2020上海高三数学崇明一模
2020年上海崇明县高考理科数学一模卷答案

上海市崇明县2020届高三一模数学试题(理科)参考答案一、填空题1、3+5i2、512π 3、+=0x y 4、[]-1,1 5、1- 6、10 7、30 8、4 9、89 10、-2a ≤ 11、12 12、( 13、1830 14、(-4,-2) 二、选择题15、C 16、C 17、C 18、A三、解答题19、1(x)=sin2x+cos2x f ()(2x+)4π=T π∴(2)因为32x+444πππ⎡⎤∈-⎢⎥⎣⎦,,所以sin (2x+)4π⎡⎤∈⎢⎥⎣⎦ ,所以(x)f ⎡∈-⎣ 函数的增区间为48ππ⎡⎤-⎢⎥⎣⎦,,减区间为84ππ⎡⎤⎢⎥⎣⎦, 20、(1)方法一、以A 为坐标原点,以AB 、AD 、AA 1分别为x 轴、y 轴、z 轴方向建立空间直角坐标系,设AB a =,则1,1,12a B E ⎛⎫=-- ⎪⎝⎭u u u r ,1(0,1,1)AD =u u u u r . 所以 , 11110,B E AD B E AD ⋅=⊥u u u r u u u u r 。
另解:11AA D D 为正方形,所以11A D AD ⊥,111111A D AD AD B CD CD AD ⊥⎫⇒⊥⎬⊥⎭面A 。
11111B E A B CD AD B E ⊆⇒⊥又面。
(2)因为()()12,0,11,1,0,AB AE ==u u u r u u u r ,所以取面AB 1E 的一个法向量为()1=1,-1,-2n u r ,同理可取面A 1B 1E 一个法向量为()2=0,1,1n u u r ,设二面角A-B 1E-A 1为α,则1212cos =2n n n n α⋅=⋅,=6πα所以即二面角A-B 1E-A 1的大小为6π. 22、解:(1)22(x)=x +-1f x ,令2(x)=0f,得x所以21(x)(,1)22f 在区间内的零点是x=。
(2)证明:因为 n 1()<02f ,n (1)>0f 。
上海市2020届高三数学各区(16区已全)一模考试汇编:解析几何(解析版)

2020年一模汇编——解析几何一、填空题【普陀1】若抛物线2y mx =的焦点坐标为1(,0)2,则实数m 为___________.【答案】2【解析】抛物线的性质:p=1,所以m=2【黄浦3】抛物线28x y =的焦点到准线的距离为___________. 【答案】4【解析】由题抛物线的焦点为(0,2),准线为直线2x =-,易得焦点到准线的距离为4【青浦3】直线1:10l x -=和直线20l y -=的夹角大小是【答案】6π 【解析】设夹角为θ,则23213cos =⨯=θ,故夹角6πθ=【静安3】若直线1l 和直线2l 的倾斜角分别为32和152则1l 与2l 的夹角为_____.【答案】60【解析】1801523260-+=【静安4】若直线l 的一个法向量为(2,1)n =,则若直线l 的斜率k =_____. 【答案】2-【解析】(2,1)n =,则单位向量(1,2)d =-,221k ==-【宝山5】以抛物线x y 62-=的焦点为圆心,且与抛物线的准线相切的圆的方程是 .【答案】9)23(22=++y x【解析】焦点)0,23(-,半径3==p r 【松江5】已知椭圆22194x y +=的左、右焦点分别为1F 、2F ,若椭圆上的点P 满足122PF PF =,则1=PF【答案】4【解析】由椭圆定义得:1226PF PF a +==,又122PF PF =,联立得:1=PF 4【虹口6】抛物线26x y =的焦点到直线3410x y +-=的距离为_________. 【答案】1【解析】抛物线26x y =的焦点为)23,0(,焦点到直线3410x y +-=的距离33041215d ⨯+⨯-==【杨浦7】椭圆22194x y +=焦点为1F ,2F ,P 为椭圆上一点,若15PF =,则12cos F PF ∠= 【答案】35【解析】因为3a ==,2b ==,所以c ==,所以1(F,2F ,225651PF a =-=-=,所以22212513cos 2155F PF +-∠==⋅⋅【奉贤7】若双曲线的渐近线方程为3y x =±,它的焦距为则该双曲线的标准方程为____________.【答案】2219y x -=±【解析】根据双曲线的渐近线方程为3y x =±,可知3b a =或3ab=;由焦距为得出c =222c a b =+,求得,,a b c 的值【普陀8】设椭圆222:1(1)x y a aΓ+=>,直线l 过Γ的左顶点A 交y 轴于点P ,交Γ于点Q ,若AOP △是等腰三角形(O 为坐标原点),且2PQ QA →→=,则Γ的长轴长等于_________.【答案】【解析】由题知(),0A a -、()0,P a ,设(),Q x x a +,有(),PQ x x =、(),QA a x x a =----, 所以()2x a x =⋅--,解得23x a =-,将(),Q x x a +代入2221x y a +=得22211210x ax a a ⎛⎫+++-= ⎪⎝⎭,整理得Γ的长轴长2a = 【崇明8】若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程是__________.【答案】116922=-y x 【解析】由题意得3=a ,5210=÷=c ,16222=-=a c b ,标准方程为116922=-y x【杨浦9】在直角坐标平面xOy 中,(2,0)A -,(0,1)B ,动点P 在圆22:+2C x y =上,则PA PB ⋅的取值范围为___________.【答案】(22+【解析】因为22+2x y =,设)P θθ,则(2,)PA θθ=--,(,1)PB θθ=-,22222cos 2sin PA PB θθθθ⋅=++,22)PA PB θθθϕ⋅=+=++,【崇明9】已知,a b R +∈,若直线230x y ++=与(1)2a x by -+=互相垂直,则ab 的最大值等于___________.【答案】81 【解析】两直线互相垂直得1121-=-⋅-ba ,b a 21-=,代入得b b ab )21(-=, 0,0a b >>,最小值为81【宝山9】已知直线l 过点)0,1(-且与直线02=-y x 垂直,则圆08422=+-+y x y x 与直线l 相交所得的弦长为___________.【答案】152【解析】直线方程为012=++y x ,圆心到直线的距离5=d ⇒222||d r AB -=【奉贤9】设平面直角坐标系中,O 为原点,N 为动点,6ON =,5ON OM =,过点M 作1MM x ⊥轴于1M ,过N 作1NN x ⊥轴于点1N ,M 与1M 不重合,N 与1N 不重合,设11OT M M N N =+,则点T 的轨迹方程是______________.【答案】22536x y +=05x x ⎛≠≠ ⎝⎭且【解析】设(),T x y ,点()11,N x y ,则()11,0N x ,又1111,OM y M y ⎫⎛⎫==⎪ ⎪⎭⎝⎭11,0M M ⎫=⎪⎭,()110,N N y =,于是1111,OT M M N N x y ⎫=+=⎪⎭,由此能求出曲线C的方程。
