广东省广州市八年级上册数学期末考试试卷
广州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2的绝对值是( )A. 2B. -2C.D.2.在下列长度的各组线段中,能组成三角形的是( )A. 1,2,4B. 1,4,9C. 3,4,5D. 4,5,93.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( )A. 0.277×107B. 0.277×108C. 2.77×107D. 2.77×1084.下列平面图形中,不是轴对称图形的是( )A. B. C. D.5.,,,,a+中,分式的个数有( )A. 2个B. 3个C. 4个D. 5个6.下列计算中正确的是( )A. (ab3)2=ab6B. a4÷a=a4C. a2•a4=a8D. (-a2)3=-a67.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是( )cm2.A. a2-a+4B. a2-7a+16C. a2+a+4D. a2+7a+168.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是( )A. 12cmB. 16cmC. 16cm或20cmD. 20cm9.下列条件中,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一条边和一个锐角对应相等C. 两条直角边对应相等D. 一条直角边和一条斜边对应相等10.如图,△EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A. 90°B. 75°C. 70°D. 60°二、填空题(本大题共6小题,共24.0分)11.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=______.12.如果一个正多边形的内角和是900°,则这个正多边形是正______ 边形.13.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是______.14.二元一次方程组的解为______.15.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为______.16.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:______(写出一个即可).三、计算题(本大题共2小题,共13.0分)17.解方程:.18.计算:四、解答题(本大题共7小题,共53.0分)19.计算:2-1-|-3|-(2-)0+20.先化简,再求值:[(x-y)2+(x-y)(x+y)]÷x,其中x=-1,y=.21.如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.22.已知:如图,点B、E、C、F在一条直线上,A、D两点在直线BF的同侧,BE=CF,∠A=∠D,AB∥DE.求证:AC=DF.23.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.问:甲、乙两队单独完成这项工程各需多少天?在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B、C、E在同一条直线上,连结DC.(1)请在图2中找出与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)若AE=1时,求AP的长;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.答案和解析1.【答案】A【解析】解:-2的绝对值是2,即|-2|=2.故选:A.根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】C【解析】解:将27700000用科学记数法表示为2.77×107,故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.结合选项根据轴对称图形的概念求解即可.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】A【解析】解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.根据分式的定义进行解答即可.本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.6.【答案】D【解析】解:A、(ab3)2=a2b6,故此选项错误;B、a4÷a=a3,故此选项错误;C、a2•a4=a6,故此选项错误;D、(-a2)3=-a6,正确.故选:D.直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.【答案】D【解析】解:根据题意可知,这幅摄影作品占的面积是a2+4(a+4)+4(a+4)-4×4=a2+7a+16.故选:D.此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.【答案】D【解析】解:当腰长为4cm时,4+4=8cm,不符合三角形三边关系,故舍去;当腰长为8cm时,符合三边关系,其周长为8+8+4=20cm.故该三角形的周长为20cm.故选:D.题中没有指明哪个是底哪个是腰,所以应该分两种情况进行分析.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】A【解析】解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定ASA,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选A.直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS 、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.