人教版九年级数学上册同步练习25.3用频率估计概率

合集下载

人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习

人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习

人教版九年级数学上册第二十五章概率初步25.3 用频率估计概率课后练习一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③4.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m5.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16B.18C.20D.226.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2-bx上方的概率是( )A.1181B.1381C.1781D.19817.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8 B.9 C.10 D.128.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A.12B.13C.56D.169.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组53(2)x ax x-≤⎧⎨--⎩<无解,且关于x的分式方程1322x ax x--=--有整数解的概率为()A.15B.25C.35D.4510.从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx的图象经过第二、四象限的概率是( )A.13B.12C.16D.23二、填空题11.去游泳馆游泳,要换拖鞋,如果鞋柜里只剩下尺码相同的4双红色的鞋和3双蓝色的鞋混合放在一起,闭上眼睛随意拿出2只,它们正好是一双的概率为_________.12.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程2322x m mx x++=--有正实数解的概率为________.13.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.14.一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是____.15.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.三、解答题16.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y 低于0.4的有 人;②将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s (填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.17.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须力100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?19.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中白棋子的数量.20.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)21.小晶和小红玩掷骰子游戏,每人将一个各面分别标有1、2、3、4、5、6的正方体骰子掷一次,把两个人掷得的点数相加,并约定‘点数之和等于6,小晶赢,点数之和等于7,小红赢,点数之和是其他数,两人不分胜负’,问,他们两人谁获胜的概率大,请你用“画树形图”的方法加以说明。

初三【数学(人教版)】25.3用频率估计概率(1)

初三【数学(人教版)】25.3用频率估计概率(1)

归纳小结
通过大量重复试验,随着试验次数的增 加,一个事件出现的频率,总在一个固定 数的附近摆动,显示出一定的稳定性.因此 可以用随机事件发生的频率来估计该事件 发生的概率.
探究思考 思考1. 抛掷硬币试验的特点:
1.可能出现的结果数____有__限____; 2.每种可能结果的可能性___相__等_____.
试验探究 5. 下表是历史上一些数学家所做的掷硬币的试验数据,这
些数据你发现了什么?
试验者 抛掷次 数n
棣莫弗 2048 布 丰 4040 费 勒 10000 皮尔逊 12000 皮尔逊 24000
“正面向 上”次数m
1061 2048 4979 6019 12012
“正面向上” 频率( m )
n
0.518
0.5069
0.4979
0.5016
0.5005
试验探究
在抛掷一枚硬币时,结果不是“正面向 上”,就是“反面向上”. 因此,从上面的试验中 也能得到相应的“反面向上”的频率. 当“正面向 上”的频率稳定于0.5时,“反面向上”的频率也 稳定于0.5. 它也与前面用列举法得出的“反面向 上”的概率是同一个数值.
3. 在上图中,用红笔画出表示频率为0.5的直线
1 “正面朝上”的频率 m
0.8
n
0.6
0.4
0.2
抛掷次数n
0
1
2
3
4
5
6
7
8
试验探究
4. 思考:随着抛掷次数的增加,“正面向上”的 频率的变化趋势是什么?
试验探究
可以发现,在重复抛掷一枚硬币时,“正面 向上”的频率在0.5附近摆动.一般的,随着抛掷次 数的增加,频率呈现出一定的稳定性:在0.5附近 摆动的幅度会越来越小. 这时,我们称“正面向上” 的频率稳定于0.5. 它与前面用列举法得出的“正 面向上”的概率是同一个数值.

人教版九年级上册数学同步练习《用频率估计概率》(习题+答案)

人教版九年级上册数学同步练习《用频率估计概率》(习题+答案)