崇明区2020 学年度第一学期高三年级模拟质量调研 数学学科试卷(解析版)

( ) 所以有
2n −
3r
2r = = 12
4
解得
n r
= =
6 4
,则 T5
=
C64
2a2
2 b12 = 60a4b12 , m = 60
10.设 O 为坐标原点,直线 x
= a 与双曲线 C :
x2 a2
−
y2 b2
= 1(a
0,b 0) 的两条渐近线分别交
于 D、E 两点,若 ODE 的面积为1,则双曲线 C 的焦距的最小值为 .
(1)求函数 y = f (x) 的最小值正周期;
(2)在 ABC 中,角 A, B,C 的对边分别为 a,b,c 若锐角 A 满足 f (A) = 1− 3 ,C = ,c = 2,
2
6
求 ABC 的面积.
【解析】(1)∵ f (x) = 1 sin 2x − 3 cos 2x +1 = sin(2x − ) − 3 ,
2
2
32
∴ T = 2 = 2 = . || 2
(2)∵ f ( A) = 1− 3 , ∴ sin(2A − ) − 3 = 1− 3 , ∴ sin(2A − ) = 1 ,
2
32 2
32
∴解得 2A − = +2k 或 2A − = 5 +2k ,(k Z ),
36
36
∴ A= +k 或 A= 7 +k ,(k Z ), 又 A(0, ) ,
y = f ( f ( x)) = − f (− f ( x)) = − f ( f (−x)) 也是奇函数,正确;
对于(2)若函数 f ( x) 是周期函数,则. f ( x + T ) = f ( x) .
2020年上海市高三数学一模分类汇编:集合与命题

1(2020闵行一模). 已知集合{3,1,0,1,2}A =--,{|||1}B x x =>,则AB = 1(2020青浦一模). 已知集合{1,3,5,9}U =,{1,3,9}A =,{1,9}B =,则()U A B = 1(2020松江一模). 已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =1(2020崇明一模). 已知集合{0,1,2,3}A =,{|02}B x x =<≤,则AB = 1(2020虹口一模). 设全集U =R ,若21{|1}x A x x-=>,则U A = 1(2020徐汇一模). 已知集合{|2}M x x =>,集合{|1}N x x =≤,则M N = 1(2020嘉金一模). 已知集合{1,2,3,4,5}A =,{2,4,6,8}B =,则AB = 7(2020徐汇一模). 已知x ∈R ,条件2:p x x <,条件1:q a x ≥(0a >),若p 是q 的充分不必要条件,则实数a 的取值范围是12(2020杨浦一模). 向量集合{|(,),,}S a a x y x y ==∈R ,对于任意α、S β∈,以及任意(0,1)λ∈,都有(1)S λαλβ+-∈,则称S 为“C 类集”. 现有四个命题:① 若S 为“C 类集”,则集合{|,}M a a S μμ=∈∈R 也是“C 类集”;② 若S 、T 都是“C 类集”,则集合{|,}M a b a S b T =+∈∈也是“C 类集”; ③ 若1A 、2A 都是“C 类集”,则12A A 也是“C 类集”;④ 若1A 、2A 都是“C 类集”,且交集非空,则12A A 也是“C 类集”. 其中正确的命题有13(2020嘉金一模). 已知x ∈R ,则“0x >”是“1x >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件13(2020虹口一模). 设x ∈R ,则“|1|1x -<”是“24x <”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件13(2020普陀一模).“{1,2}m ∈”是“ln 1m <”的成立的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14(2020闵行一模). 命题“若x a >,则10x x->”是真命题,实数a 的取值范围是( ) A. (0,)+∞ B. (,1]-∞ C. [1,)+∞ D. (,0]-∞14(2020松江一模). 设,x y ∈R ,则“2x y +>”是“x 、y 中至少有一个数大于1”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14(2020普陀一模). 设集合{|||1}A x x a =-=,{1,3,}B b =-,若A B ⊆,则对应的实数对(,)a b 有( )A. 1对B. 2对C. 3对D. 4对16(2020松江一模). 已知集合{1,2,3,,10}M =⋅⋅⋅,集合A M ⊆,定义()M A 为A 中元素的最小值,当A 取遍M 的所有非空子集时,对应的()M A 的和记为10S ,则10S =( )A. 45B. 1012C. 2036D. 9217。
2020年上海崇明县高考理科数学一模卷

崇明县2020学年第一学期期末考试试卷高 三 数 学(理科)(考试时间120分钟,满分150分)一、填空题(每题4分,共56分)1、设复数(2)117z i i -=+(i 为虚数单位),则z =.2、已知(0,)απ∈且tan()4πα+=,则α=.3、过点(1,1)P -,且与直线:10l x y -+=垂直的直线方程是.4、若集合131{,11},{2,01}A y y x x B y y x x==-==-<≤≤≤,则A B I 等于 .5、已知1()y f x -=是函数2()2f x x =+(0)x ≤的反函数,则1(3)f -=.6、251()x x -展开式中x 7这个数列的第389、数列{}n a 前n 项和为n S ,则n 10、已知:条件A :22031xx >-,条件B :x a >, 如果条件A 是条件B 的充分不必要条件, 则实数a 的取值范围是.11、在ABC ∆中,角A 、B 、C 所对边的长分别为a 、b 、c ,若2222a b c +=,则cos C 的最小值等于 .12、在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP u u u r 按逆时针旋转34π后得向量OQ u u u r ,则点Q 的坐标是 .