【答案】D【解析】解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°-(∠CBD+∠BDC)=180°-60°=120°,∴∠ECD=∠CED=180°-∠BCD-∠BCA=180°-120°-15°=45°,∴∠CDE=180°-(∠ECD+∠CED)=180°-90°=90°,∴∠EDF=∠EFD=180°-∠CDE-∠BDC=180°-90°-30°=60°,∴∠DEF=180°-(∠EDF+∠EFD)=180°-120°=60°.故选:D.根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.此题主要考查了等腰三角形的性质及三角形内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.11.【答案】-2【解析】解:∵点A(2,a)与点B(b,4)关于x轴对称,∴b=2,a=-4,则a+b=-4+2=-2,故答案为:-2.直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.【答案】七【解析】解:设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数.此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.13.【答案】3【解析】解:如图,过D作DF⊥AB于F,则DF的长是点D到AB的距离,∵AD是角平分线,DE⊥AC,∴DF=DE,∵AC=4,S△ADC=6,∴×4×DE=6,∴DE=3,∴DF=3,即点D到AB的距离是3,故答案为:3.过D作DF⊥AB于F,则DF的长是点D到AB的距离,根据角平分线性质求出DF=DE ,求出DE即可.本题主要考查平分线的性质,即角的平分线上的点到角的两边的距离相等.14.【答案】【解析】解:,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【答案】40°【解析】解:∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°-80°-60°=40°.故答案为:40°.根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.【答案】101030或103010或301010【解析】解:4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),当x=10,y=10时,x=10;2x+y=30;2x-y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.【答案】解:方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴.检验:当时,2(x-1)≠0.∴是原分式方程的解.【解析】本题主要考察分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.观察可得方程最简公分母为2(x-1).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.18.【答案】解:原式=-•=-=.【解析】根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:原式=-3-1+3=-.【解析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:[(x-y)2+(x-y)(x+y)]÷x,=(x2-2xy+y2+x2-y2)÷x,=(2x2-2xy)÷x,=2x-2y,当x=-1,y=,原式=2×(-1)-2×=-3.【解析】利用完全平方公式和平方差公式计算,再利用多项式除单项式的法则计算化简,然后代入数据计算即可.本题主要考查完全平方公式,平方差公式,合并同类项法则的运用,熟练掌握运算法则是解题的关键.21.【答案】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【解析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD 为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.【答案】证明:∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF.【解析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.23.【答案】解:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.24.【答案】解:(1)图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∵在△ABE与△ACD中,,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.【解析】(1)根据等腰直角三角形的性质,利用SAS判定△ABE≌△ACD;(2)根据全等三角形的对应角相等,可得∠ACD=∠ABE=45°,根据∠ACB=45°,可得到∠BCD=∠ACB+∠ACD=90°,进而得出DC⊥BE.此题主要考查了等腰三角形的性质及全等三角形的判定方法的理解及运用,解题时注意:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.25.【答案】解:(1)∵△ABC是等边三角形,∴∠A=60°,∵PE⊥AB,∴∠APE=30°,∵AE=1,∠APE=30°,PE⊥AB,∴AP=2AE=2;(2)解:过P作PF∥QC,则△AFP是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,,∴△DBQ≌△DFP,∴BD=DF,∵∠BQD=∠BDQ=∠FDP=∠FPD=30°,∴BD=DF=FA=AB=2,∴AP=2;(3)解:由(2)知BD=DF,∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=3为定值,即DE的长不变.【解析】(1)根据等边三角形的性质得到∠A=60°,根据三角形内角和定理得到∠APE=30°,根据直角三角形的性质计算;(2)过P作PF∥QC,证明△DBQ≌△DFP,根据全等三角形的性质计算即可;(3)根据等边三角形的性质、直角三角形的性质解答.本题考查的是全等三角形的判定和性质、等边三角形的判定和性质以及平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
