人教版七年级上册数学《第三章 一元一次方程》整章精品课件

合集下载

人教版七年级数学上册第三章一元一次方程PPT教学课件全套

人教版七年级数学上册第三章一元一次方程PPT教学课件全套
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
学习目标
1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性,提高解决实际问题的能力. 2.掌握方程、一元一次方程的定义以及解的概念,学 会判断某个数值是不是一元一次方程的解.(重点) 3.初步学会如何寻找问题中的等量关系,并列出方程. (难点)
从算式到方程是数学的进步!
观察与思考
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1 每个方程中,各含有几个未知数? 1个
问题2 说一说每个方程中未知数的次数. 1次
问题3 等号两边的式子有什么共同点? 都是整式
知识要点
一元一次方程
二 列方程
典例精析
例2 根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方形
的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长,
x
列方程:4x 24.
(2) 一台计算机已使用1700 h,预计每月再使用 150 h,经过多少月这台计算机的使用时间 达到规定的检修时间2450 h?
(7) 1 1. x6
典例精析
例1 若关于x的方程 2x n 1 9 0 是一元一次方程,则 n 的值为 2或-2 .
【变式题】加了限制条件,需进行取舍 方程(m 1)x m 1 0 是关于一元一次方程,则 m= 1 .
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
列方程:1.20.8x 20.960 x 87.

人教版数学七年级上册第三章一元一次方程章节复习课件

人教版数学七年级上册第三章一元一次方程章节复习课件
分析:
(1)桌面数:桌腿数=1:4; (2)桌面数=桌面所用木材体积×20
桌腿数=桌腿所用木材体积×400 (3) 桌面所用木材体积+桌腿所用木材体积=12.
解:设应用xm³木材做桌面,则用(12-x)m³木材 做桌腿,恰好配成整套桌子.
依题意,列出方程 400(12-x)=4×20x.
解方程,得
方程的有关概念例题
例1 已知x=-1是方程ax3+bx-3=2的解,则 当x=1时,求代数式ax3+bx-3的值.
解:将x=-1代入方程a(-1)3+b(-1)-3=2, 即a+b=-5.
当x=1时 原式=a·13+b·1-3
=a+b-3
=-5-8.
例2. 若 (m+4) x| m|-3+2=1 是关于 x 的一元一次方 程,则 m的值为__4_.
合并同类项 把方程化成 ax = b (a≠0)的情势
系数化为1 方程两边同除以 x 的系数,x=m 的情势
解一元一次方程
(1) 2x 1 1 x 10x 1
4
12
解:去分母,得
3(2x+1)-12 = 12x-(10x+1).
去括号,得 6x+3-12 = 12x-10x-1.
移项,得 6x-12x+10x = -1-3+12.
注意:结合一元一次方程的定义求字母参数的值, 需谨记未知数的系数不为0.
知识回顾——等式的性质
等式的性质例题
(1) 怎样从等式 x-6= y-6 得到等式 x = y ?
根据等式的性质1两边同时加6.
(2) 怎样从等式 5+x=1 得到等式 x =-4?
根据等式的性质1两边同时减5.

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

人教版七年级上册数学第三章《一元一次方程》全章课件

人教版七年级上册数学第三章《一元一次方程》全章课件
2
1、像这种用等号“=”来表示相 归纳:
等关系的式子,叫等式。
2、像这样含有未知数的等式 叫做方程。
练习1:
判断下列各式是不是方程,是的打“√”,不 是的打“×”并说明原因。
(1)-2+5=3 (×) (3) m=0 (√ ) (5)χ+y=8 ( √ ) (2) 3χ-1=7 (4) χ﹥ 3 (√ ) ( ×) (√ )
探索新知
方程的解
2x-4=0
40+10χ=70 X=2 X=3 使方程左 右两边相 等的未知 数检验下列各数是不是方程 3 x 2 10 x 的解:
(1) x 2
解:把 x
(2) x 3

2 代入原方程
8 右边= 10 2
解: 设这个学校有
x名学生。根据题意列方程,得
52 0 0 x ( x 52 0 0 x) 80
3 n 5 2 x 6 10 是一元一次方 3、(1)若关于 x 的方程
程,求 n 的值; 解:∵方程是一元一次方程
3n 5 1
(2)如果方程 (m 1) x m 2 0 是关于 x 的一元一次
(2)、一台计算机已使用1700小时,预计每月再使 用150小时,经过多少月这台计算机的使用时间达到 规定的检修时间2450小时? 设经过 x个月这台计算机的使用时间达到规定 解: 的检修时间。根据题意列方程,得
150 x 1700 2450
(3)、某校女生占全校人数的52%,比男生多80 人,这个学校有多少学生?
(6) 2χ2-5χ+1=0(√ )
(7) 2a +b (× ) (8)x=4
探索新知
一辆客车和一辆卡车同时从A地出发沿同 一公路同方向行驶,客车的速度是70km/h,卡车的 速度是60km/h,客车比卡车早1小时到达B地,A、B 两地间的路程是多少?