第7题图13、数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和等于.14、已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件:①对于任意x R ∈,()0f x <或()0g x <成立; ②存在(,4)x ∈-∞-,使得()()0f x g x ⋅<成立.则m 的取值范围是.二、选择题(每题5分,共20分)15、设函数()sin ,f x x =x R ∈,则下列结论错误的是………………………………………( ) A .()f x 的值域为[0,1] B .()f x 是偶函数C .()f x 不是周期函数D .()f x 不是单调函数16、下面是关于复数21z i=-+的四个命题: ①2z =; ②22z i =; ③z 的共轭复数为1i +; ④z 的虚部为1-.其中正确的命题……………………………………………………………………………( )A .②③B .①②C .②④D .③④17、等轴双曲线C :222x y a -=与抛物线216y x =的准线交于,A B 两点,AB =,则双曲线C 的实轴长等于……………………………………………………………………( )AB .C .4D .818、某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为……………………( )A .35B .815C .25D .15三、解答题(本大题共74分,解答下列各题需要必要的步骤)19、(本题12分,第(1)小题6分,第(2)小题6分)已知函数2()=sin(2+)+sin(2)+2cos 133f x x x x ππ--, x R ∈.(1)求函数()f x 的最小正周期; (2)当[,]44x ππ∈-时,求函数()f x 的值域以及函数()f x 的单调区间.20、(本题14分,第(1)小题6分,第(2)小题8分)如图,在长方体1111ABCD A B C D -中, 11AA AD ==, E 为CD 中点.(1)求证:11B E AD ⊥;(2)若2AB =,求二面角11A B E A --的大小.21、(本题14分,第(1)小题6分,第(2)小题8分)已知数列{}n a ,记123()n A n a a a a =+++⋅⋅⋅⋅⋅⋅+, 2341()n B n a a a a +=+++⋅⋅⋅⋅⋅⋅+, 3452()n C n a a a a +=+++⋅⋅⋅⋅⋅⋅+, (1,2,3,......)n =,并且对于任意n N *∈,恒有0n a >成立.(1)若121,5a a ==,且对任意n N *∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(2)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n N *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.ABCE DA 1D 1B 1C 1。
2019-2020学年上海市崇明区高考数学一模试卷

上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a },若A ∪B={1,2,3,5},则a= .2.(4分)抛物线y 2=4x 的焦点坐标为 .3.(4分)不等式<0的解是 .4.(4分)若复数z 满足iz=1+i (i 为虚数单位),则z= . 5.(4分)在代数式(x ﹣)7的展开式中,一次项的系数是 .(用数字作答)6.(4分)若函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是π,则ω= .7.(5分)若函数f (x )=x a 的反函数的图象经过点(,),则a= . 8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 cm 2.9.(5分)已知函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax ,且f (2)=2,则a= .10.(5分)若无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,则a= .11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有 种不同的选法.(用数字作答)12.(5分)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若•=6,||=2,则AC= .二、选择题(本大题共有4题,满分20分) 13.(5分)展开式为ad ﹣bc 的行列式是( )祝您高考马到成功!A .B .C .D .14.(5分)设a ,b ∈R ,若a >b ,则( ) A .< B .lga >lgb C .sin a >sin b D .2a >2b15.(5分)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 16.(5分)直线x=2与双曲线﹣y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若=a+b(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A .a 2+b 2≥1 B .|ab |≥1 C .|a +b |≥1 D .|a ﹣b |≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,A 1C 与底面ABCD 所成的角为60°,(1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与 B 1D 1所成角的大小.18.(14分)已知f (x )=2sinxcosx +2cos 2x ﹣1.(1)求f (x )的最大值及该函数取得最大值时x 的值; (2)在△ABC 中,a ,b ,c 分别是角 A ,B ,C 所对的边,若a=,b=,且f ()=,求边c 的值.19.(14分)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规祝您高考马到成功!划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N*)年的累计利润(注:含第 n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由. 20.(16分)在平面直角坐标系中,已知椭圆C :+y 2=1 (a >0,a ≠1)的两个焦点分别是F 1,F 2,直线l :y=kx +m (k ,m ∈R )与椭圆交于A ,B 两点.