直线平面平行的判定及性质测试题
(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
直线与平面平行、垂直的判定定理及其性质

一、及时反馈:
1、如图,长方体1111ABCD A B C D 中,11E F 是平面11AC 上的线段,求证:11E F //平面ABCD .
2、如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .
3、如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,E 是PC 的中点, 证明:PA//平面
EDB ;
4、如图,在正方体1111ABCD A B C D -中,E ,F
分别是棱BC ,11C D 的中点,求证:EF //
平面11BB D D . 、
5、如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点. 求证:MN //平面PAD .
8、如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,E 是
PC 的中点.求证:
(1)CD ⊥平面P AC (2)CD ⊥AE (3)平面P AC ⊥平面P CD
1
A 二、 巩固练习:
9、如图,正三棱柱111C B A ABC ,D 是AC 的中点.求证://1C B 平面BD A 1.
15.如图,在三棱锥P —ABC 中,PA ⊥底面ABC ,PA =AB=2,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥ 平面PAC .
(2)求直线PB 与平面PAC 的角的正切值。
高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
直线、平面平行的判定及其性质练习

直线、平面平行的判定及其性质一、选择题:1.平面α与平面β平行的条件可以是( )A .α内有无穷多条直线都与β平行B .直线a ∥α,a ∥β且a ⊄α,a ⊄βC .直线a ⊂α,b ⊂β且α∥β,b ∥αD .α内任何中直线都与β平行2.下列命题中,错误的是( )A .平行于同一条直线的两个平面平行B .平行于同一个平面的两个平面平行C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交3.下列命题中,正确的是个数是( )①若两个不同平面不相交,那么它们平行 ②若一个平面内无数条直线都平行于另一个平面,则这两个平面平行 ③空间的两个相等的角所在的平面也平行。
A .0个B .1个C .2个D .3个4.下列结论中正确的是( )①α∥β,β∥γ,则α∥γ ②过平面外一条直线有且只有一个平面与已知平面平行③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行 ④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交A .①②③B .②③④C .①③④D .①②③④5.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是( )A .平行B .相交C .相交或平行D .以上答案都不对二、填空题:6.一条直线和一个平面平行,过此直线和这个平面平行的平面有________个。
7.已知平面α、β和直线a 、b 、c ,且a ∥b ∥c ,a ⊂α,b 、c ⊂β,则α与β的关系是______________。
三、解答题:8.如图,正方体ABCD-A 1B 1C 1D 1中 ,M 、N 、E 、F 分别是棱A 1B 、A 1D 1、B 1C 1、C 1D 1的中点。
求证:平面AMN ∥平面EFDB 。
9.如图,A 、B 、C 为不在同一条直线上的三点,AA ′∥BB ′∥CC ′,且AA ′=BB ′=CC ′.求证:平面ABC ∥平面C B A '''。
高中数学练习题 线面、面面平行的判定与性质

线面、面面平行的判定与性质基础巩固强化1.已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β2.已知m、n是两条直线,α、β是两个平面,给出下列命题:①若n⊥α,n⊥β,则α∥β;②若平面α上有不共线的三点到平面β的距离相等,则α∥β;③若n、m为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.其中正确命题的个数是()A.3个B.2个C.1个D.0个一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB⊥EF②AB与CM成60°③EF与MN是异面直线④MN∥CD其中正确的是()A.①②B.③④C.②③D.①③3.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是()A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β4.设a、b是两条不同的直线,α、β是两个不同的平面,则下列命题错误的是()A.若a⊥α,b∥α,则a⊥bB.若a⊥α,b∥a,b⊂β,则α⊥βC.若a⊥α,b⊥β,α∥β,则a∥bD.若a∥α,a∥β,则α∥β对于平面α和共面的直线m、n,下列命题是真命题的是()A.若m,n与α所成的角相等,则m∥n B.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n5.设α、β是两个不同的平面,a、b是两条不同的直线,给出下列四个命题,其中真命题是() A.若a∥α,b∥α,则a∥b B.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a∥b,则α∥βD.若a、b在平面α内的射影互相垂直,则a⊥b 6.