【高中】高中数学随机事件导学案新人教A版必修3
【随堂优化训练】2014年高中数学 3.1.1 随机事件的概率配套课件 新人教A版必修3

解:(1)表中从左到右依次填:
0.75
0.8
0.8 0.85
0.83
·
0.8
0.76
(2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一
次,进球的概率约是 0.8.
【例 3】 给出下列三个命题: ①有一大批产品,已知其次品率为 0.1,若从中任取 100 件, 则必有 10 件是次品; ②做 8 次抛一枚均匀硬币的试验,结果出现正面 5 次,因
第三章
概率
3.1 随机事件的概率
3.1.1 随机事件的概率
【学习目标】 1.了解事件、随机试验、频率的概念. 2.理解随机事件概率的定义,知道频率与概率之间的关系.
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,一定会发生 __________的事件; 一定不会发生 的事件. ②不可能事件:在条件 S 下,_____________ 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 可能发生也可能不发生 的事件. 在条件 S 下,________________________
确定事件和随机事件统称为事件,一般用大写字母 A,B,
C„„表示.
①④⑤ ,不可能事件 练习 1:下列事件中,必然事件有________
② ③⑥ 有________ ,随机事件有________.
①“抛一石块,下落”;
②“在标准大气压下且温度低于 0℃时,冰融化”;
③“某人射击一次,中靶”;
④“如果 a>b,那么 a-b>0”;
可作为事件“出现正面”的可能性大小的度量值,所以此事件
的可能性不随试验次数增加而改变.
2.如图 3-1-1,如何估算在一定高度下掷一枚图钉,事件“钉
2013-2014学年高中数学 事件与概率课后练习 新人教A版必修3

事件与概率课后练习袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球下列事件中,必然事件是,不可能事件是,随机事件是.(1)某射击运动员射击1次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;(5)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;(7)你能长高到4m;(8)抛掷1枚骰子得到的点数小于8.一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是()A.命中环数为7、8、9、10环 B.命中环数为1、2、3、4、5、6环C.命中环数至少为6环 D.命中环数至多为6环某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为()(1)事件A:至少有一个命中,事件B:都命中;(2)事件A:至少有一次命中,事件B:至多有一次命中;(3)事件A:恰有一次命中,事件B:恰有2次命中;(4)事件A:至少有一次命中,事件B:都没命中.A.0 B.1 C.2 D.3为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是.小明将1枚质地均匀的硬币连续抛掷3次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,其中出现的概率()A.①最小 B.②最小 C.③最小 D.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少掷两个面上分别记有数字1至6的正方体玩具,设事件A为“点数之和恰好为6”,则A所有基本事件个数为()A.2个 B.3个 C.4个 D.5个从1,2,3,5中任取2个数字作为直线Ax+By=0中的A、B.(1)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是()A.至少一个白球;都是白球 B.至少一个白球;至少一个黑球C.至少一个白球;一个白球一个黑球 D.至少一个白球;红球、黑球各一个掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A.“至少有一个奇数”与“都是奇数” B.“至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数” D.“恰好有一个奇数”与“恰好有两个奇数”下列说法中正确的是.(1)事件A、B中至少有一个发生的概率一定比A、B中恰有一个发生的概率大;(2)事件A、B同时发生的概率一定比A、B中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品.经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是.我国西部一个地区的年降水量(单位:mm)在下列区间内的概率如下表:(1)求年降水量在[800,1200)内的概率;(2)如果年降水量≥1200mm,就可能发生涝灾,求该地区可能发生涝灾的概率.事件与概率课后练习参考答案A.详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.(3)、(5)、(8);(2)、(7);(1)、(4)、(6).详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m;(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).C.详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C.B.详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A与事件B不可能同时发生,强调的是“不同时发生”.对立事件:事件A、B中必定而且只有一个发生。
【创新设计】2014-2015学年高中数学 3.1.1 随机事件的概率课件 新人教A版必修3