广东省广州市八年级上学期数学期末考试试卷

广东省广州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题:(每小题3分,满分18分) (共6题;共18分)1. (3分)(2018·江都模拟) 在同一平面直角坐标系中,有两条抛物线y1=a(x+1)(x﹣5)和y2=mx2+2mx+1,其中am<0,要使得两条抛物线构成轴对称图形,下列变换正确的是()A . 将抛物线y1向右平移3个单位B . 将抛物线y1向左平移3个单位C . 将抛物线y1向右平移1个单位D . 将抛物线y1向左平移1个单位2. (3分)下列图形中具有稳定性的是有()A . ①②B . ③④C . ②③D . ①②③3. (3分) (2017七下·萧山期中) 若(1-x)1-3x=1,则x的取值有()个A . 1个B . 2个C . 3个D . 4个4. (3分)下列计算正确的是()A . (x﹣2)2=x2﹣4B . =﹣3C . (a4)2=a8D . a6÷a2=a35. (3分) (2018八上·武汉期中) 如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是()A . BC=BD;B . AC=AD;C . ∠ACB=∠ADB;D . ∠CAB=∠DAB6. (3分)下列说法正确的是()A . -a是负数B . |a|一定是非负数C . 不论a为什么数,D . 一定是分数二、填空题:(每小题4分,满分32分) (共8题;共30分)7. (4分) (2017七下·杭州期中) 随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为________.8. (4分)(2020·西安模拟) 如图,在四边形ABCD中,∠B=∠C=90°,AB=BC,∠A DC=∠AEB+∠BAD,若CD=4,BE=5,则AD=________.9. (2分)(2011·徐州) 如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.10. (4分)(2018·永定模拟) 若,则m=________.11. (4分)多项式x2-2x+3是________次________项式.12. (4分) (2015七下·新昌期中) 已知一个长方形的面积是x2﹣2x,长为x,那么它的宽为________.13. (4分)(2019·永定模拟) 如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是________(写出所有符合题意结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF .14. (4分)(2012·内江) 如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是________.三、解答题(每小题5分,满分20分) (共4题;共17分)15. (5分) (2016七下·柯桥期中) 分解因式(1) 4x3y﹣xy3(2)﹣x2+4xy﹣4y2.16. (5分)如图所示模板,按规定AB,CD的延长线相交成80°的角,因交点不在板上不便测量,工人师傅测得∠BAE=122°,∠DCF=155°,此时AB,CD的延长线相交所成的角是否符合规定?为什么?17. (5分) (2018七下·宝安月考) 计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.18. (2分) (2018八上·翁牛特旗期末) 解方程:四、解答题(每小题7分,满分14分) (共2题;共14分)19. (7分) (2017八上·罗平期末) 化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.20. (7.0分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:①画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;②在DE上画出点P,使PA+PC最小;③在DE上画出点M,使最大.五、解答题(每小题分,共16分) (共2题;共14分)21. (7.0分) (2017八下·沙坪坝期中) 如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.22. (7.0分) (2020八上·丹江口期末) 张康和李健两名运动爱好者周末相约到丹江环库绿道进行跑步锻炼.(1)周日早上点,张康和李健同时从家出发,分别骑自行车和步行到离家距离分别为千米和千米的绿道环库路入口汇合,结果同时到达,且张康每分钟比李健每分钟多行米,求张康和李健的速度分别是多少米分?(2)两人到达绿道后约定先跑千米再休息,李健的跑步速度是张康跑步速度的倍,两人在同起点,同时出发,结果李健先到目的地分钟.①当,时,求李健跑了多少分钟?②求张康的跑步速度多少米分?(直接用含,的式子表示)六、解答题(每小题10分,共20分) (共2题;共20分)23. (10分) (2017八下·长春期末) 如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则值为________.24. (10.0分) (2018八上·包河期末) 如图,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,点D为AB 的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△C QP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC边上相遇?参考答案一、单项选择题:(每小题3分,满分18分) (共6题;共18分) 1-1、2-1、3-1、4-1、5-1、6-1、二、填空题:(每小题4分,满分32分) (共8题;共30分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题(每小题5分,满分20分) (共4题;共17分)15-1、15-2、16-1、17-1、17-2、17-3、18-1、四、解答题(每小题7分,满分14分) (共2题;共14分) 19-1、20-1、五、解答题(每小题分,共16分) (共2题;共14分) 21-1、21-2、22-1、22-2、六、解答题(每小题10分,共20分) (共2题;共20分) 23-1、24-1、24-2、第11 页共11 页。