设两个平面α、β,直线l,下列三个条件:①l⊥α;②l∥β;③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确命题的个数为()A .3B .2C .1D .07.正方体ABCD -A 1B 1C 1D 1的棱长为1cm ,过AC 作平行于对角线BD 1的截面,则截面面积为________.8.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A 、B 、C 到平面β的距离相等,则α∥β. 其中正确命题的序号为________.9.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题: ①若m ∥α,n ∥α,m ∥β,n ∥β,则α∥β; ②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n ; ③若m ⊥α,α⊥β,m ∥n ,则n ∥β; ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n . 其中正确命题的序号是________.10.如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高).如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.能力拓展提升11.如图,正方体ABCD-A1B1C1D1中,E、F分别为棱AB、CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条12.如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台下列命题中,是假命题的是()A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件13.(2012·南昌二模)若P是两条异面直线l、m外的任意一点,则下列命题中假命题的序号是________.①过点P有且仅有一条直线与l、m都平行;②过点P有且仅有一条直线与l、m都垂直;③过点P有且仅有一条直线与l、m都相交;④过点P有且仅有一条直线与l、m都异面.14.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是______(写出所有符合要求的图形序号).15.(2011·广东揭阳一模)如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G、H分别是DF、BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F-ABCD的体积.[解析](1)证法1:∵EF∥AD,AD∥BC,∴EF∥BC.又EF=AD=BC,∴四边形EFBC是平行四边形,∴H为FC的中点.又∵G是FD的中点,∴GH∥CD.∵GH⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.证法2:连接EA,∵ADEF是正方形,∴G是AE的中点.∴在△EAB中,GH∥AB.又∵AB∥CD,∴GH∥CD.∵HG⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.(2)∵平面ADEF⊥平面ABCD,交线为AD,且F A⊥AD,∴F A⊥平面ABCD.∵AD=BC=6,∴F A=AD=6.又∵CD=2,DB=42,CD2+DB2=BC2,∴BD⊥CD. ∵S▱ABCD=CD·BD=82,∴V F-ABCD=13S▱ABCD·F A=13×82×6=16 2.(理)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B-DEF的体积.[解析](1)证明:设AC与BD交于点G,联结EG、GH.则G为AC中点,∵H是BC中点,∴GH綊12AB,又∵EF綊12AB,∴四边形EFHG为平行四边形.∴FH∥EG.又EG⊂平面EDB,而FH⊄平面EDB,∴FH∥平面EDB.(2)证明:∵EF∥AB,EF⊥FB.∴AB⊥FB.又四边形ABCD为正方形,∴AB⊥BC,又FB∩BC=B,∴AB⊥平面BFC.∵FH⊂平面BFC,∴AB⊥FH.又∵FB=FC,H是BC中点,∴FH⊥BC.又AB∩BC=B,∴FH⊥平面ABCD,∴FH⊥AC. 又EG∥FH,∴EG⊥AC,又AC⊥BD,BD∩EG=G,∴AC⊥平面EDB.(3)∵EF⊥BF,BF⊥FC且EF∩FC=F,∴BF⊥平面CDEF,∴BF 为四面体B —DEF 的高. 又∵BC =AB =2,∴BF =FC = 2.四边形CDEF 为直角梯形,且EF =1,CD =2. ∴S △DEF =12(1+2)×2-12×2×2=22∴V B —DEF =13×22×2=13. 16.(2012·辽宁大连市、沈阳市联考)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 为长方形,AD =2AB ,点E 、F 分别是线段PD 、PC 的中点.(1)证明:EF ∥平面P AB ;(2)在线段AD 上是否存在一点O ,使得BO ⊥平面P AC ,若存在,请指出点O 的位置,并证明BO ⊥平面P AC ;若不存在,请说明理由.[解析] (1)证明:∵EF ∥CD ,CD ∥AB ,∴EF ∥AB , 又∵EF ⊄平面P AB ,AB ⊂平面P AB ,(2)在线段AD上存在一点O,使得BO⊥平面P AC,此时点O为线段AD的四等分点,且AO=14AD,∵P A⊥底面ABCD,∴P A⊥BO,又∵长方形ABCD中,AD=2AB,∴△ABO△DAC,∴∠ABO+∠BAC=∠DAC+∠BAC=90°,∴AC⊥BO,又∵P A∩AC=A,∴BO⊥平面P AC.1.(2012·四川文,6)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行[答案] C[解析]本题考查了线面角,面面垂直,线面平行,面面平行等位置关系的判定与性质,对于A选项,两条直线也可相交,B选项若三点在同一条直线上,平面可相交.D选项这两个平面可相交(可联系墙角),而C项可利用线面平行的性质定理,再运用线面平行的判定与性质可得.