(1)若M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,求a 的值;(2)若k=1,且△OAB 是以O 为直角顶点的直角三角形,求a 与m 满足的关系;(3)若a=2,且k OA •k OB =﹣,求证:△OAB 的面积为定值.21.(18分)若存在常数k (k >0),使得对定义域D 内的任意x 1,x 2(x 1≠x 2),都有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,则称函数f (x )在其定义域 D 上是“k ﹣利普希兹条件函数”. (1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,求常数k 的最小值;(2)判断函数f (x )=log 2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由; (3)若y=f (x )(x ∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x 1,x 2,都有 |f (x 1)﹣f (x 2)|≤1.祝您高考马到成功!上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a },若A ∪B={1,2,3,5},则a= 3 . 【解答】解:∵集合A={1,2,5},B={2,a }, A ∪B={1,2,3,5}, ∴a=3. 故答案为:3.2.(4分)抛物线y 2=4x 的焦点坐标为 (1,0) .【解答】解:∵抛物线y 2=4x 是焦点在x 轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是 (﹣1,0) .【解答】解:不等式<0,即 x (x +1)<0,求得﹣1<x <0,故答案为:(﹣1,0).4.(4分)若复数z 满足iz=1+i (i 为虚数单位),则z= 1﹣i . 【解答】解:由iz=1+i ,得z==1﹣i故答案为:1﹣i .5.(4分)在代数式(x ﹣)7的展开式中,一次项的系数是 21 .(用数字作答)祝您高考马到成功!【解答】解:(x ﹣)7的展开式的通项为=,由7﹣3r=1,得r=2, ∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是π,则ω= 2 .【解答】解:根据正弦函数的图象与性质,知 函数y=2sin (ωx ﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f (x )=x a 的反函数的图象经过点(,),则a=.【解答】解:若函数f (x )=x a 的反函数的图象经过点(,), 则:(,)满足f (x )=x α, 所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 18π cm 2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm ,则圆柱体的体积为 V=πa 2•a=27π,祝您高考马到成功!解得a=3cm ;∴该圆柱的侧面积为S=2π×3×3=18πcm 2. 故答案为:18π.9.(5分)已知函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax ,且f (2)=2,则a= ﹣ .【解答】解:∵函数y=f (x )是奇函数,当x <0 时,f (x )=2x ﹣ax , ∴x >0时,﹣f (x )=2﹣x ﹣a (﹣x ), ∴f (x )=﹣2﹣x ﹣ax , ∵f (2)=2,∴f (2)=﹣2﹣2﹣2a=2, 解得a=﹣. 故答案为:﹣.10.(5分)若无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,则a= 2 .【解答】解:无穷等比数列{a n }的各项和为S n ,首项 a 1=1,公比为a ﹣,且S n =a ,可得=a ,即有=a ,即为2a 2﹣5a +2=0, 解得a=2或,由题意可得0<|q |<1, 即有0<|a ﹣|<1,检验a=2成立;a=不成立. 故答案为:2.祝您高考马到成功!11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有 780 种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论: ①、选出志愿者服务队的4人中有1名女生,有C 53C 31=30种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况, 此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C 52C 32=30种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C 51C 33=5种选法,这4人选2人作为队长和副队有A 42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法, 则一共有360+360+60=780; 故答案为:780.12.(5分)在ABC 中,BC 边上的中垂线分别交BC ,AC 于点D ,E .若•=6,||=2,则AC= 4 .【解答】解:建立平面直角坐标系如图所示, 设B (﹣a ,0),C (a ,0),E (0,b ),∠ABC=α, 由||=2,知A (﹣a +2cosα,2sinα),∴=(a ﹣2cosα,b ﹣2sinα),=(2a ,0), ∴•=2a (a ﹣2cosα)+0=2a 2﹣4acosα=6,∴a 2﹣2acosα=3; 又=(2a ﹣2cosα,﹣2sinα),祝您高考马到成功!∴=(2a ﹣2cosα)2+(﹣2sinα)2=4a 2﹣8acosα+4 =4(a 2﹣2acosα)+4 =4×3+4 =16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分) 13.(5分)展开式为ad ﹣bc 的行列式是( ) A .B .C .D .【解答】解:根据叫做二阶行列式,它的算法是:ad ﹣bc ,由题意得,=ad ﹣bc .故选B .14.(5分)设a ,b ∈R ,若a >b ,则( ) A .< B .lga >lgb C .sin a >sin b D .2a >2b【解答】解:由a >b ,利用指数函数的单调性可得:2a >2b .再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A ,B ,C 不正确. 故选:D .祝您高考马到成功!15.