广东省广州市八年级上学期数学期末考试试卷

广东省广州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果代数式有意义,那么x的取值范围是()A . x≥0B . x≠1C . x>0D . x≥0且x≠12. (2分)如图所示,网格中画有一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A . (1,0)B . (-1,0)C . (-1,1)D . (1,-1)3. (2分)下列各式中,合并同类项正确的是()A . 2x+x=2x2B . 2x+x=3xC . 5a2-3a2=2D . 2x+3y=5x4. (2分)(2018·达州) 如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A .C .D . 35. (2分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F ,连结BD交CE于点G ,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有()A . 1个B . 2个C . 3个D . 4个6. (2分)(2017·深圳模拟) 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套服装,则根据题意可得方程为()A . + =18B . + =18C . + =18D . + =187. (2分)(2016·聊城) 地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A . 7.1×10﹣6B . 7.1×10﹣7C . 1.4×106D . 1.4×1078. (2分)有一个等腰三角形的周长为16,其中一边长为4,则这个等腰三角形的底边长为()A . 4C . 4或8D . 89. (2分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A . 30°B . 36°C . 38°D . 45°10. (2分)顺次连接等腰梯形各边的中点所得的四边形是()A . 平行四边形B . 矩形C . 菱形D . 正方形二、填空题 (共8题;共9分)11. (1分) (2017七下·单县期末) 分解因式:3x2﹣27=________.12. (2分)若(x﹣5)0有意义,则x________;若(x+1)﹣1无意义,则x________.13. (1分) (2020八下·邵阳期中) 计算: =________。
2023-2024学年广东省广州市天河区八年级(上)期末数学试卷(含解析)

2023-2024学年广东省广州市天河区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.近年来,国产汽车发展迅速,我国已成为全球第一汽车生产国.下列图形是我国国产汽车品牌的标识,在这些标识中,不是轴对称图形的是( )A. B.C. D.2.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 2B. 3C. 5D. 113.若一个多边形的内角和是1080°,则这个多边形是( )A. 十边形B. 九边形C. 八边形D. 七边形4.下列计算正确的是( )A. a3+a2=a5B. a3⋅a2=a6C. (a2)3=a5D. a6÷a2=a45.如图,在△ABC中,AB=AC=4,∠BAC=120°,则BC边上的高AD的长为( )A. 1B. 2C. 3D. 46.若分式|x|−3的值为0,则x的值为( )x+3A. ±3B. 0C. −3D. 37.如图,AB=AD,∠1=∠2,请问添加下列哪个条件不能得△ABC≌△ADE的是( )A. BC=DEB. AC=AEC. ∠B=∠DD. ∠E=∠C8.若关于x的方程x+m=3的解为正数,则m的取值范围是( )x−3A. m>−9B. m>−9且m≠−3C. m<−9D. m>−9且m≠0二、多选题:本题共2小题,共8分。
在每小题给出的选项中,有多项符合题目要求。
9.如图,将长为a,宽为b的长方形纸板,在它的四角都切去一个边长为x的正方形,然后将四周突起部分折起,制成一个长方体形状的无盖纸盒.下列说法正确的有( )A. 纸盒的容积等于x(a−x)(b−x)B. 纸盒的表面积为ab−4x2C. 纸盒的底面积为ab−2(a+b)x−4x2D. 若制成的纸盒是正方体,则必须满足a=b=3x10.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为点D,AE平分∠BAC,交BD于点F,交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论正确的是( )A. AF=2BEB. DH=DFC. AH=2DFD. HE=BE三、填空题:本题共6小题,每小题3分,共18分。
2022~2023学年广东省广州市天河区八年级(上)期末数学试卷+答案解析(附后)