本题需要我们熟练掌握各种位置关系的判定与性质.2.(2012·石家庄二模)三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2、m 、n ,其中m 2+n 2=6,则该三棱锥体积的最大值为( )A.12B.8327 C.33 D.23[答案] D[解析] 令m =n ,由m 2+n 2=6得m =n =3,取AB 的中点E ,则BE =22,PB =3,∴PE =102,CE =102,∴EF =2,∴V P -ABC =13S △PEC ·AB =13×(12×2×2)×2=23,∵23>12,∴23>33,23>8327,故选D.3.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1、BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.4.(2012·东营市期末)设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m ⊥n ,m ⊥α,n ⊄α,则n ∥α;②若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α或n ⊥β; ③若m ⊥β,α⊥β,则m ∥α; ④若m ⊥n ,m ⊥α,n ⊥β,则α⊥β. 其中真命题的序号是________. [答案] ①④⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫[解析] m ⊥n m ⊥α⇒n ∥α或n ⊂α n ⊄α⇒n ∥α,故①真; 正方体ABCD -A 1B 1C 1D 1中,平面ABCD 与ADD 1A 1分别取作平面α,β,其交线AD 为m ,取直线AB 1为n ,则满足n ⊥m ,知②错;m ⊥β,α⊥β时,可能m ∥α,也可能m ⊂α,知③错;⎭⎬⎫ ⎭⎪⎬⎪⎫m ⊥n m ⊥α⇒n ∥α或n ⊂αn ⊥β⇒α⊥β,故④真.。
直线平面平行的判定与性质 练习题

直线、平面平行的判定与性质1.(2019·西安模拟)设α,β是两个平面,直线a ⊂α,则“a ∥β”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 依题意,由a ⊂α,a ∥β不能推出α∥β,此时平面α与β可能相交;反过来,由α∥β,a ⊂α,可得a ∥β.综上所述,“a ∥β”是“α∥β”的必要不充分条件,选B.2.(2019·四川名校联考)如图,正方体ABCD A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 由题可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,B Q =23BB 1,连接M Q ,NP ,P Q ,则M Q 綊23B 1A 1,NP 綊23AB ,又B 1A 1綊AB ,故M Q 綊NP ,所以四边形M Q PN 是平行四边形,则MN ∥Q P ,Q P ⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C ,则MN ∥平面BB 1C 1C ,故选B.3.(2019·枣庄诊断)如图,直三棱柱ABC A ′B ′C ′中,△ABC 是边长为2的等边三角形,AA ′=4,点E ,F ,G ,H ,M 分别是边AA ′,AB ,BB ′,A ′B ′,BC 的中点,动点P 在四边形EFGH 内部运动,并且始终有MP ∥平面ACC ′A ′,则动点P 的轨迹长度为( )A .2B .2πC .2 3D .4解析:选D 连接MF ,FH ,MH ,因为M ,F ,H 分别为BC ,AB ,A ′B ′的中点,所以MF ∥平面AA ′C ′C ,FH ∥平面AA ′C ′C ,所以平面MFH ∥平面AA ′C ′C ,所以M 与线段FH 上任意一点的连线都平行于平面AA ′C ′C ,所以点P 的运动轨迹是线段FH ,其长度为4,故选D.4.(2019·成都模拟)已知直线a ,b 和平面α,下列说法中正确的是( ) A .若a ∥α,b ⊂α,则a ∥b B .若a ⊥α,b ⊂α,则a ⊥bC.若a,b与α所成的角相等,则a∥bD.若a∥α,b∥α,则a∥b解析:选B 对于A,若a∥α,b⊂α,则a∥b或a与b异面,故A错;对于B,利用线面垂直的性质,可知若a⊥α,b⊂α,则a⊥b,故B正确;对于C,若a,b与α所成的角相等,则a与b相交、平行或异面,故C错;对于D,由a∥α,b∥α,则a,b之间的位置关系可以是相交、平行或异面,故D错.5.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MN Q不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以M Q∥CD,所以AB∥M Q .又AB⊄平面MN Q,M Q⊂平面MN Q,所以AB∥平面MN Q.同理可证选项C、D中均有AB∥平面MN Q.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接O Q,则O Q∥AB.因为O Q与平面MN Q有交点,所以AB与平面MN Q有交点,即AB与平面MN Q不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MN Q.故选A.6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C 对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.7.如图所示,三棱柱ABCA1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:设BC 1∩B 1C =O ,连接OD .∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD ,∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形, ∴O 为BC 1的中点,∴D 为A 1C 1的中点,则A 1D ∶DC 1=1.答案:18.已知正方体ABCD A 1B 1C 1D 1,下列结论中,正确的是________(只填序号). ①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1; ③AD 1∥DC 1;④AD 1∥平面BDC 1.解析:连接AD 1,BC 1,AB 1,B 1D 1,C 1D ,BD ,因为AB 綊C 1D 1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确.答案:①②④9.在三棱锥P ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF=MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:810.(2019·南宁毕业班摸底)如图,△ABC 中,AC =BC =22AB ,四边形ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥底面ABC ; (2)求几何体ADEBC 的体积.解:(1)证明:如图,取BC 的中点M ,AB 的中点N ,连接GM ,FN ,MN .∵G ,F 分别是EC ,BD 的中点, ∴GM ∥BE ,且GM =12BE ,NF ∥DA ,且NF =12DA .又四边形ABED 为正方形,∴BE ∥AD ,BE =AD , ∴GM ∥NF 且GM =NF .∴四边形MNFG 为平行四边形.∴GF ∥MN ,又MN ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)连接CN ,∵AC =BC ,∴CN ⊥AB , 又平面ABED ⊥平面ABC ,CN ⊂平面ABC , ∴CN ⊥平面ABED .易知△ABC 是等腰直角三角形,∴CN =12AB =12,∵C ABED 是四棱锥,∴V C ABED =13S 四边形ABED ·CN =13×1×12=16.11.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,设DF 与GN 的交点为O , 则AE 必过DF 与GN 的交点O . 连接MO ,则MO 为△ABE 的中位线, 所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN . 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点, 所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .12.(2019·河南八市联考)如图,在矩形ABCD 中,AB =1,AD =2,PA ⊥平面ABCD ,E ,F 分别为AD ,PA 的中点,点Q 是BC上一个动点.(1)当Q 是BC 的中点时,求证:平面BEF ∥平面PD Q ;(2)当BD ⊥F Q 时,求B QQ C的值.解:(1)证明:∵E ,Q 分别是AD ,BC 的中点, ∴ED =B Q ,ED ∥B Q ,∴四边形BED Q 是平行四边形, ∴BE ∥D Q.又BE ⊄平面PD Q ,D Q ⊂平面PD Q , ∴BE ∥平面PD Q ,又F 是PA 的中点,∴EF ∥PD , ∵EF ⊄平面PD Q ,PD ⊂平面PD Q , ∴EF ∥平面PD Q ,∵BE ∩EF =E ,BE ⊂平面BEF ,EF ⊂平面BEF , ∴平面BEF ∥平面PD Q. (2)如图,连接A Q ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD . ∵BD ⊥F Q ,PA ∩F Q =F ,PA ⊂平面PA Q ,F Q ⊂平面PA Q , ∴BD ⊥平面PA Q ,∵A Q ⊂平面PA Q ,∴A Q ⊥BD ,在矩形ABCD 中,由A Q ⊥BD 得△A Q B 与△DBA 相似, ∴AB 2=AD ×B Q , 又AB =1,AD =2, ∴B Q =12,Q C =32,∴B Q Q C =13.。
直线、平面平行的判定及其性质

基础题1.直线a ∥平面α,平面α内有n 条直线交于一点,那么这n 条直线中与直线a 平行的( )A .至少有一条B .至多有一条C .有且只有一条D .不可能有2.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( )A .只有一个B .至多有两个C .不一定有D .有无数个3.一条直线和两条异面直线的一条平行,则它和另一条的位置关系是( )A .平行B .相交C .异面D .相交或异面4.在空间中,下列说法正确的个数为( )①有两组对边相等的四边形是平行四边形;②四边相等的四边形是菱形;③平行于同一直线的两直线平行;④有两边和它们的夹角对应相等的两个三角形全等.A .1B .2C .3D .45.已知m 、n 为异面直线,m ⊂平面α,n ⊂平面β,α∩β=l ,则l ( )A .与m 、n 都相交B .与m 、n 中至少一条相交C .与m 、n 都不相交D .至多与m 、n 中的一条相交6.若命题“如果平面α内有三点到平面β的距离相等,那么α∥β”是正确的,则这三点必须满足的条件是( )A .这三点不共线B .这三点不共线且在β的同侧C .这三点不在β的同侧D .这三点不共线且在β的异侧7.若平面α∥平面β,直线a ∥α,点B ∈β,则在β内过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一一条与a 平行的直线8.下列说法中正确的是________.