(5分)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【解答】解:∵S 4+S 6>2S 5, ∴4a 1+6d +6a 1+15d >2(5a 1+10d ), ∴21d >20d , ∴d >0,故“d >0”是“S 4+S 6>2S 5”充分必要条件, 故选:C16.(5分)直线x=2与双曲线﹣y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若=a+b(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A .a 2+b 2≥1B .|ab |≥1C .|a +b |≥1D .|a ﹣b |≥2【解答】解:双曲线﹣y 2=1的渐近线为:y=±x .把x=2代入上述方程可得:y=±1.不妨取A (2,1),B (2,﹣1).=a+b=(2a +2b ,a ﹣b ).代入双曲线方程可得:﹣(a ﹣b )2=1,化为ab=. ∴=ab ,化为:|a +b |≥1.故选:C .三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,A 1C 与底面ABCD 所祝您高考马到成功!成的角为60°,(1)求四棱锥A 1﹣ABCD 的体积;(2)求异面直线A 1B 与 B 1D 1所成角的大小.【解答】解:(1)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2, ∴AA 1⊥平面ABCD ,AC==2,∴∠A 1CA 是A 1C 与底面ABCD 所成的角, ∵A 1C 与底面ABCD 所成的角为60°, ∴∠A 1CA=60°,∴AA 1=AC•tan60°=2•=2, ∵S 正方形ABCD =AB ×BC=2×2=4, ∴四棱锥A 1﹣ABCD 的体积: V===. (2)∵BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成角(或所成角的补角).∵BD=,A 1D=A 1B==2, ∴cos ∠A 1BD===.∴∠A 1BD=arccos.∴异面直线A 1B 与 B 1D 1所成角是arccos.祝您高考马到成功!18.(14分)已知f (x )=2sinxcosx +2cos 2x ﹣1.(1)求f (x )的最大值及该函数取得最大值时x 的值;(2)在△ABC 中,a ,b ,c 分别是角 A ,B ,C 所对的边,若a=,b=,且f ()=,求边c 的值.【解答】解:f (x )=2sinxcosx +2cos 2x ﹣1=sin2x +cos2x=2sin (2x +)(1)当2x +=时,即x=(k ∈Z ),f (x )取得最大值为2;(2)由f ()=,即2sin (A +)=可得sin (A +)=∵0<A <π ∴<A < ∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4 当A=时,cosA==0∵a=,b=,解得:c=2.祝您高考马到成功!19.(14分)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N*)年的累计利润(注:含第 n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n (n ∈N *)年的累计投入为8+2(n ﹣1)=2n +6(千万元),第1年至此后第n (n ∈N *)年的累计净收入为+×+×+…+×=(千万元).∴f (n )=﹣(2n +6)=﹣2n ﹣7(千万元).(2)方法一:∵f (n +1)﹣f (n )=[﹣2(n +1)﹣7]﹣[﹣2n ﹣7]=[﹣4],∴当n ≤3时,f (n +1)﹣f (n )<0,故当n ≤4时,f (n )递减; 当n ≥4时,f (n +1)﹣f (n )>0,故当n ≥4时,f (n )递增. 又f (1)=﹣<0,f (7)=≈5×﹣21=﹣<0,f (8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利. 答:该项目将从2023年开始并持续赢利; 方法二:设f (x )=﹣2x ﹣7(x ≥1),则f′(x )=,令f'(x )=0,得=≈=5,∴x ≈4.祝您高考马到成功!从而当x ∈[1,4)时,f'(x )<0,f (x )递减; 当x ∈(4,+∞)时,f'(x )>0,f (x )递增. 又f (1)=﹣<0,f (7)=≈5×﹣21=﹣<0,f (8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C :+y 2=1 (a >0,a ≠1)的两个焦点分别是F 1,F 2,直线l :y=kx +m (k ,m ∈R )与椭圆交于A ,B 两点.(1)若M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,求a 的值; (2)若k=1,且△OAB 是以O 为直角顶点的直角三角形,求a 与m 满足的关系; (3)若a=2,且k OA •k OB =﹣,求证:△OAB 的面积为定值.【解答】解:(1)∵M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形, ∴△MF 1F 2为等腰直角三角形, ∴OF 1=OM , 当a >1时,=1,解得a=,当0<a <1时,=a ,解得a=,(2)当k=1时,y=x +m ,设A (x 1,y 1),(x 2,y 2),由,即(1+a 2)x 2+2a 2mx +a 2m 2﹣a 2=0,∴x 1+x 2=﹣,x 1x 2=,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=,∵△OAB 是以O 为直角顶点的直角三角形,∴•=0,祝您高考马到成功!∴x 1x 2+y 1y 2=0, ∴+=0,∴a 2m 2﹣a 2+m 2﹣a 2=0 ∴m 2(a 2+1)=2a 2,(3)证明:当a=2时,x 2+4y 2=4, 设A (x 1,y 1),(x 2,y 2), ∵k OA •k OB =﹣, ∴•=﹣,∴x 1x 2=﹣4y 1y 2, 由,整理得,(1+4k 2)x 2+8kmx +4m 2﹣4=0.∴x 1+x 2=,x 1x 2=,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2 =++m 2=,∴=﹣4×,∴2m 2﹣4k 2=1, ∴|AB |=•=•=2•=∵O 到直线y=kx +m 的距离d==,∴S △OAB =|AB |d==•==1祝您高考马到成功!21.