“三个全是正品”,“二个正品一个次品”,“一个正品 二个次品”.
1.辨析随机事件、必然事件、不可能事件时要注意看清条 件,在给定的条件下判断是一定发生(必然事件),还是不
一定发生(随机事件),还是一定不发生(不可能事件).
2.随机事件在一次试验中是否发生虽然不能事先确定,但是 在大量重复试验的情况下,随机事件的发生呈现一定的规 律性,因而,可以从统计的角度,通过计算事件发生的频 率去估算概率.
跟踪演练 3
下列说法:①频率反映事件发生的频繁程度,概
率反映事件发生的可能性大小;②做 n 次随机试验,事件 A 发 m 生 m 次,则事件 A 发生的频率 就是事件的概率;③百分率是 n 频率, 不是概率;④频率是不能脱离具体的 n 次试验的实验值, 而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是 概率的近似值,概率是频率的稳定值.其中正确的是________. 答案 ①④⑤
要点三 频率与概率的关系及求法
例3 某射手在同一条件下进行射击,结果如下表所示:
射击次数n 10 20 50 100 200 500
击中靶心次数m m 击中靶心的频率 n
8
19
44
92
178
455
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少?
解
(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,
规律方法 基础.
1.准确理解随机试验的条件、结果等有关定义,
并能使用它们判断一些事件,指出试验结果,这是求概率的
2.在写试验结果时,一般采用列举法写出,必须首先明确事
件发生的条件,根据日常生活经验,按一定次序列举,才能 保证所列结果没有重复,也没有遗漏.
【优化方案】2012高中数学 第3章3.1.1随机事件的概率课件 新人教A版必修3

指出下列事件是必然事件、不可能事件, 指出下列事件是必然事件、不可能事件, 还是随机事件. 还是随机事件. (1)2010年亚运会在广州举行; 年亚运会在广州举行; 年亚运会在广州举行 (2)甲同学今年已经上高一,三年后他被北大自 甲同学今年已经上高一, 甲同学今年已经上高一 主招生录取; 主招生录取; (3)A地区在十二五规划期间会有 条高速公路 地区在十二五规划期间会有6条高速公路 地区在十二五规划期间会有 通车; 通车; (4)在标准大气压下且温度低于 ℃时,冰融 在标准大气压下且温度低于0 在标准大气压下且温度低于 化. 思路点拨】 根据三种事件的定义判定. 【思路点拨】 根据三种事件的定义判定.
2 提示:不可以. 只是 提示:不可以.“ ”只是 3 次抛掷时正面朝 3 上的频率,不是大量试验下的概率. 上的频率,不是大量试验下的概率.
课堂互动讲练
考点突破 必然事件、不可能事件、 必然事件、不可能事件、随机事件 的判定 要判断事件是哪种事件, 首先要看清条件, 要判断事件是哪种事件 , 首先要看清条件 , 条件决定事件的种类, 随着条件的改变, 条件决定事件的种类 , 随着条件的改变 , 其 结果也会不同. 结果也会不同.
例1
必然事件: 【解】 (1)必然事件:因事件已经发生. 必然事件 因事件已经发生. (2)(3)是随机事件,其事件的结果在各自的条 是随机事件, 是随机事件 件下不确定. 件下不确定. (4)是不可能事件,在本条件下,事件不会发 是不可能事件, 是不可能事件 在本条件下, 生. 思维总结】 在给定的条件下, 【思维总结】 在给定的条件下,判断是一 定发生,不一定发生,还是一定不发生, 定发生,不一定发生,还是一定不发生,来 确定属于哪一类事件. 确定属于哪一类事件.
人教版新课标高中数学A版必修3

人教版新课标高中数学A版必修3人教版新课标高中数学A版必修3是高中数学学习的重要组成部分,它涵盖了多个重要的数学概念和应用。
本册教材主要包括以下内容:1. 概率论初步:介绍了随机事件、概率的基本概念,以及如何通过实验或理论计算来确定事件的概率。
包括古典概型、几何概型和条件概率等内容。
2. 统计初步:涉及数据的收集、整理、描述和分析的基本方法。
包括数据的图表表示(如条形图、折线图、饼图等)、平均数、中位数、众数、方差和标准差等统计量的计算。
3. 算法初步:介绍了算法的概念、基本结构(如顺序结构、选择结构、循环结构)以及如何设计简单的算法来解决实际问题。
4. 复数:讲解了复数的定义、复数的四则运算、复数的几何意义以及复数在实际问题中的应用。
5. 三角函数:包括任意角的三角函数定义、三角函数的基本性质、三角函数的图像和性质、三角恒等变换以及解三角形等。
6. 解析几何:介绍了平面直角坐标系、直线和圆的方程、直线与圆的位置关系、椭圆、双曲线和抛物线的定义和性质等。
7. 立体几何:包括空间直线和平面的位置关系、空间多面体和旋转体的结构、体积和表面积的计算等。
8. 数列:涉及数列的概念、等差数列和等比数列的性质、数列的求和公式以及数列在实际问题中的应用。
9. 数学建模:介绍了数学建模的基本思想和方法,以及如何运用数学知识解决实际问题。
10. 数学文化:穿插在各个章节中,介绍了数学的历史、数学家的故事、数学在文化中的地位等内容,旨在提高学生对数学的兴趣和认识。
本册教材旨在培养学生的数学思维能力、逻辑推理能力和解决实际问题的能力,同时也注重数学知识与现实生活的联系,使学生能够更好地理解和应用数学。
高中数学第七章随机变量及其分布 全概率公式课后提能训练新人教A版选择性必修第三册

