人教版数学九年级上册《概率》课件

合集下载

人教版数学九年级上册25.概率(共22张)

人教版数学九年级上册25.概率(共22张)

概率
适用 对象
等可能事件,其特点: (1)有限个;(2)可能性一样.
计算 公式
P( A) m (m是事件A包含的结果种数, n
n是试验总结果种数).
课后作业
见本课时练习
(1)事件B:抽出数字为偶数; 解:(1)点数为奇数有3种可能,即点数为2,4,6
因此P(B)= 3 1 62
(2)事件C: 抽出数字大于1小于6.
(2)点数大于1且小于6有4种可能,即点数为2,3,4, 5
因此 P(可能的结果,并
且它们产生的可能性都相等,事件A包括其中的m种结
合作探究
实验2:有6张数字卡片,它们的背面完全相同,正面分别
标有1,2,3,4,5、6现将它们的背面朝上,从中任意抽出 一张卡片
(1) 可能出现哪几种结果?
(2) 6个数字的出现可能性完全相同吗?
(3) 能否用一个具体数值来表示各个数 字出现的可能性吗?这个数值是多少?
思考:
以上三个实验有什么共同的特点:
D.1.
4、某射手在一次射击中,射中10环,9环,8环的概率分别是 0.2,0.3,0.1,那么此射手在一次射击中不够8环的概率为( A )
A. 0.4
B 0.3
C 0.6
D 0.9
课堂小结
定义
一般地,对于一个随机事件A,我们把刻画其产生可能性 大小的数值,称为随机事件A产生的概率,记为P(A).
果,那么事件A产生的概率
P( A) m n
事件A产生 的结果种数
实验的总共 结果种数
例1:话说唐僧师徒超出石砣岭,吃完午饭后,三徒弟商量着今天 由谁来刷碗,可半天也没个好主张.还是悟空聪明,他灵机一动, 扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子: 如果掷到2的倍数就由八戒来刷碗;

人教版九年级上册2第2课时用画树状图法求概率课件

人教版九年级上册2第2课时用画树状图法求概率课件



正 反正反
正 反 正 反正 反正反
25.2 第2课时 用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次实验的几个步骤及顺序; (2)画出树状图列举一次实验的所有可能结果; (3)数出随机事件A包含的结果数m,实验的所有 可能结果数n; (4)代入概率公式进行计算.
25.2 第2课时 用画树状图法求概率
色上的区分,随机从袋中摸出2个小球,两球恰好是一个黄
球和一个红球的概率为( A )
A. 1
2
B. 1
3
C. 1
4
D. 1
6
25.2 第2课时 用画树状图法求概率
3.某市教育局为提高教师业务素养,扎实开展了“课内比教学” 活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有 “A”“B”内容的签中,随机抽出一个作为自己的讲课内容, 某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中 内容“A”,一个抽中内容“B”的概率是___3__.
②在摸球实验一定要弄清“放回”还是“不放回”.
25.2 第2课时 用画树状图法求概率
第二十五章 概率初步
25.2 第2课时 用画树状图法求概率
25.2 第2课时 用画树状图法求概率
情景导入 问题1:同时掷两枚质地均匀的硬币,落地后,两枚都是正面向上的
概率是多少?
解:设正面向上为1,反面向上为2.
第二枚
第一枚
1
2
1
(1,1) (1,2)
2
(2,1) (2,2)
25.2 第2课时 用画树状图法求概率
取球实验

A
B

CD ECD E
丙 H I H I H I H IH I H I

人教版九年级数学上册25.2 用列举法求概率课件(共42张PPT)

人教版九年级数学上册25.2 用列举法求概率课件(共42张PPT)

过程与方法
理解 的结果,其中A包含m种)的意义,并能解决 一些实际问题。探究用特殊方法 “列举法” 求概率的简便方法,然后应用这种方法解决 一些实际问题。
P(A) = m (在一次试验中有n种可能 n
教学目标
情感态度与价值观
通过丰富的数学活动,交流成功的经 验,体验数学活动充满着探索和创造,体 验数学方法的多样性灵活性,提高解题能 力。
3 1 = 6 2
(3)点数大于2且小于5有2种可能,即点数 为 3, 4,
P(点数大于2且小于5)=
2 1 = 6 3
例2:掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上。
解:我们把掷两枚硬币所能产生的结果全部 列举出来,它们是:正正,正反,反正,反 反。所有的结果共有4个,并且这4个节结果 出现的可能性相等。 (1)所有的结果中,满足两枚硬币全部正面 朝上(记为事件A)的结果只有一个,即“正 1 正”,所以P(A)=
6
(1)以上两个试验有什么共同的特点? 一次试验中,可能出现的结果有限个。一 次试验中,各种结果发生的可能性相等。 (2)对于上述所说的试验,如何求事件的概率? 一般地,如果在一次试验中,有n种可 能的结果,并且它们发生的可能性都相等, 事件A包含其中的m种结果,那么事件A发生 m 的概率为 . P A =
(2)满足两个骰子的点数之和是9(记为事 件B)的结果有4个,则
4 1 P( B) = = 9 36
(3)满足至少有一个骰子的点数为2(记为 事件C)的结果有11个,则
P(C)=
11 36
想一想
“同时掷两枚硬币”,与“先后两次掷 一枚硬币”,这两种试验的所有可能结果 一样吗?