25.3用频率估计概率内容提要1.一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某个常数p,那么事件A发生的概率()P A p=.2.即使试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等,我们也可以通过试验的方法去估计一个随机事件发生的概率.只要试验的次数n足够大,且频率m n 稳定于某个常数,频率mn就可以作为概率P的估计值.基础训练1.在“抛骰子”的游戏中,如果抛了100次,出现点数1的频率为19%,这是()A.可能的B.确定的C.不可能D.以上都不正确2.下列说法正确的是()A.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖D.一颗质地均匀的骰子已经连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点3.某个事件发生的概率是12,这意味着()A.在两次重复实验中该事件必有一次发生B.在一次实验中没有发生,下次肯定发生C.在一次实验中已经发生,下次肯定不发生D.每次实验中事件发生的可能性是50%4.晓辉为练习射击,共射击600次,其中380次击中靶子,由此可以估计,晓辉射击一次击中靶子的概率约是()A.38% B.60% C.63% D.65%5.为了估计池塘里有多少条鱼,从池塘里捕捞了100条鱼做上标记,然后放回池塘里,经过一段时间等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼条.6.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据,请估计盒子里的白球个数为.(1)计算各次检查中“优等品”的频率,填入表中:)该厂生产乒乓球优等品的概率约为(精确到8.某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(2)请估计,当转动转盘的次数很大时,频率将会接近多少(精确到0.1)?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?9.不透明的袋中有4个大小相同的小球,其中2个为白色,1个为红色,1个为绿色,每次从袋中摸一个球,然后放回搅匀再摸,在摸球试验中得到下列表中部分数据:摸球次数 1 5 10 20 40 50 100 110 150 160 190 200 出现红球的频数 1 2 3 5 13 18 27 28 39 40 49 51 出现红球的频率(2)摸球5次和摸球10次所得频率值的误差是多少?100次和110次之间,190次和200次之间呢?从中你发现了什么规律?(3)根据以上数据你能估计红球出现的概率吗?是多少?(4)你能估计白球出现的概率吗?你能估计绿球出现的概率吗?能力提高1.小新抛掷一枚质地均匀的硬币,连续抛10次,有7次正面朝上,如果他第11次抛硬币,那么硬币正面朝上的概率为()A.12B.14C.1 D.342.小明在一个装有红色球和白色球各一个的口袋中摸出一个球,然后放回搅匀再摸出一个球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是()A.两次摸到红色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到红色球,后摸到白色球3.甲、乙两名同学在一次用频率估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率4.修正液中含有铅、苯、钡等对人体有害的化学物质,为了让同学们真正认识修正液,九年级(1)班同学分成几个小组在中学生中展开调查“你知道修正液的主要成分吗?”调查数据统计如下表:调查人数200 400 800 1200 1600 2000 知道 6 10 15 23 33 41不知道98 390 785 1177 1567 1959 请根据这些数据估计“中学生知道修正液主要成分”的概率为(精确到5.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为.(2)该地区已经移植这种树苗5万棵,①估计这种树苗成活万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约万棵.6.电脑程序小组的同学在计算机中制作了一个“虚拟骰子”(均匀的正方体),6个面中每个面都写有数字1,2,3,4之中的一个,通过10000次电脑投掷试验所得结果是:出现数字“1”的频率是33%,出现数字“2”的频率是17%,出现数字“3”的频率是34%,出现数字“4”的频率是16%,则6个面上数字之和为.7.