①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点; ③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内.9. 如图所示,直线a ∥平面α,点B 、C 、D ∈a ,点A 与a 在α的异侧.线段AB 、AC 、AD 交α于点E 、F 、G .若BD =4,CF =4,AF =5,则EG 等于________.10.α、β、γ是三个两两平行的平面,且α与β之间的距离是3,α与γ之间的距离是4,则β与γ之间的距离是________.11.几何体ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3,过P 、M 、N 三点的平面交上底面于PQ ,Q 在CD 上,则PQ 等于________.12. 如图所示,α∥β,P 为α,β外一点,且直线PAB ,PCD 分别与α,β相交于A ,B ,C ,D ,若PA =2,AB =1,AC =12,则BD =________.提高题1.如图,已知长方体ABCD-A1B1C1D1,求证:平面A1BD∥平面CB1D1.2. 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.求证:AM∥平面BDE.3. 如图,在长方体ABCD-A1B1C1D1中,AD=AA1=3,AB=6,E、F分别为AB和A1D的中点.求证:AF∥平面A1EC.4,四边形EFGH为空间四边形ABCD的一个截面,E在线段AC上,F在线段BC 上,G在线段BD上,H在线段AD上,若截面EFGH为平行四边形,求证:AB ∥平面EFGH,CD∥平面EFGH.5,正方体ABCD-A1B1C1D1中,M,N分别是面对角线AB1,BC1上两点,且B1M:MA=C1N:NB,求证:MN∥平面A1B1C1D1.高考题:(2010 陕西)在四棱锥P-ABCD中,底面ABCD是矩形,PA ⊥平面ABCD,AP=AB,BP=BC=2,E、F分别是PB、PC的中点. (1)证明:EF∥平面PAD;(2)求三棱锥E-ABC的体积V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线平面平行的判定及性质测试题The Standardization Office was revised on the afternoon of December 13, 2020直线、平面平行的判定及性质一、选择题(共60分)1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aα个个个个3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是( )A.平行B.相交C.在内D.不能确定4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )∥αα与α相交 D.以上都有可能6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥α个个个个8、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m ⊥α,m ⊥β,则α∥β; ②若α⊥γ,β⊥γ,则α∥β; ③若mα,nβ,m ∥n,则α∥β;④若m 、n 是异面直线,m α,m ∥β,nβ,n ∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④D.①和④9、长方体ABCD-A 1B 1C 1D 1中,E 为AA 1中点,F 为BB 1中点,与EF 平行的长方体的面有( )个 个 个 个10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,M ,使得l ∥α,l ∥β,M ∥α,M ∥β.其中可以判断两个平面α与β平行的条件有( ) 个 个 个 个11、设m ,n 为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是 ( ) A.若m ⊂α,n ⊂α,且m ∥β,n ∥β,则α∥β B.若m ∥α,m ∥n ,则n ∥α C.若m ∥α,n ∥α,则m ∥n12、已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A.若α⊥γ,α⊥β,则γ∥β B.若m ∥n ,m ⊂α,n ⊂β,则α∥β C.若α⊥β,m ⊥β,则m ∥α D.若m ∥n ,m ⊥α,n ⊥β,则α∥β 二、填空题 (共20分)13.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=3a,过P 、M 、N 的平面与棱CD 交于Q ,则PQ=_________. 14.若直线a 和b 都与平面α平行,则a 和b 的位置关系是__________.15.过长方体ABCD —A 1B 1C 1D 1的任意两条棱的中点作直线,其中能够与平面ACC 1A 1平行的直线有 ( )条.16.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且PA =6,AC =9,PD =8,则BD的长为 . 三、解答题 (17(10分)、18、19、20、21、22(12分))17. (10分)如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .18.(12分)如图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.求证:PQ ∥平面BCC 1B 1.19. (12分)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD ∶∶,求证:EF //平面PBC .CDABM P20.(12分)如下图,F,H分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B 1D1H.21.