人教版九年级数学上册--25.用列表法求概率-课件

人教版九年级数学上册--25.用列表法求概率-课件
币反面向上(记为事件B)有2种,
由当上一表次可实知验共涉有及4种两等个可因能素性时的(如结掷果两,个骰子∴)P,(且B)可=2能/4出=1现/2的,结果较多
时,为不重复不遗漏地列出所有可能的结果,用列表法.
当堂训练
用列表法求概率
同时掷两枚质地均匀的骰子,计算下列事件的概率
知识点二
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 为事件C)有11种,
由上表可知共有36种等可能性的结果, ∴P(C)=11/36,
课堂小结
列举法 求概率
用列表法求概率
知识梳理
当一次实验涉及一个因素时(如掷一枚骰子),用直接列举法.
列表法
前提条件:确保实验中每种结果出现的可能性大小相等. 适用对象:两个实验因素或分两步进行的实验.
用列表法求概率
提升能力
2.在6张卡片上分别写有1~6,随机的抽取一张后放不回放回,再随机的抽取一
张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
解:列表如下:
其中第一次取出的数字能够整除第
1 2 3 4 5 6 2次取出的数字(记为事件A)有14种,
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
你们赢,如果落地后朝上的是一正一反,老师赢.请问,你们觉得这个游戏
公平吗?
你能把这问题改编成数学问题吗?
典例精讲
用直接列举法求概率
【例1】“先同后时将掷一两硬枚币硬掷币两”次,试求下列事件的概率: 第1枚 (1)两枚硬币全部正面向上;
(2)一枚硬币正面向上,一枚硬币反面向上;
知识点一

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

人教版九年级数学上册《概 率》课件

人教版九年级数学上册《概 率》课件

活动3 引出概率 1.从数量上刻画一个随机事件A发生的可能性的大小,我们把它 叫做这个随机事件A的概率,记为P(A). 2.概率计算必须满足的两个前提条件: (1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等. 3.一般地,如果在一次试验中,有n种可能的结果,并且它们发 生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的 概率P(A)=________. 4.随机事件A发生的概率的取值范围是________,如果A是必然 发生的事件,那么P(A)=________,如果A是不可能发生的事件, 事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上; (3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧; (4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是 1,或3,或5,或7,或9. 答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件; (4)是等可能事件.
答案:1.摸到红色球与摸到绿色球的可能性不相等,P(摸到红球) =58,P(摸到绿球)=38;2.(1)16;(2)32;(3)数字 1 和 3 出现的概率相同, 都是61,数字 2 和 4 出现的概率相同,都是31.
活动6 课堂小结与作业布置 课堂小结 1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=. 2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果 出现的可能性相同. 作业布置 教材第134页~135页 习题第3~6题.
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.

《概率》概率初步PPT免费课件

《概率》概率初步PPT免费课件

为红、绿、黄三种.指针的位置固定,转动转盘后任
其自由停止,其中的某个扇形会恰好停在指针所指
的位置(指针指向两个图形的交线时,当作指向其右
边的图形).求下列事件的概率:
(1)指针指向红色;
1 4
(2)指针指向黄色或绿色.
3 4
探究新知
素养考点 4 利用概率解决实际问题
例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9
字被抽取的可能性大小相等,所以我们可以用
1 5
表示每一个数
字被抽到的可能性大小.
探究新知
活动2 : 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每
种点数出现的可能性大小相等.我们用
1 6
表示每一种点数出现
的可能性大小.
探究新知
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个 球除颜色外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ;
1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
探究新知
素养考点 3 简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形, 颜色分为红黄绿三种,指针固定,转动转盘后任其自 由停止,某个扇形会停在指针所指的位置,(指针指 向交线时当作指向其右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.
巩固练习
掷一个骰子,观察向上的一面的点数,求下列事 件的概率: (1)点数为2; (2)点数为奇数; (3) 点数大于2小于5.
(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6

人教版九年级上册数学《概率》说课教学复习课件

人教版九年级上册数学《概率》说课教学复习课件
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
踩雷即游戏结束,下一步该点击A区域还是B区域?
P(点击A区域遇雷)=


P(点击B区域遇雷)=



=
P(点击A区域遇雷)<P(点击B区域遇雷)
等,事件A包含其中的m种结果,那么事件A发生的概率
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
P(A)=


【思考二】P(A)=0或P(A)=1时代表了什么,并在下图中表示出来?
0
事件发生的可能性越来越小
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
P(A)=


【思考一】P(A)的取值范围是多少?
∵m≥0,n>0,
∴0≤m≤n.