2022~2023学年广东省广州市天河区八年级(上)期末数学试卷1. 下列图形中,不是轴对称图形的是( )A. B. C. D.2. 下列运算正确的是( )A. B. C. D.3. 点关于x 轴对称的点B 的坐标为( )A. B.C. D.4. 已知一个多边形的内角和是,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形5. 科学家发现一种病毒直径为微米,则用科学记数法可以表示为( )A. B. C. D.6. 已知分式的值为0,则下列选项正确的是( )A. B.C. D.7. 若多项式因式分解的结果是,则m的值是( )A. B.C. 16D. 208. 若,则分式( )A. B. C. 2 D.9. 如图,在和中,,,添加一个条件后,仍然不能证明≌,这个条件可能是( )A. B.C. D.10. 如图,某小区规划在边长为xm的正方形场地上,修建两条宽为2 m的甬道,其余部分种草,以下各选项所列式子是计算甬道所占面积的为.( )A. B.C. D.11. 若分式有意义,则x 的取值范围是__________.12. 分解因式:__________.13. 如图,在中,,,,则__________.14. 计算:__________.15. 若,则的值为__________.16. 现有甲、乙、丙三种不同的矩形纸片边长如图小亮要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片__________块.17.已知:如图,点C为AB中点,,求证:≌18. 计算:;19. 如图的平面直角坐标系中,的三个顶点坐标分别为,,,作出关于y 轴对称的保留作图痕迹,并求的面积.20. 如图,在中,,求的度数;先作图后证明:用尺规作AB 的垂直平分线DE ,交AC 于点 D ,交AB 于点 E ,连接BD ,保留作图痕迹求证:21. 已知,,问:当x 为何值时,22. 随着国内快递业务量的迅速增长,通过无人机可打造短途航空物流网络,加速物流效率,刘峰和李朋对此非常感兴趣,相约周末去科技馆看展览了解情况,根据他们的谈话内容如图,请判断他们两人能同时到达吗?请说明理由.23. 如图,把正方形ABCD 和正方形MPNF 重叠得到长方形EFGD ,当它的长与宽的和正好是正方形MPNF 的边长时,,若设正方形ABCD 的边长为 a ,求长方形EFGD 的面积;用含 a 的式子表示若长方形EFGD 的面积是300,求正方形MPNF 的面积.24. 如图,在平面直角坐标系中,直线AB 与坐标轴的交点坐标分别为,,若点 C 在第一象限,且,填空:______;求点 C 的坐标;已知点P 在y 轴正半轴上,满足,连接AP ,设点 C 关于直线AB 的对称点为 D ,点 C 关于直线AP 的对称点为 E ,试问:点D,E关于坐标轴对称吗?请说明理由.答案和解析1.【答案】B【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念分析判断即可.【解答】解:是轴对称图形,该选项不符合题意;B. 不是轴对称图形,该选项符合题意;C. 是轴对称图形,该选项不符合题意;D. 是轴对称图形,该选项不符合题意.故选:2.【答案】B【解析】【分析】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式,故本选项错误;B、原式,故本选项正确;C、原式,故本选项错误;D、与不是同类项,不能合并,故本选项错误;故选:3.【答案】D【解析】【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点关于x轴对称的点B的坐标为 .故选:4.【答案】A【解析】【分析】利用n边形的内角和可以表示成,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:,解得: .则这个多边形是五边形.故选:5.【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与绝对值较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:微米用科学记数法可以表示为微米,故选:6.【答案】A【解析】【分析】根据分式值为零的条件可得,且,再解即可.【解答】解:由题意得:,且,解得:,故选:7.【答案】A【解析】【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【解答】解:,可得,故选:8.【答案】C【解析】【分析】先化简式子得出,再将代入求解即可.【解答】解:,,,故选:9.【答案】D【解析】【分析】根据全等三角形的判定,利用ASA、AAS、SAS即可得出答案.【解答】解:,,当时,由ASA可得,故A不符合题意;当时,则,由AAS可得,故B不符合题意;当时,则,由SAS可得,故C不符合题意;当时,不能得出,故D符合题意;故选:10.【答案】B【解析】【分析】用正方形场地的面积减去正方形场地除去甬道部分的面积即可.【解答】解:由图可知边长为xm的正方形场地的面积为,除去甬道部分的面积为,甬道所占面积为:故选:11.【答案】【解析】【分析】根据分式有意义的条件得出,再求出即可.【解答】解:分式有意义,,解得:,故答案为: .12.【答案】【解析】【分析】观察原式,找到公因式a,提出即可得出答案.提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.【解答】解:故答案为:13.【答案】8【解析】【分析】根据含30度角的直角三角形的性质即可得出答案.【解答】解:,,,,,故答案为:14.【答案】【解析】【分析】根据同分母分式相减的运算法则计算即可.【解答】解:,故答案为: .15.【答案】8【解析】【分析】根据同底数幂的乘法进行计算,然后代入求值即可.【解答】解:,.故答案为:16.【答案】4【解析】【分析】根据即可得.【解答】解:,甲纸片1块,乙纸片4块,丙纸片4块,可以拼成一个边长为的正方形,故答案为:17.【答案】证明:,点C为AB中点,在和中,,≌【解析】根据中点定义推出,根据两直线平行,同位角相等,推出,然后利用SAS即可证明≌18.【答案】解:;.【解析】【分析】根据多项式除以单项式的运算法则计算即可;根据平方差公式,多项式乘以单项式计算即可.19.【答案】解:,,,关于y轴对称的点分别为:,,,再顺次连接即可,如图所示:,的高为:,【解析】【分析】根据网格结构找出点A、B、C关于y轴的对称点、、的位置,然后顺次连接即可;根据三角形的面积公式即可得到结论.20.【答案】解:,,;证明:的垂直平分线DE交AC于点D,交AB于点E,,.【解析】【分析】根据等边对等角和三角形内角和定理即可得出答案;根据线段垂直平分线的性质得出,得出,即可得出答案.21.