某湿地自然保护区有大量白鹭,为掌握该区生态环境变化,科学家想了解白鹭群的数量及性别分布,现随机抓取45只白鹭做上标记再放飞,一个星期后随机抓回100只,记录结果如下:无记号有记号白鹭特征雄性雌性雄性雌性数量29 68 1 28.如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷实验,结果统计如下:数字 1 2 3 4数字朝下的次数16 20 14 10(1)计算上述实验中“4朝下”的频率是.”的说法正确吗?为什(2)“根据实验结果,投掷一次正四面体,出现2朝下的概率是13么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.9.一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率.(2)根据(1)的结果,x的值可能是6吗?请说明理由.(3)若x是不等于2,3,4的自然数,试求x的值.拓展探究1.学校举办“跳蚤市场”活动,九年级(1)班的同学决定批发一款笔袋在跳蚤市场出售.该款笔袋有红、蓝两种颜色,在采购的时候两名同学进行了如下的讨论:甲:每个人喜欢的颜色都不同,所以两款颜色都采购相同数量;乙:哪种颜色更多人喜欢就应该采购更大的数量;于是争执不下的两人回到学校针对笔袋的颜色做了一份调查,下表是一组统计数据:选“红色”的人数34 62 88 122 151 181选“红色”的频率(2)根据调查估计选红色的概率为多少(精确到0.1)?若按这一比例共采购200只笔袋,该笔袋进价为每只7元,为了获得较大利润将红色款定价为10元,蓝色款定价为9元,则200只笔袋共可获得多少元?2.现在初中课本里所学的概率计算问题只有以下两种类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验.第二类是用试验或者模拟试验的数据计算频率,并且频率估计概率的概率计算问题,比如掷图钉的试验.解决概率计算问题,可以直接利用模型,也可以转化后再利用模型.请解决以下问题:(1)下图是由边长均为1的正三角形、正方形、正六边形镶嵌而成的木板,利用该图形开展寻宝游戏,若宝物随机钉在木板后任意一点,则宝物钉在正方形区域后的概率是多少(精确到0.001)?(2)在1~9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:试验组别第1组试验第2组试验第3组试验第4组试验第5组试验构成锐角三角形次数86 158 250 337 420数学应用应用1甲、乙两人扔三个骰子,规定若三个骰子点数之和是奇数为甲获胜,三个骰子点数之和是偶数为乙获胜,请问这个游戏公平吗?请同学们通过实验,用频率估计概率的方法得出问题答案.应用2在中国象棋比赛中,两只不同颜色的“车”只要在同一条线上就可以相互“吃掉”.和你的同学一起借助中国象棋盘上的格子,研究在中国象棋盘上随机放一只红“车”及一只蓝“车”,它们正好可以相互“吃掉”的概率.应用3用应用2的思考方法,和你的同学一起借助中国象棋盘上的格子,研究在中国象棋盘上随机放一只红“马”及一只蓝“马”,它们正好可以相互“吃掉”的概率.整理归纳1.分清三个事件:学习概率的有关知识,必须了解随机现象,根据事件发生可能性的大小正确判断出给定的事件到底是什么事件,不可能事件是指每次都一定没有机会发生;必然事件是指每次一定发生;随机事件是指有时候会发生,有时候不发生.2.理清概率与频率的关系.频率是指每个对象出现的次数与总次数的比值,而概率是指大量重复试验中,事件A发稳定下来所接近的某个常数.因此说,我们可用大量重复试验时的频率来估计概生的频率mn率,但不能说频率等于概率,因为它们是两个不同的概念,概率伴随着随机事件客观存在着,只要有一个随机事件存在,那这个随机事件的概率就一定存在;而频率是通过试验得到的,它随试验次数的变化而变化,虽然多次试验的频率能稳定于其理论概率,但无论做多少次试验,试验频率总是理论频率的一个近似值,接近而不相等.3.概率的计算.(1)有限等可能事件概率的计算:一般地,若在一次试验中有n种可能的结果,且它们发生的可能性都相等,事件A包含其中的m种结果,则事件A发生的概率为()m=.可P An 见,计算概率的关键是探寻出m和n,常用的方法有列表法和树状图法,其中列表法适用于一次试验要涉及两个因素且可能出现的结果数目较多的情况;树状图法适用于一次试验要涉及三个或更多的因素的情况.(2)当随机试验可能出现的结果有无限多个,或者各种可能结果发生的可能性不相等时,可通过统计频率来估计概率.