(18分)若存在常数k (k >0),使得对定义域D 内的任意x 1,x 2(x 1≠x 2),都有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,则称函数f (x )在其定义域 D 上是“k ﹣利普希兹条件函数”. (1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,求常数k 的最小值;(2)判断函数f (x )=log 2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f (x )(x ∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x 1,x 2,都有 |f (x 1)﹣f (x 2)|≤1. 【解答】解:(1)若函数f (x )=,(1≤x ≤4)是“k ﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x 1,x 2(x 1≠x 2),均有|f (x 1)﹣f (x 2)|≤k |x 1﹣x 2|成立,不妨设x 1>x 2,则k ≥=恒成立.∵1≤x 2<x 1≤4,∴<<,∴k 的最小值为.(2)f (x )=log 2x 的定义域为(0,+∞),令x 1=,x 2=,则f ()﹣f ()=log 2﹣log 2=﹣1﹣(﹣2)=1, 而2|x 1﹣x 2|=,∴f (x 1)﹣f (x 2)>2|x 1﹣x 2|, ∴函数f (x )=log 2x 不是“2﹣利普希兹条件函数”.证明:(3)设f (x )的最大值为M ,最小值为m ,在一个周期[0,2]内f (a )=M ,f (b )=m ,则|f (x 1)﹣f (x 2)|≤M ﹣m=f (a )﹣f (b )≤|a ﹣b |. 若|a ﹣b |≤1,显然有|f (x 1)﹣f (x 2)|≤|a ﹣b |≤1. 若|a ﹣b |>1,不妨设a >b ,则0<b +2﹣a <1,祝您高考马到成功!∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.!功成到马考高您祝。
崇明区2020届第一次高考模拟考试数学试卷

高三数学 共4页 第1页崇明区2020届第一次高考模拟考试试卷数 学考生注意:1. 本试卷共4页,21道试题,满分150分,考试时间120分钟.2. 本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、填空题(本大题共有12题,满分54分,其中1~6题每题4分,7~12题每题5分)【考生应在答题纸相应编号的空格内直接填写结果.】1.已知集合0123{}A =,,,,02{|}B x x =<≤,则A B = .2.不等式21x -<的解集是 . 3.半径为1的球的表面积是 .4.已知等差数列{}n a 的首项为1,公差为2,则该数列的前项和n S = . 5.函数()f x =的反函数是 .6.计算:= .7.二项式62x x ⎛⎫+ ⎪⎝⎭的展开式中常数项的值等于 .8.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程是 . 9.已知,a b R +∈,若直线230x y ++=与直线(1)2a x by -+=互相垂直,则ab 的最大值等于.10.已知函数()f x 是定义在R 上的周期为2的奇函数.当01x <≤时,3(1)f x x ax =-+,则实数a 的值等于 .11.某组委会要从五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲不能从事翻译工作,乙不能从事导游工作,其余三人均能从事这四项工作,则不同的选派方案共有 种.12.正方形ABCD 的边长为4,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面上一点,满足2(1)OP OB OC λλ=+-,则PM PN ⋅的最小值为 .n 112323lim -+∞→+-n n nn n高三数学 共4页 第2页二、选择题(本大题共有4题,满分20分)【每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.】13.若0a b <<,则下列不等式恒成立的是A .11a b> B .a b ->C .33a b <D .22a b >14.已知z C ∈,“0z z +=”是“z 为纯虚数”的 A .充分非必要条件 B .必要非充要条件C .充要条件D .既非充分也非必要条件16.若不等式()sin 06x a b x ππ⎛⎫--+ ⎪⎝⎭≤对[1,1]x ∈-恒成立,则a b +的值等于A .23B .56C .1D .2三、解答题(本大题共有5题,满分76分)【解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.】17.(本题满分14分,本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分) 在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,12BB =. (1)求异面直线11B C 与1A C 所成角的大小; (2)求点1B 与平面1A BC 的距离.A 1B 1C 1ABC高三数学 共4页 第3页18.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分)已知函数21()2cos 2f x x x =--. (1)求函数()f x 的最小正周期及单调增区间;(2)设ABC △的内角,,A B C 所对的边分别为,,a b c,且c =()0f C =,若sin 2sin B A =,求,a b 的值.19.(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分) 某辆汽车以 x 公里/小时速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120x ≤≤)时,每小时的油耗(所需要的汽油量)为145001005x x ⎛⎫-+ ⎪⎝⎭升.(1)欲使每小时的油耗不超过9升,求 x 的取值范围;(2)求该汽车行驶100 公里的油耗y 关于汽车行驶速度 x 的函数,并求y 的最小值.高三数学 共4页 第4页20.(本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分)已知椭圆22:14x y Γ+=,其左右顶点分别为A ,B ,上下顶点分别为C ,D .圆O 是以线段AB 为直径的圆.