【答案】解:根据题意可得:,,,,,当时,分式无意义,为除了之外的所有实数,故当时, .【解析】【分析】根据题意可得:,去分母得出,根据当时,分式无意义,得出x为除外的所有实数.22.【答案】解:他们两人能同时到达,理由如下:设刘峰骑自行车的速度为每小时x千米,则李明乘公交车的速度为每小时 3x千米,若两人同时到达,李明用时比刘峰少30分钟,即小时,根据题意,可得,解得,经检验,是原分式方程的解,且符合题意.所以,刘峰骑自行车的速度为每小时20千米,李明乘公交车的速度为每小时60千米,两人可同时到达.【解析】【分析】设刘峰骑自行车的速度为每小时x千米,则李明乘公交车的速度为每小时 3x千米,根据题意列出分式方程,求解并检验即可解决问题.23.【答案】解:设正方形ABCD的边长为a,,,,设正方形MPNF的边长为b,长方形EFGD的长与宽的和是正方形MPNF的边长,,,,,,,.【解析】【分析】正方形ABCD的边长为a,则,,根据即可得出答案;设正方形MPNF的边长为b,根据题意可得,求出,再根据,化简得,代入求解即可.24.【答案】解:如图,过点C作,,,,,,,,在和中,,≌,,,,;对称,理由:如图,过点C作,,,,,,,是直角三角形,连接CP并延长至E,使得,则点C关于直线AP对称点为E,设,,,,,,,,设,点,,,,,,点D,E关于x轴对称.【解析】解:,,故答案为:;见答案;见答案.【分析】根据,即可得出;过点C作,得出,,证明≌,得出,,,即可得出答案;过点C作,证明是直角三角形,连接CP并延长至E,使得,则点C关于直线AP的对称点为E,设,得出,,求出,设,得出,,求出,即可得出点D,E 关于x轴对称.。
2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷1. 在以下图形中,不是轴对称图形的是( )A.B.C.D.2. 可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为数字用科学记数法表示是( )A.B. C. D.3. 要使分式子有意义,x 的取值应满足( )A. B.C.D.4. 在中,若,,则的度数是( )A.B.C. D.5. 如图,在与中,,再添加一个下列条件,能判断≌的是( )A.B.C.D.6. 下列计算正确的是( )A.B.C. D.7. 如图,在中,,直线DE 是边AB 的垂直平分线,连接若,则( )A.B.C.D.8. 下列等式成立的是( )A. B.C. D.9. 如图,在平面直角坐标xOy中,,,OB平分,点关于x轴的对称点是( )A.B.C.D.10. 若的边a,b满足式子:,则第三边的长可能是( )A. 2B. 5C. 7D. 811. 计算:__________.12. 已知一个多边形的内角和为,则这个多边形是__________边形.13.若,,则__________ .14. 若边长为a,b的长方形周长为10,面积为5,则的值是__________ .15. 若等腰三角形其中两个外角的和为,则这个等腰三角形的顶角度数是__________ .16. 如图,为等边三角形,F,E分别是AB,BC上的一动点,且,连接CF,AE交于点H,连接给出下列四个结论:①;②若,则AE平分;③;④若,则其中正确的结论有__________ 填写所有正确结论的序号17. 解方程:18. 如图,D、C、F、B四点在一条直线上,,,,垂足分别为点C、点F,求证:19. 计算:;因式分解:20. 如图,的三个顶点坐标分别为,,画出关于y轴的对称图形;在第一象限的格点网格线的交点上找一点______ ,______ ,使得21. 设化简A;若是一个完全平方式,求A的值.22. 如图,是等腰直角三角形,尺规作图:作的角平分线,交AB于点保留作图痕迹,不写作法;在所作的图形中,延长CA至点E,使,连接求证:,且23. 为了增强体质,某学校组织徒步活动.两小组都走完了3千米的绿道,第一小组的速度是第二小组速度的倍,第一小组比第二小组提早小时到达目的地.求两个小组的速度分别是多少?假设绿道长为a千米,第一小组走完绿道需要小时,第二小组走完绿道的时间是第一小组时间的倍还要多小时,是否存在m,使得第一小组的速度是第二小组速度的2倍?请说明理由.24. 如图,OC平分,P为OC上的一点,的两边分别与OA、OB相交于点M、如图1,若,,过点P作于点E,作于点F,请判断PM与PN的数量关系,并说明理由;如图2,若,,求证:25. 如图,在中,,,射线于点如图1,求的度数;若点E,F分别是射线AD,边AC上的动点,,连接BE,①如图2,连接EF,当时,求的度数;②如图3,当最小时,求证:答案和解析1.【答案】D【解析】【分析】本题考查的是轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可.【解答】解:由分析可知,已知图形中不属于轴对称图形的是图形故选:2.【答案】D【解析】【分析】本题考查科学记数法的表示,解题的关键是掌握科学记数法表示的方法.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:故选:3.【答案】B【解析】【分析】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【解答】解:由题意得,,解得,故选:4.【答案】C【解析】解:,,故选:本题考查直角三角形中,两个锐角互余。
广东省广州市八年级上册数学期末考试试卷