(12分)如图,在直四棱柱ABCD—A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1,F分别是棱AD,AA1,AB的中点.求证:直线EE1∥平面FCC1.22.(12分)如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4,PA=43,求异面直线PA与MN所成的角的大小.直线、平面平行的判定及其性质(答案)一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线( D )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( A )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aα个个个个解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P 矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是( A )A.平行B.相交C.在内D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.主要考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( D )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( ) ∥αα与α相交 D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能. 答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( A )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( A )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥α个个个个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( D )A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有(C)个个个个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有( B )个个个个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C 三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面11.D12.D二、填空题13、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面14、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面 主要考察知识点:空间直线和平面 15、6 16、52424或三、解答题17.答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .18.答案:19.答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA =∴, 又由已知PE BF EA FD =,PE MFEA FA =∴. 由平面几何知识可得EF //PM , 又EF PBC ⊄,PM ⊂平面PBC ,∴EF //平面PBC .20.如下图,F ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱CC 1,AA 1的中点,CDABMPO求证:平面BDF ∥平面B 1D 1H .证明: 取DD 1,中点E 连AE 、EF .∵E 、F 为DD 1、CC 1中点,∴EF ∥CD .,EF =CD∴EF ∥AB ,EF =AB∴四边形EFBA 为平行四边形.∴AE ∥BF .又∵E 、H 分别为D 1D 、A 1A 中点,∴D 1E ∥HA ,D 1E =HA ∴四边形HADD 1为平行四边形.∴HD 1∥AE∴HD 1∥BF由正方体的性质易知B 1D 1∥BD ,且已证BF ∥D 1H .∵B 1D 1⊄平面BDF ,BD ⊂平面BDF ,∴B 1D 1∥平面BDF .连接HB ,D 1F ,∵HD 1⊄平面BDF ,BF ⊂平面BDF ,∴HD 1∥平面BDF .又∵B 1D 1∩HD 1=D 1,∴平面BDF ∥平面B 1D 1H .21,答案:[证明] 因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD ∥AF ,CD =AF因此四边形AFCD 为平行四边形,所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1,AD ∩DD 1=D ,AD ⊂平面ADD 1A 1,DD 1⊂平面ADD 1A 1,所以平面ADD 1A 1∥平面FCC 1.又EE 1⊂平面ADD 1A 1,EE 1⊄平面FCC 1,所以EE 1∥平面FCC 1.22.答案:(1)取PD 的中点H ,连接AH ,NH ,∵N 是PC 的中点,∴NH =12DC .由M 是AB 的中点,且DC ∥AB ,∴NH ∥AM ,NH =AM 即四边形AMNH 为平行四边形.∴MN ∥AH,由MN ⊄平面PAD ,AH ⊂平面PAD ,∴MN ∥平面PAD .(2)连接AC 并取其中点O ,连接OM 、ON ,∴OM ∥12BC ,ON ∥12PA .,OM =12BC ,ON =12PA . ∴∠ONM 就是异面直线PA 与MN 所成的角,由MN =BC =4,PA =43,得OM =2,ON =2 3.∴MO 2+ON 2=MN 2,∴∠ONM =30°,即异面直线PA 与MN 成30°的角.。