(1)求圆O 的方程;(2)若点,E F 是椭圆上关于y 轴对称的两个不同的点,直线,CE DF 分别交x 轴于点M N 、,求证:OM ON ⋅为定值;(3)若点P 是椭圆Γ上不同于点A 的点,直线AP 与圆O 的另一个交点为Q .是否存在点P ,使得13AP PQ =?若存在,求出点P 的坐标,若不存在,说明理由.21.(本题满分18分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知无穷数列{}n a ,{}n b ,{}n c 满足:对任意的n *∈N ,都有1||||n n n a b c +=-,1||||n n n b c a +=-,1||||n n n c a b +=-.记max{||,||,||}n n n n d a b c =({}max ,,x y z 表示3个实数,,x y z 中的最大值).(1)若11a =,12b =,14c =,求4a ,4b ,4c 的值; (2)若11a =,12b =,求满足23d d =的1c 的所有值;(3)设1a ,1b ,1c 是非零整数,且1||a ,1||b ,1||c 互不相等,证明:存在正整数k ,使得数列{}n a ,{}n b ,{}n c 中有且只有一个数列自第k 项起各项均为0.。
2020年上海崇明县高三一模数学试卷

2020年上海崇明县高三一模数学试卷一、填空题(本大题共12小题,1~6每题4分,7~12每题5分,共54分)1.已知集合,,则 .2.不等式的解集是 .3.半径为的球的表面积是 .4.已知等差数列的首项为,公差为,则该数列的前项和 .5.函数的反函数是 .6.计算: .7.二项式的展开式中常数项的值等于 .8.若双曲线的一个顶点坐标为,焦距为,则它的标准方程为 .9.已知、,若直线与直线互相垂直,则的最大值等于 .10.已知函数是定义在上的周期为的奇函数,当时,,则实数的值等于 .11.某组委会要从五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲不能从事翻译工作,乙不能从事导游工作,其余三人均能从事这四项工作,则不同的选派方案共有 种.12.正方形的边长为,是正方形的中心,过中心的直线与边交于点,与边交于点,为平面上一点,满足,则的最小值为 .二、选择题(本大题共4小题,每小题5分,共20分)13.若,则下列不等式恒成立的是( ).A.B.C.D.14.已知,“”是“为纯虚数”的( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.如图,在底面半径和高均为的圆锥中,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( ).A.B.C.D.16.若不等式对上恒成立,则( ).A.B.C.D.三、解答题(本大题共5小题,共76分)(1)(2)17.在直三棱柱中,,,.求异面直线与所成角的大小.求点与平面的距离.(1)(2)18.已知函数.求函数的最大值,并写出取得最大值时的自变量的集合.设的内角、、所对的边分别为、、,且,,若,求、的值.(1)(2)19.某辆汽车以公里/小时速度在高速公路上匀速行驶(考虑到高速公路行车安全要求)时,每小时的油耗(所需要的汽油量)为升.欲使每小时的油耗不超过升,求的取值范围.求该汽车行驶公里的油耗关于汽车行驶速度的函数,并求的最小值.(1)(2)20.已知椭圆,其左右顶点分别为、,上下顶点分别为、,圆是以线段为直径的圆.求圆的方程.若点、是椭圆上关于轴对称的两个不同的点,直线、分别交轴于点、,求证:为定值.【答案】解析:集合,集合,∴.故答案为:.解析:不等式等价于,解得,∴不等式的解集是.故答案为:.解析:由题意,半径为的球的表面积是.故答案为.(3)若点是椭圆上不同于点的点,直线与圆的另一个交点为,是否存在点,使得 ? 若存在,求出点的坐标,若不存在,说明理由.(1)(2)(3)21.已知无穷数列、、满足:对任意的,都有,,,记表示个实数、、中的最大值.若,,,求﹑、的值.若,,求满足的的所有值.设、、是非零实数,且、、互不相等,证明:存在正整数,使得数列、、中有且只有一个数列自第项起各项均为.1.2.3.∵等差数列的首项为,公差为,∴该数列的前项和.故答案为:.5.解析:∵的定义域为,值域为,∴,∴函数的反函数为.综上所述,答案为.6.解析:.7.解析:二项式展开式,通项,令,则,,所以展开式中常数项值为.由题意,,,则,故双曲线的标准方程为.9.解析:直线,变形为,斜率为,∵,,直线,变形为,由直线与直线垂直,则,即,由基本不等式,则(当,时等号成立),∴的最大值为.10.解析:∵是定义在上的周期为的奇函数,∴且,∴当时,,即,则,∵当时,,∴得,故答案为.11.解析:总共有种情况,其中甲从事翻译工作有种情况,乙从事导游工作有种情况,然后甲从事翻译工作同时乙从事导游工作有种情况,∴.解析:设,由向量共线定理,可知点在直线上,为中点,∴,∵,,∴.解析:对于复数,若,不一定为纯虚数,可以为,反之,若为纯虚数,则∴“”是“为纯虚数”的必要非充分条件.故选.解析:将抛物线放入坐标系,如图所示,12.C 13.B 14.D 15.∵,,∴,设抛物线,代入点,可得,∴焦点为,即焦点为中点,设焦点为,则,,∴.故选.解析:方法一:如图,作出函数在上的图象,为使不等式对上恒成立,当且仅当函数的图象经过函数的零点,则由,得,,所以,所以.故选.方法二:令,作出函数在上的图象,B 16.(1)(2)则函数的图象必需经过,两点,则.故选.方法三:当时,,,所以,,即,所以,当时,,,所以,则或,所以,综上.故选.解析:因为,所以就是异面直线与所成的角或补角.在三角形中,,,所以,所以.所以异面直线与所成角的大小是.因为,,所以平面所以设点与平面的距离为,则,由得:.(1).(2).17.(1)(2)(1)(2)解析:.函数,当且仅当,时取得最大值,即,,∴的最大值为,取得最大值的取值集合为.由,得,又,所以,得,由及正弦定理,得①,由余弦定理,得②,由①,②解得,.解析:由,得,所以,又因为,所以的取值范围是.设该汽车行驶公里的油耗为升,则:,因为,所以,所以当时,该汽车行驶公里的油耗取得最小值升.(1),集合为.(2),.18.(1).(2),的最小值.19.(1).(2)证明见解析.20.(1)(2)(3)解析:由题意,得,,所以圆的方程是.由题意,得,,设,,,则直线的方程是:,所以,同理,因为,所以.显然直线的斜率存在,设其方程为:.代入椭圆方程,得:,设,则,所以,因为圆心到直线的距离,所以,假设存在点,使得,则,所以(*),而方程(*)在实数范围内无解,故原假设错误,即不存在点,使得.(3)不存在,证明见解析.(1),,.(2), ,,.21.(1)(2)(3)解析:,,.若,,记,则,,,,,,当时,,,,,由,得,不符合;当时,,,,由,得,符合;当时,,,,由,得,符合;综上,的所有取值是,,,.先证明“存在正整数,使,,中至少有一个为”,假设对任意正整数,,,都不为,由,,是非零整数,且,,互不相等,得,,若对任意,,,都不为,则,即对任意,.当时,,,,所以,,所以,单调递减,由为有限正整数,所以,必存在正整数,使得,矛盾.(3)证明见解析.所以,存在正整数,使,,中至少有一个为.不妨设,且,,,,则,且,否则,若,因为,则必有,矛盾,于是,,,且,所以,,,,依次递推,即有:对,,,,且,此时有且仅有一个数列自第项起各项均为,综上,结论成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市崇明区2020届高三一模数学试卷