广东省广州市八年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·黔南期末) 在﹣,0. ,,,0.80108中,无理数的个数为()A . 1B . 2C . 3D . 42. (2分) (2018八上·晋江期中) 下列说法正确的是()A . 9的算术平方根是3B . 4的平方根是2C . -3的平方根是D . 8的立方根是±23. (2分)如单项式2x3n-5与-3x2(n-1)是同类项,则n为()A . 1B . 2C . 3D . 44. (2分) (2016九上·仙游期中) 点B与点A(﹣2,3)关于原点对称,点B的坐标为()A . (2,﹣3)B . (﹣2,3)C . (2,3)D . (﹣2,﹣3)5. (2分)若正比例函数的图像经过点(-1,2),则这个图像必经过点()A . (1,2)B . (-1,-2)C . (2,-1)D . (1,-2)6. (2分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A . 同位角相等,两直线平行B . 内错角相等,两直线平行C . 同旁内角互补,两直线平线D . 如果两条直线都和第三条直线平行,那么这两条直线平行7. (2分)下列根式中,,,,最简二次根式的个数是()A . 4B . 3C . 2D . 18. (2分) (2019八下·枣庄期中) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y=x交于点B(2,4),则不等式kx≤ax+b的解集为()A . x≤2B . x≥2C . 0<x≤2D . 2≤x≤69. (2分) (2018八上·茂名期中) 如图,有一块直角三角形纸片,两直角边分别为AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A . 2cmB . 3cmC . 4cmD . 5cm10. (2分) (2019八下·武昌月考) 如图,在平面直角坐标系xOy中,,,点D在x轴上,若在线段包括两个端点上找点P,使得点A,D,P构成等腰三角形的点P恰好只有1个,下列选项中满足上述条件的点D坐标不可以是A .B .C .D .二、填空题 (共7题;共11分)11. (1分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了________ cm.12. (1分)(2016·成都) 已知是方程组的解,则代数式(a+b)(a﹣b)的值为________.13. (1分) (2020九下·重庆月考) 如图,正比例函数和一次函数的图象相交于点.当时, ________ (填“>”或“<”)14. (1分) (2019八下·潜江期末) 如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为________.(写出一个即可)15. (1分)如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=________ 时,AC+BC的值最小.16. (1分) (2017八下·萧山开学考) 沿河岸有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:①甲船的速度是25km/h;②从A港到C港全程为120km;③甲船比乙船早1.5小时到达终点;④图中P点为两者相遇的交点,P点的坐标为();⑤如果两船相距小于10km能够相互望见,那么,甲、乙两船可以相互望见时,x的取值范围是<x<2.其中正确的结论有________.17. (5分) (2020九上·孝南开学考) 如图,AB⊥BC,CD⊥BC,点E在BC上,且AE=DE. 若AB=20,CD=30,BC=50,求AE的长.三、解答题 (共8题;共70分)18. (10分) (2017七下·萧山期中) 解方程组(1)(2).19. (10分) (2019八下·中山期末) 甲、乙两名射击运动员进行射击比赛,两人在相同的条件下各射击10次,射击的成绩如图所示。
2023-2024学年广东省广州市白云区八年级(上)期末数学试卷+答案解析

2023-2024学年广东省广州市白云区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列长度的三条线段能组成一个三角形的是( )A. 5,10,10B. 5,6,11C. 5,6,12D. 5,6,132.计算:( )A. xB.C.D.3.石墨烯是目前世界上最稀薄却也是最坚硬的纳米材料,同时还是导电性能最好的材料,其理论厚度仅米.数据用科学记数法表示为( )A. B. C. D.4.如图,在和中,,,添加一个条件后,仍然不能证明≌,这个条件可能是( )A. B. C. D.5.等腰三角形的一个内角为,则另外两个内角的度数分别是( )A. ,B. ,或,C. ,D. ,或,6.计算:( )A. B. C. D.7.如图,在中,AB的垂直平分线交AC于点D,交AB于点如果,,那么的周长是( )A. 7cmB. 8cmC. 9cmD. 10cm8.化简的结果是( )A. B. a C. D.9.如图,在中,,AD平分,交BC于点D,,BD::4,则点D到AC的距离为( )A. 3B. 4C.D.10.如图,某小区规划在边长为x m的正方形场地上,修建两条宽为2m的甬道,其余部分种草,以下各选项所列式子是计算通道所占面积的为( )A. B.C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.当x满足条件______时,分式有意义.12.分解因式:__________.13.分式方程的解是______.14.若能因式分解,则m的值可以是______填写一个满足条件的值即可15.如图,在中,,交BC于点D,,则______.16.如图,在中,,,BF平分,过点C作于F点,过A作于D点,AC与BF交于E点,下列四个结论:①;②;③;④其中正确结论的序号是______.三、解答题:本题共9小题,共72分。
解答应写出文字说明,证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市八年级上册数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2017七下·黔南期末) 在﹣,0. ,,,0.80108中,无理数的个数为()
A . 1
B . 2
C . 3
D . 4
2. (2分) (2018八上·晋江期中) 下列说法正确的是()
A . 9的算术平方根是3
B . 4的平方根是2
C . -3的平方根是
D . 8的立方根是±2
3. (2分)如单项式2x3n-5与-3x2(n-1)是同类项,则n为()
A . 1
B . 2
C . 3
D . 4
4. (2分) (2016九上·仙游期中) 点B与点A(﹣2,3)关于原点对称,点B的坐标为()
A . (2,﹣3)
B . (﹣2,3)
C . (2,3)
D . (﹣2,﹣3)
5. (2分)若正比例函数的图像经过点(-1,2),则这个图像必经过点()