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1
解: (1)把m=2分别代入方程的左边和 右边. 左边= 8 , 右边= 4 因为左边 ≠ , 右边,
所以m=2 不是 原方程的解.
问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1 解: (2)把m=1分别代入方程的左边和右边 . 左边= 5 ,
一切问题都可以转化为数 学问题,一切数学问题都可以 转化为代数问题,而一切代数 问题又都可以转化为方程。因 此,一旦解决了方程问题,一 切问题将迎刃而解。
——笛卡儿
笛卡儿,1596年3月 31日生于法国都兰城。 笛卡儿是伟大的哲学 家、物理学家、数学 家、生理学家,解析 几何的创始人。
问题7:
根据下列问题,设未知数,列出方程。 (1)环形跑道一周长是400 m,沿跑道跑多少周, 可以跑3000 m? 解:设跑x周,依题意得, 400x=3000 (2)甲种铅笔每支0.3元,乙种铅笔每支0.6元, 用9元钱买了两种铅笔共20支,两种铅笔各买了 多少支? 解:设买甲种铅笔x支,乙种铅笔(20-x)支, 依题意得展
希腊数学家丢番图(公元3–4世纪) 的墓碑上记载着: 他生命的六分之一是幸福的童年; 再活了他生命的十二分之一,两颊长起了细细的胡须;
他结了婚,又度过了一生的七分之一;
再过五年,他有了儿子,感到很幸福; 可是儿子只活了他全部年龄的一半; 儿子死后,他在极度悲痛中过了四年,也与世长辞了。 根据以上信息,你能知道丢番图的寿命吗?
右边= 5 ,
因为左边 = 右边, 所以m=1 是 原方程的解. 使方程中等号左右两边相等的未知数的值, 叫做方程的解
中国人对方程的研究有悠久 的历史,“方程”一词最早出现 于《九章算术》.《九章算术》 全书共分九章,第八章就叫“方 程”. 宋元时期,中国数学家创立 了“天元术” ,即用“天元”表 示未知数进而建立方程,“立天 元一”相当于现在的“设未知数 x”. 14世纪初,我国元朝数学家 朱世杰创立了“四元术”,四元 指天、地、人、物,相当于四个 未知数.

人教版数学七年级上册 3.1.1 一元一次方程 (共27张PPT)

人教版数学七年级上册 3.1.1 一元一次方程 (共27张PPT)

以上的分析过程可以表示如下:
实际问题 设未知数 列方程 一元一次方程
分析实际问题中的数量关系,利用 其中的相等关系列出方程,使用数学解 决实际问题的一种方法。
动笔练一练
• 练习2 天平左盘中放置两个小球和一个1 克的砝码,右盘中放置一个5克的砝码, 天平处于平衡。你能列出恰当的方程吗?
设x为一个小球的质量
山、秀水三地的时间如表所示,翠 湖在青山、秀水两地之间,距青山 50千米,距秀水70千米.王家庄到 翠湖的路程有多远?
王家庄 10:00 青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能
列出方程吗?
示意图
x千米
50千米
70千米
王家庄
青山
翠湖
秀水
如果设王家庄到翠湖的路程为x千米

3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021

17、儿童 是中心 ,教育 的措施 便围绕 他们而 组织起 来。上 午8时17 分32秒 上午8 时17分0 8:17:3 221.8. 9
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四

人教版七年级上数学教学课件第三章一元一次方程全章

人教版七年级上数学教学课件第三章一元一次方程全章
如果a=b(c≠0),那么 a b . cc
【等式性质1】 如果a b,那么a c b c.
【等式性质2】 如果a b,那么ac bc.
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同一种运算.
注 2.等式两边加或减,乘或除以的数一定是同一个数

或同一个式子.
检验一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是.
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1
根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
试妨问决
一分题这
50千米
70千米
青山
翠湖 秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
问题:如图,汽车匀速行驶途经王家庄、青
山、秀水三地的时间如表所示,翠湖在青山、
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
(3) y 3 6 y 9 (5) x2 1
(4) 0.32m (3 0.02m) 0.7
(6) 1 y 4 1 y
2
3
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边 长是多少? 解:设正方形的边长为x cm, 根据题意列方程得:4x=24. 变式:用一根长24 cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各是多少? 解:设长方形的宽为x cm,则它的长为1.5x cm, 根据题意列方程得:2(x+1.5x)=24.

人教版数学七年级上册第三章一元一次方程一元一次方程课件

人教版数学七年级上册第三章一元一次方程一元一次方程课件

3.1.1 一元一次方程
栏目索引
知识点二 一元一次方程
定义 条件
只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程.如2x-3=0,5y +2=9等
(1)只含有一个未知数,如x-y=3含有两个未知数x,y,所以它不是一元一次方程; (2)未知数的次数都是1,如x2-4=0中,x的次数是2,所以它不是一元一次方程;
两个未知数,所以不是一元一次方程.方程②③⑤都是一元一次方程. 答案 B
温馨提示 当方程中含有未知数的同类项时,要先化简,然后根据一元
一次方程的定义进行判断.
3.1.1 一元一次方程
栏目索引
知识点三 方程的解与解方程
内容
实质
解方程
求出使方程中等号左右两边相等的未知数的值的过程 变形
方程 的解
使方程中等号左右两边相等的未知数的值叫做方程的解 数值
3.1.1 一元一次方程
知识点一 方程的概念
栏目索引
3.1.1 一元一次方程
栏目索引
例1 下列各式是方程的是 ( ) A.4-5=-1 B.3x+y-1 C.s+2t=5 D.x-5>7 解析 选项A中的式子是等式,但不含未知数,所以它不是方程;选项B中 的式子含有未知数x,y,但不是等式,所以它不是方程;选项C中的式子是 等式,且含有未知数s,t,所以它是方程;选项D中的式子不是等式,所以它 不是方程. 答案 C 温馨提示 方程中的未知数可以用x表示,也可以用其他字母表示,方程 中未知数的个数不一定是一个,可以是两个或两个以上.
3.1.1 一元一次方程
栏目索引
2.下列各数是方程2x-1=3x+1的解的是 ( ) A.2 B.-2 C.1 D.1或-2 答案 B 把各选项代入方程检验即可.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档