2019.12
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)
1. 已知集合{0,1,2,3}A =,{|02}B x x =<≤,则A
B = 2. 不等式|2|1x -<的解集是
3. 半径为1的球的表面积是
4. 已知等差数列{}n a 的首项为1,公差为2,则该数列的前n 项和n S =
5. 函数()f x =的反函数是
6. 计算:11
32lim 32n n
n n n +-→∞-=+ 7. 二项式62()x x
+的展开式中常数项的值等于 8. 若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程是
9. 已知a 、b +∈R ,若直线230x y ++=与直线(1)2a x by -+=互相垂直,则ab 的最大 值等于
10. 已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <≤时,3()1f x x ax =-+, 则实数a 的值等于
11. 某组委会要从五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作, 若其中甲不能从事翻译工作,乙不能从事导游工作,其余三人均能从事这四项工作,则不同 的选派方案共有 种
12. 正方形ABCD 的边长为4,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面上一点,满足2(1)OP OB OC λλ=+-,则PM PN ⋅ 的最小值为
二. 选择题(本大题共4题,每题5分,共20分)
13. 若0a b <<,则下列不等式恒成立的是( ) A. 11a b
> B. a b -> C. 33a b < D. 22a b > 14. 已知z ∈C ,“0z z +=”是“z 为纯虚数”的( )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既非充分又非必要条件
15. 如图,在底面半径和高均为2的圆锥中,AB 、CD 是底
面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过
CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一
部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )
A. 12
B. 1
C. 104
D. 52 16. 若不等式(||)sin()06x a b x ππ--+
≤对[1,1]x ∈-恒成立,则a b +的值等于( ) A.
23 B. 56
C. 1
D. 2 三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,12BB =.
(1)求异面直线11B C 与1A C 所成角的大小;
(2)求点1B 与平面1A BC 的距离.
18. 已知函数231()sin 2cos 22
f x x x =--. (1)求函数()f x 的最大值,并写出取得最大值时的自变量x 的集合;
(2)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且3c =,()0f C =, 若sin 2sin B A =,求a 、b 的值.
19. 某辆汽车以x 公里/小时速度在高速公路上匀速行驶(考虑到高速公路行车安全要求
60120x ≤≤)时,每小时的油耗(所需要的汽油量)为14500(100)5x x
-+升. (1)欲使每小时的油耗不超过9升,求x 的取值范围;
(2)求该汽车行驶100公里的油耗y 关于汽车行驶速度x 的函数,并求y 的最小值.
20. 已知椭圆2
2:14
x y Γ+=,其左右顶点分别为A 、B ,上下顶点分别为C 、D ,圆O 是以线段AB 为直径的圆.
(1)求圆O 的方程;
(2)若点E 、F 是椭圆上关于y 轴对称的两个不同的点,直线CE 、DF 分别交x 轴于点M 、 N ,求证:OM ON ⋅为定值;
(3)若点P 是椭圆Γ上不同于点A 的点,直线AP 与圆O 的另一个交点为Q ,是否存在点
P ,使得13
AP PQ =?若存在,求出点P 的坐标,若不存在,说明理由.
21. 已知无穷数列{}n a 、{}n b 、{}n c 满足:对任意的*n ∈N ,都有1||||n n n a b c +=-,1||||n n n b c a +=-,1||||n n n c a c +=-,记max{||,||,||}n n n n d a b c =(max{,,}x y z 表示3个实数x 、y 、z 中的最大值).
(1)若11a =,12b =,14c =,求4a 、4b 、4c 的值;
(2)若11a =,12b =,求满足23d d =的1c 的所有值;
(3)设1a 、1b 、1c 是非零实数,且1||a 、1||b 、1||c 互不相等,证明:存在正整数k ,使得数列{}n a 、{}n b 、{}n c 中有且只有一个数列自第k 项起各项均为0.
参考答案
一. 填空题
1. {1,2}
2.(1,3)
3. 4π
4. 2n
5. 12
()1(0)f x x x -=-≥ 6. 3 7. 160 8. 22
1916x y -= 9.
18
10. 2 11. 78 12. 7- 二. 选择题
13. C 14. B 15. D 16. B
三. 解答题
17.(1);(2)h =18.(1)()sin(2)16f x x π=-
-,最小正周期π,单调增区间[,]63k k ππ
ππ-+,k ∈Z ; (2)1a =,2b =. 19.(1)[60,100];(2)2118090000()909y x =-
+,当90x =时,该汽车行驶100公里 的油耗取得最小值是809
升. 20.(1)224x y +=;(2)4OM ON ⋅=-,证明略;(3)不存在.
21.(1)40a =,41b =-,41c =;(2)2-,1-,1,2;(3)证明略.。