其做法是通过大量重复实验,用事件发生的稳定频率值来估计事件的概率,实验的次数越多,估计的效果就越好.数学实践密码锁安全吗?增城石滩镇港侨中学九(1)班万婉珊指导老师曹雪勇每次见爸爸出差,总少不了那些重要的文件,你可别小看这些文件,它关系到公司的生死存亡、职员的利益,所以爸爸每次出差总是十分紧张,这已成了爸爸最伤脑筋的事啦!最近妈妈建议爸爸购买一个配有密码锁的公事包,但爸爸、妈妈却因为公事包的安全性问题展开了激烈的争论,爸爸认为:“只要知道那几个小小的数字就可以非常巧妙地打开,密码锁不安全.”其实密码锁是十分安全的,现在就让我们用数学知识来论证一下吧.假如数字密码锁是三位数□□□,而每一格都有可能出现0,1,2,3,4,5,6,7,8,9十个数字,这样排出三位数共有1010101000⨯⨯=个.而在这1000个数字当中只有一组密码号才能打开,因此打开此锁的概率是0.1%.不知道密码的人,想偷偷打开密码锁,就得一个不漏地一个一个去试,先000,001,002,003,…,一直试到999.由于心理紧张,还会重复已试过的数,并且即使试到了正确的密码号而没有去拉一下,这样又会“溜”过去了,因此可能要试1000多个数才有机会打开.如果每试一个数要花去10秒钟,那么试1000个数要花费:()⨯÷÷≈时.1000106060 2.8如果密码锁是七位的,那么不知道密码的人要想偷偷打开密码锁花的时间就会更多了.七位数的数字锁□□□□□□□同三位数的数字锁一样,每一格都有可能出现0,1,2,3,4,5,6,7,8,9十个数字,这样排出的七位数共有:7101010101010101010000000⨯⨯⨯⨯⨯⨯==个.而在10000000个数字中只有1个密码号才能打开密码锁,那么打开密码锁的概率为7=.1/100.00001%同样,不知密码的人想打开密码锁就得一个不漏地一个一个去试,做贼毕竟会心虚,再加上心理紧张,还会不自觉地重复试号,这样试号就会超过710个,假如每试一个号需要7⨯÷÷≈时.的时间也按10秒计算,打开密码锁一般需要花费:1010606027778即使不知密码的人每天不眠不休,也约需要38个月才有机会打开密码锁,所以密码锁是十分安全的.如果将密码锁改为字母密码锁将能更大地增加它的安全性.字母密码锁一般是五位字母的,而每一格都有可能出现A,B,C,D,…,26个字母,这样排出的五位字母共有5⨯⨯⨯⨯==个.26262626262611881376而在11881376个字母组合中同样只有1个字母组合密码号才能打开密码锁.那打开密码锁的概率为1/11881376=0.000008416%,那么想偷偷打开密码锁的人花费的时间就更长,安全性能就更高了.由上述的分析我们可知密码锁是十分安全的.学业评价25.3 参考答案:基础训练1.A 2.B 3.D 4.C 5.2 000 6.24 7.(1)0.90.920.910.890.9(2)0.9 8.(1)0.680.740.680.690.7050.701.(2)当转动转盘的次数很大时,频率将会接近0.7.(3)获得铅笔的概率约是0.7.(4)圆心角的度数约为0.7360252⨯︒=︒.9.(1)1 0.40.30.250.3250.360.270.2550.260.250.2580.255(2)0.10.0150.003随着实验次数的增多,频率之间的误差会变得更小,因为频率逐渐稳定.(3)能,0.25(4)白球出现的概率是0.5,绿色出现的概率是0.25.能力提高1.A 2.C 3.B 4.0.025.(1)0.90.9(2)①4.5②15 6.147.雌雄比例为3:7,共1 500只.8.(1)16(2)不正确.(3)列表:由表格可知投掷正四面体两次,共有16种可能性,两次朝下的数字之和大于4共有10种可能性,105 168∴=.9.(1)0.33(2)不可能,如果x是6,可求得“和为7”的概率是6,不是0.33(3)5 拓展探究1.(1)0.680.620.590.610.600.60(2)0.6,可共获利520元.2.(1)0.536(2)0.22数学应用应用1 公平应用21789应用3 若其中一“马”在点1A ,1J ,9A ,9J 时(共4个点),互吃的概率为289;若其中一“马”在点2A ,1B ,1I 2J ,8A ,9B ,8J ,9I 时(共8个点),互吃的概率为389;若其中一“马”在点37A A ~,37J J ~,11C H ~,99C H ~,2B ,2I ,8B ,8I 时(共26个点),互吃的概率为489;若其中一“马”在点22C H ~,37B B ~,88C H ~,37I I ~时(共22个点),互吃的概率为689;若其中一“马”在其余30个点上时,互吃的概率为889.。