A . (1,2)
B . (-1,-2)
C . (2,-1)
D . (1,-2)
6. (2分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()
A . 同位角相等,两直线平行
B . 内错角相等,两直线平行
C . 同旁内角互补,两直线平线
D . 如果两条直线都和第三条直线平行,那么这两条直线平行
7. (2分)下列根式中,,,,最简二次根式的个数是()
A . 4
B . 3
C . 2
D . 1
8. (2分) (2019八下·枣庄期中) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y=x交于点B(2,4),则不等式kx≤ax+b的解集为()
A . x≤2
B . x≥2
C . 0<x≤2
D . 2≤x≤6
9. (2分) (2018八上·茂名期中) 如图,有一块直角三角形纸片,两直角边分别为AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()
A . 2cm
B . 3cm
C . 4cm
D . 5cm
10. (2分) (2019八下·武昌月考) 如图,在平面直角坐标系xOy中,,,点D在x轴上,若在线段包括两个端点上找点P,使得点A,D,P构成等腰三角形的点P恰好只有1个,下列选项中满足上述条件的点D坐标不可以是
A .
B .
C .
D .
二、填空题 (共7题;共11分)
11. (1分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了________ cm.
12. (1分)(2016·成都) 已知是方程组的解,则代数式(a+b)(a﹣b)的值为________.
13. (1分) (2020九下·重庆月考) 如图,正比例函数和一次函数的图象相交于点
.当时, ________ (填“>”或“<”)
14. (1分) (2019八下·潜江期末) 如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为________.(写出一个即可)
15. (1分)如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=________ 时,AC+BC的值最小.
16. (1分) (2017八下·萧山开学考) 沿河岸有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:
①甲船的速度是25km/h;
②从A港到C港全程为120km;
③甲船比乙船早1.5小时到达终点;
④图中P点为两者相遇的交点,P点的坐标为();
⑤如果两船相距小于10km能够相互望见,那么,甲、乙两船可以相互望见时,x的取值范围是<x<2.
其中正确的结论有________.
17. (5分) (2020九上·孝南开学考) 如图,AB⊥BC,CD⊥BC,点E在BC上,且AE=DE. 若AB=20,CD=30,BC=50,求AE的长.
三、解答题 (共8题;共70分)
18. (10分) (2017七下·萧山期中) 解方程组
(1)
(2).
19. (10分) (2019八下·中山期末) 甲、乙两名射击运动员进行射击比赛,两人在相同的条件下各射击10次,射击的成绩如图所示。
根据图中信息,解答下列问题:
(1)算出乙射击成绩的平均数;
(2)经计算,甲射击成绩的平均数为8,乙射击成绩的方差为1.2,请你计算出甲射击成绩的方差,并判断谁的射击成绩更加稳定。
20. (5分) (2017八下·洪山期中) 在四边形ABCD中,AB=3,BC=4,AD=5 ,CD=5,∠ABC=90°,求对角线BD的长.
21. (5分) (2020八上·辽阳期末) 某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲乙两种商品,分别抽七折和九折共付款399元两种商品原销售价之和为499元甲乙两种商品的进价分别为多少元.
22. (5分) (2020八下·顺义期中) 若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值
的范围是-11≤y≤9,求此函数的表达式.
23. (10分) (2017八上·义乌期中) 如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.
24. (15分)(2019·广阳模拟) 某种蔬菜的售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价﹣成本);
(2)设每千克该蔬菜销售利润为P ,请列出x与P之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?
(3)已知市场部销售该种蔬菜4、5个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.求4、5两个月的销售量分别是多少万千克?
25. (10分)(2018·焦作模拟) 某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和1个B 品牌的计算器共需122元;购买1个A品牌和2个B品牌的计算器共需124元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A品牌计算器按原价的九折销售,购买B品牌计算器超出10个以上超出的部分按原价的八折销售,①设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
②小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共7题;共11分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、答案:略
三、解答题 (共8题;共70分)
18-1、答案:略
18-2、答案:略
19-1、答案:略
19-2、答案:略
20-1、
21-1、答案:略22-1、答案:略
23-1、
23-2、
24-1、
24-2、答案:略24-3、答案:略25-1、答案:略25-2、答案:略。