∴0≤ ≤1,
即0≤P(A)≤1.
小结
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)抽到的序号有几种可能的结果?

每次抽签的结果不一定相同,序号1,2,能的结果,但是事先
不能预料一次抽签会出现哪一种结果.
模仿抽签决定演讲比赛出场顺序 (2)抽到的序号小于6吗?
抽到的序号 一定小于6; (3)抽到的序号会是0吗?
抽到的序号不会是0; 想一想:能算出抽到每个数字的可能数值吗?
在这些试验中出现的事件为等可能事件.
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
具有上述特点的试验,我们可以用事件所 包含的各种可能的结果数在全部可能的结果数 中所占的比,来表示事件发生的概率.
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
考点探究1 简单掷骰子的概率计算
例1 任意掷一枚质地均匀骰子. (1)掷出的点数大于4的概率是多少? (2)掷出的点数是偶数的概率是多少? 分析:任意掷一枚质地均匀的骰子,所有可能的结果 有6种:掷出的点数分别是1、2、3、4、5、6,因为 骰子是质地均匀的,所以每种结果出现的可能性相等.
5
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
新知二 简单概率的计算
试验1:抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果? 6种
(2)各点数出现的可能性会相等吗? 相等
(3)试猜想:各点数出现的可能性大小是多少?
正面朝上
开 始
反面朝上
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
【思考】上述试验都具有什么样的共同特点? 具有两个共同特征: 每一次试验中,可能出现的结果只有有 限个; 每一次试验中,各种结果出现的可能 性相等.
巩固练习
1.掷一个骰子,观察向上的一面的点数,求下列 事件的概率:
1 6
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
试验2: 掷一枚硬币,落地后: (1)会出现几种可能的结果? 两种
(2)正面朝上与反面朝上的可能性会相等吗?相等
(3)试猜想:正面朝上的可能性有多大呢?
1 2
5
字被抽到的可能性大小.
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
活动2 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每 种点数出现的可能性大小相等.我们用 1 表示每一种点数出现
人教版数学九年级上册
25.1 随机事件与概率
25.1.2 概 率
学习目标
1.理解必然事件、不可能事件、随机事件的概 念。 2.学会根据经验判断一个简单事件是属于必然 事件、不可能事件还是随机事件。 3.学会从事件的实际情形出发,会分析事件发 生的可能性。
情景导入
模仿抽签决定演讲比赛出场顺序
5名同学参加讲演比赛,以抽签方式决定每个人的出场 顺序,签筒中有5根形状、大小相同的纸签,上面分别标 有出场的序号1,2,3,4,5.小军首先抽签,他在看不到 纸签上的数字的情况下从签筒中随机(任意)地取一根 纸签,请考虑以下问题:
6
的可能性大小.
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
一般地,对于一个随机事件A,我们把刻 画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).
例如:“抽到1”事件的概率:P(抽到1)= 1
探究新知 人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
事件发生的可能性越大,它的概率越接近于1;反之,事件 发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1
0
不可能发生
事件发生的可能性越来越小
1
概率的值
事件发生的可能性越来越大 必然发生
特别地:当A为必然事件时,P(A)=1,当A为不可能事件 时,P(A)=0.
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
解:(1)掷出的点数大于4的结果只有2种:掷出的点数
分别是5、6.所以P(掷出的点数大于4)=
2 1; 63
(2)掷出的点数是偶数的结果有3种:掷出的点
数分别是2、4、6.所以P(掷出的点数是偶数)=
3 1. 62
方法总结:概率的求法关键是找准两点:①全部情况 的总数;②符合条件的情况数目.二者的比值就是其发 生的概率.
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
【议一议】
一个袋中有5个球,分别标有1、2、3、4、5这5
个号码,这些球除号码外都相同,搅匀后任意摸出
一个球.
(1)会出现哪些可能的结果? 1、2、3、4、5 (2)每个结果出现的可能性相同吗?猜一猜它
们的概率分别是多少? 相同
1
探究新知 人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT) 新知一 概率的定义
活动1:抽纸团 从分别有数字1、2、3、4、5的五个纸团中随机
抽取一个,这个纸团里的数字有5种可能,即1、2、3、 4、5.
因为纸团看上去完全一样,又是随机抽取,所以每个数 字被抽取的可能性大小相等,所以我们可以用 1 表示每一个数
5
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
归纳新知 人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
一般地,如果一个试验有n个可能的结果, 并且它们发生的可能性都相等。事件A包含其中 的m个结果,那么事件A发生的概率为:
P( A) m . n
人教版数学九年级上册《25.1.2 概 率》 课件(共32张PPT)
相关文档
最新文档