【精品讲义】人教版九年级数学(上)专题25.3 用频率估计概率-(知识点+例题+练习题)含答案

【精品讲义】人教版九年级数学(上)专题25.3 用频率估计概率-(知识点+例题+练习题)含答案

第二十五章 概率初步25.3 用频率估计概率用频率估计概率连续抛掷一枚质地均匀的硬币10次、20次、30次、40次、50次……分别记录每轮试验中硬币“正面向上”和“反面向上”出现的次数,求出“正面向上”和“反面向上”的频率,分析数据,可探索出频率的变化规律.用频率估计概率(1)从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率. (2)一般地,在大量重复试验中,如果事件A 发生的频率mn稳定于某个常数p ,那么事件A 发生的概率P (A )=p .n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为A.0.3 B.0.7C.0.4 D.0.6【答案】A【解析】∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选A.【名师点睛】一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某个常数p,那么估计事件A发生的概率P(A)=p.试验得出的频率只是概率的估计值.概率是针对大量重复试验而言的,大量重复试验反映出的规律并非在每一次试验中都发生.(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【解析】(1)153÷300=0.51,252÷500≈0.50;故答案为:0.51,0.50;(2)估计这名同学投篮一次,投中的概率约是0.5;(3)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次.1.关于频率和概率的关系,下列说法正确的是A.频率等于概率B.当试验次数很大时,概率稳定在频率附近C.当试验次数很大时,频率稳定在概率附近D.试验得到的频率和概率不可能相等2.随机事件A出现的频率mn满足A.mn=0 B.mn=1C.mn>1 D.0<mn<13.两人各抛一枚硬币,则下面说法正确的是A.每次抛出后出现正面或反面是一样的B.抛掷同样的次数,则出现正、反面的频数一样多C.在相同条件下,即使抛掷的次数很多,出现正、反面的频数也不一定相同D.当抛掷次数很多时,出现正、反面的次数就相同了4.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有A.60个B.50个C.40个D.30个5.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球除颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________.6.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=__________;(2)“摸到白球”的概率的估计值是__________(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少个?7.某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?1.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色后放回……如此大量摸球试验后,小新发现从布袋中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是A.①②③B.①②C.①③D.②③2.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为A.500B.800C.1000D.12003.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有________个白球.4.一鱼池里有鲤鱼,鲫鱼,鲢鱼共1000尾,一渔民通过多次捕捞试验后发现,鲤鱼,鲫鱼出现的概率约为31%和42%,则这个鱼池里大概有鲤鱼______尾,鲫鱼______尾,鲢鱼______尾.5.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣中抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?6.小明抛硬币的过程(每枚硬币只有正面朝上和反面朝上两种情况)见下表,阅读并回答问题:(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完10次时,得到__________次反面,反面出现的频率是__________;(2)当他抛完5000次时,反面出现的次数是__________,反面出现的频率是__________;(3)通过上表我们可以知道,正面出现的频数和反面出现的频数之和等于__________,正面出现的频率和反面出现的频率之和等于__________.1.(2019•湖北襄阳)下列说法错误的是A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2019•江苏泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20 B.300C.500 D.8003.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.154.(2019•柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是__________(结果精确到0.01).5.(2019•长沙)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是__________.