全性和准确性。
人脸识别还可应用于视频会议、图形检索、人机交互等领域。
随着软件和硬件技术的不断发展,人脸识别系统的应用领域将会变得更加广泛,服务的行业也会越来越多。