(结果保留小数点后一位)6.(2019•雅安)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?1.【答案】C【解析】概率是一个确定的数,频率是一个变化量,当试验次数很大时,频率会稳定在概率附近.由此可得,选项C 正确.故选C . 2.【答案】D【解析】大量重复试验中具有某种规律性的事件叫做随机事件,故频率mn的含义是在n 次试验中发生m 次,即必有0<mn<1.故选D . 3.【答案】C【解析】抛硬币是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料.故选C . 4.【答案】C【解析】∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球, ∴白球与红球的数量之比为1:4, ∵白球有10个,∴红球有10×4=40(个), 故选C . 5.【答案】6【解析】黑球个数为:150.69⨯=,红球个数:1596-=.故答案为:6.【名师点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键. 6.【解析】(1)a =290500=0.58,故答案为:0.58; (2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60; (3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白球的个数=20×0.6=12(个),黑球20−12=8(个). 答:黑球8个,白球12个.【名师点睛】本题考查利用频率估计概率,事件A 发生的频率等于事件A 出现的次数除以实验总次数;在实验次数非常大时,事件A 发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.7.【解析】(1)如图,(2)()10.9420.9460.9510.9490.9485⨯++++=1 4.7365⨯=0.9472≈0.95. (3)P (摸出一个球是黄球)=551322++=18.(4)设取出了x 个黑球,则放入了x 个黄球,则551322x +++=14,解得x =5.答:取出了5个黑球.【名师点睛】本题考查利用频率估算概率,数量较大、批次较多时用求平均值的方法更接近概率,理解题意灵活运用概率公式是解题关键.1.【答案】B【解析】∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1–20%–50%=30%,故此选项正确; ∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选B.【名师点睛】此题主要考查了利用频率估计概率,根据频率与概率的关系得出是解题关键.2.【答案】C【解析】抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选C.【名师点睛】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.【答案】12【解析】∵共试验40次,其中有10次摸到黑球,∴白球所占的比例为:40103 404-=,设盒子中共有白球x个,则344xx=+,解得x=12,经检验,x=12是原方程的根,故答案为:12.【名师点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.4.【答案】310;420;270【解析】根据所给数据可得:鲤鱼:1000×31%=310(尾);鲫鱼:1000×42%=420(尾);鲢鱼:1000–310–420=270(尾).故答案为:310;420;270.5.【答案】(1)0.06;(2)36件【解析】(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)=931550=0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:至少准备36件正品衬衣供顾客调换.6.【答案】(1)7;70%;(2)2502;50.04%;(3)抛掷总次数;1【解析】(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完 10次时,得到7次反面,反面出现的频率是710=0.7=70%; (2)当他抛完5000次时,反面出现的次数是5000–2498=2502,反面出现的频率是2502÷5000=0.5004=50.04%;(3)通过上面我们可以知道,正面出现的频数和反面出现的频数之和等于抛掷总次数,正面出现的频率和反面出现的频率之和等于1.1.【答案】C【解析】A 、必然事件发生的概率是1,正确;B 、通过大量重复试验,可以用频率估计概率,正确;C 、概率很小的事件也有可能发生,故错误;D 、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选C .2.【答案】C【解析】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C .3.【答案】D【解析】样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm 的概率是0.15.故选D .4.【答案】【解析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.95.5.【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.6.【解析】(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60–(9+21+3)=27(人);15100(2)如图:(3)所求概率为.=6927035。

【初中数学】人教版九年级上册25.3 用频率估计概率(练习题)

【初中数学】人教版九年级上册25.3 用频率估计概率(练习题)

人教版九年级上册25.3 用频率估计概率(153) 1.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上一面的点数是42.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图的方法加以说明,并求出其概率.3.为了了解初中生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了如图所示的尚不完整的统计图,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图①,并求出图②中B区域的圆心角的度数;(3)若该校八、九年级的学生共有2800名,请估计该校八、九年级学生中只愿意就读中等职业技术学校的人数.4.某种油菜籽在相同条件下发芽试验的结果如下表:那么估计这种油菜籽发芽的概率是(结果精确到0.01).5.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.6.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.(1)求参加此次活动得到玩具的频率;(2)请你估计袋中白球的数量接近多少.7.为了估计水塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞200条鱼.若在这200条鱼中有5条鱼是有记号的,则鱼塘中的鱼可估计为()A.3000条B.2200条C.1200条D.600条8.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率9.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表可知该队员一次投篮命中的概率大约是()A.0.9B.0.8C.0.7D.0.7210.在一个不透明的盒子中装有a个除颜色不同外其余完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.12B.15C.18D.2111.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个参考答案1.【答案】:D【解析】:A项中,小明随机出的是“剪刀”的概率是13≈0.33.B项中,从中任抽一张牌的花色是红桃的概率是1352=14=0.25.C项中,从中任取一球是黄球的概率是23≈0.67.D项中,向上一面的点数是4的概率是16≈0.17.而折线统计图中试验的频率稳定在0.17左右,与D项中概率接近.故选 D2(1)【答案】①∵试验中“5点朝上”的次数为20,总次数为60,∴此次试验中“5点朝上”的频率为2060=13.②小红的说法不正确.理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才慢慢接近概率.而她们的试验次数太少,没有代表性,∴小红的说法不正确(2)【答案】列表如下:由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,∴两枚骰子朝上的点数之和为7时的概率最大,最大概率为636=163×100%=10%,故本次活动共调查了80÷(1)【答案】C部分所占的百分比为3636010%=800(名)学生(2)【答案】只愿意就读中等职业技术学校的学生人数为800−480−80=240,×360∘=108∘.补全图形如下图所示.图②中B区域的圆心角的度数是240800(3)【答案】估计该校八、九年级学生中只愿意就读中等职业技术学校的人×2800=840数为2408004.【答案】:0.95【解析】:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则估计这种油菜籽发芽的概率是0.955.【答案】:20=0.2,解得n=20.经检【解析】:设暗箱里白球的数量是n,则根据题意,得5n+5验,n=20是原方程的根,且符合题意6=0.2.(1)【答案】解:参加此次活动得到玩具的频率为800040000(2)【答案】设袋中共有m个球,,则P(摸到一个球是红球)=8m=0.2,解得m=40,∴8m经检验,m=40是原方程的根,且符合题意.∴袋中白球的数量接近40−8=32(个).7.【答案】:C【解析】:∵5÷200=0.025,∴30÷0.025=1200.故选 C8.【答案】:D【解析】:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴A,B,C错误,D正确.故选D.9.【答案】:D【解析】:试验次数越大,频率越稳定,越接近事件发生的概率,故该队员一次投篮命中的概率大约是0.7210.【答案】:B【解析】:因为大量重复摸球试验后,摸到红球的频率逐渐稳定在20%,说明摸到红球的概率为20%,所以球的总数为3÷20%=15.故选 B11.【答案】:C【解析】:因为小亮共摸了1000次,其中有200次摸到白球,则有800次摸到红球,所以白球与红球的数量之比为1∶4.因为白球有10个,所以红球有4×10=40(个).。

人教版初中数学九年级上册第二十五章 25.3用频率估计概率

人教版初中数学九年级上册第二十五章 25.3用频率估计概率
随机事件(不确定事件)发生的概率介于0~1之
间,即0<P(不确定事件)<1. 如果A为随机事件(不确定事件),
那么0<P(A)<1.
用列举法求概率的条件是什么? (1)试验的所有结果是有限个(n) (2)各种结果的可能性相等.
用频率估计概率
用列举法可以求一些事件的概 率,我们还可以利用多次重复 试验,通过统计实验结果去估 计概率。
3.动物学家通过大量的调查估计出,某种动物活到20 岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率
是0.3.现年20岁的这种动物活到25岁的概率为多少?现
年25岁的这种动物活到30岁的概率为多少?
试一试
4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的 产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生, 并在调查到1 000名、2 000名、3 000名、4 000名、5 000名 时分别计算了各种颜色的频率,绘制折线图如下:
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
大家都来做一做
从一定的高度落下的图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
你能估计图钉尖朝
上的概率吗?
归纳:
一般地,在大量重复试验中, 如在果某事个件常数A发p附生近的,频那率mn 么事会件稳A定 发生的概率P(A)=p。
用频率估计的概率 可能小于0吗?可 能大于1吗?
练习: 下表记录了一名球员在罚球线上的投篮结果。
投篮次数(n) 50 100 150 200 250 300 500

人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《25.3用频率估计概率》课时练习题(含答案)一、单选题1.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.242.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14B.13C.12D.233.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个4.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个5.如图,电路连接完好,且各元件工作正常.随机闭合开关1S,2S,3S中的两个,能让两个小灯泡同时发光的概率为()A.16B.12C.23D.136.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()随机抽取的零件个数n20 50 100 500 1000合格的零件个数m18 46 91 450 900零件的合格率mn0.9 0.92 0.91 0.9 0.9A.0.9 B.0.8 C.0.5 D.0.17.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是78.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;第四步:估算出π的值.为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=MD;②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为()A.42n mm+B.2nmC.4nmD.44m nm-二、填空题9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.10.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.11.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.12.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).三、解答题(共0分)13.某种油菜籽在相同条件下的发芽试验的结果如下:试验的粒数n20 80 100 200 400 800 1000 1500 发芽的粒数m14 54 67 132 264 532 670 1000发芽的频率mn0.7 0.675 0.67 0.66 0.66 0.665 a0.667(1)填空:上表中a=_________;(2)根据上表,请估计,当n很大时,发芽的频率将会接近多少?(结果保留两位小数)(3)根据上表,这种油菜籽发芽的概率的估计值是多少?(结果保留两位小数)14.一工厂生产某种型号的节能灯的质量抽检结果如表:抽检个数50 100 200 300 400 500次品个数 1 3 5 6 7 9(1)根据表格中的数据求任抽1件是次品的概率;(2)厂家承诺:顾客买到次品包换.如果卖出这批节能灯800个,那么要准备多少个兑换的节能灯?15.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:a________;b=________;(1)按表格数据,表中的=(2)请估计:当次数s很大时,摸到白球的频率将会接近________(精确到0.1);(3)试估算:这一个不透明的口袋中红球有多少个?16.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.(1)完成上表.(2)估计任意抽一件衬衣是合格品的概率.(3)估计出售1200件衬衣,其中次品大约有几件.17.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是13.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为14.若能,请写出如何调整白球数量;若不能,请说明理由.18.据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率。

人教版九年级数学上册25.3 用频率估计概率

人教版九年级数学上册25.3 用频率估计概率
课堂检测
解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为 设每千克柑橘的销价为x元,则应有 (x-2.22)×9000=5000, 解得 x≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.
探究新知
56.5
(%)
(2)根据上表画出统计图表示“顶帽着地”的频率.
探究新知
(3)这个试验说明了什么问题?
在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.
探究新知
通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.
练习罚篮次数
30
60
90
150
200
300
400
500
罚中次数
27
45
78
118
161
239
322
401
罚中频率
0.900
0.750
0.867
0.787
0.805
0.797
0.805
0.802
解:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.
课堂检测
能力提升题
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
n
m
0.10
0.90
某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品基础教育教学资料,请参考使用,祝你取得好成绩!
25.3 用频率估计概率
1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.
3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______.
5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )
A .
361 B .181 C .61 D .2
1 6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( ) A .8000条 B .4000条 C .2000条 D .1000条
7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法. 8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.
9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.
10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.
11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m,针长为
0.1m,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相
交的概率的近似值,并估计出π的值.
12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,
你能否求出封闭图形的面积?试试看.
13.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?
14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.
15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:
(1)该国参战部队有220个班建制;
(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外
2个班只是基本满员;
(3)敌国的士气不振.
因此,他向本国发回消息:“敌国已基本失去战斗力”.
你认为这名间谍的消息正确吗?
参考答案
1.近似值,0. 2.1,30,6. 3.300. 4.⋅5
1
5.C . 6.B .
7.(1)0.6;(2)0.6,0.4;(3)白球12,黑球8; (4)尝试自己设计出一种方案与同学交流. 8.能.设男教师人数为x ,则
,200
80
5050=+x 解得x =75,估计该校约有75位男教师. 9.,41略. 10.⋅2
1
11.估计,127.015019
==≈
N n P 又.149.35
.0127.01.022π,π2=⨯⨯=≈∴=
Pa l a l P 12.随实验次数的增加,可以看出石子落在⊙O 内(含⊙O 上)的频率趋近0.5,有理由相信
⊙O 面积会占封闭图形ABC 面积的一半,所以求出封闭图形ABC 的面积为2π. 13.如图,当所抛圆碟的圆心在图中边框内(宽为5cm)部分时,圆碟将与地砖间的间隙相交,
因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为
⋅16
7
14.用计算器设定1~365(一年按365天计)共365个随机数,每组取10个随机数,有两个
数相同的记为1,否则记为0,做10组实验,求出现两个数相同的频率,用此数据来估计概率. 15.由于间谍侦查到的班是随机的,设敌国有x 个班严重缺员,那么
,220
2220x
=解得x =200,可见敌国有200个班严重缺员,仅有的20个班基本满员,又加上士气不振,可以说“敌国已基本上无战斗力了”.。

相关文档
最新文档