第7章 7.1.2A 级——基础过关练1.袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率为( )A .35B .1949C .2049D .25【答案】D 【解析】设A ={第一个人取到黄球},B ={第二个人取到黄球},则P (B )=P (A )(B |A )+P (A )P (B |A ),由题意知P (A )=2050,P (A )=3050,P (B |A )=1944,P (B |A )=2049,所以P (B )=2050×1949+3050×2049=25.2.设某工厂有甲、乙、丙三个车间生产同一种产品,已知各车间的产量占全厂产量的25%,35%,40%,而且各车间的次品率依次为5%,4%,2%.现从待出厂的产品中检查出一个次品,那它由甲车间生产的概率约为( )A .0.013B .0.362C .0.468D .0.035【答案】B3.甲、乙、丙三个车间生产同一种产品,其产量分别占总量的25%,35%,40%,次品率分别为5%,4%,2%.从这批产品中任取一件,则它是次品的概率为( )A .0.012 3B .0.023 4C .0.034 5D .0.045 6 【答案】C 【解析】由全概率公式,得所求概率为0.25×0.05+0.35×0.04+0.4×0.02=0.034 5.4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球,随机取一只袋子,再从袋中任取一球,发现是红球,则此球来自甲袋的概率为( )A .512B .37C .2041D .2141【答案】D 【解析】设A ={取得红球},B 1={来自甲袋},B 2={来自乙袋},则P (B 1)=P (B 2)=12,P (A |B 1)=610,P (A |B 2)=814,由贝叶斯公式得P (B 1A )=P B 1P A |B 1B 1P A |B 1+P B 2P A |B 2=12×61012×610+12×814=2141. 5.5张卡片上分别写有数字1,2,3,4,5,每次从中任取一张,连取两次.若第一次取出的卡片不放回,则第二次取出的卡片上的数字大于第一次取出的数字的概率为( )A .14B .12C .25D .35【答案】B6.两台机床加工同样的零件,它们常出现废品的概率分别为0.03和0.02,加工出的零件放在一起,设第一台机床加工的零件比第二台的多一倍,则任取一个零件是合格品的概率为________.【答案】7375 【解析】第一台机床加工的零件比第二台多一倍,那么第一台机床生产的零件占据总零件的比例是23,第二台机床生产的零件占据总零件的比例是13,由全概率公式,得所求概率为(1-0.03)×23+(1-0.02)×13=7375.7.根据以往的临床记录,某种诊断癌症的试验具有如下效果:若以A 表示“试验反应为阳性”,以B 表示“被诊断者患有癌症”,则有P (A |B )=0.95,P (A -|B )=0.95,现对自然人群进行普查,设被实验的人患有癌症的概率为0.005,则P (B |A )=________(保留两位有效数字).【答案】0.087 【解析】P (A |B )=1-P (A |B )=1-0.95=0.05,被试验的人患有癌症概率为0.005,就相当于P (B )=0.005,由贝叶斯公式,得P (B |A )=P B P A |BP B P A |B +PBP A |B=0.005×0.950.005×0.95+0.995×0.05≈0.087. 8.装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知道是几等品,今从箱中任取2件产品,结果都是一等品,则丢失的也是一等品的概率为________.【答案】38 【解析】设事件A 表示从箱中任取2件都是一等品,事件B i 表示丢失的为i等品,i =1,2,3,那么P (A )=P (B 1)·P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=12×C 24C 29+310×C 25C 29+210×C 25C 29=29.所以P (B 1|A )=P B 1P A |B 1P A =38.9.某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查,参加活动的甲、乙两班的人数之比为5∶3,其中甲班中女生占35,乙班中女生占13,求该社区居民遇到一位进行民意调查的同学恰好是女生的概率.解:用A 1,A 2分别表示居民所遇到的一位同学是甲班的与乙班的事件,B 表示是女生的事件,则Ω=A 1∪A 2,且A 1,A 2互斥,B ⊆Ω.由题意知P (A 1)=58,P (A 2)=38,P (B |A 1)=35,P (B |A 2)=13.由全概率公式可知P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)=58×35+38×13=12.10.有三个箱子,分别编号为1,2,3.1号箱装有1个红球4个白球,2号箱装有2个红球3个白球, 3号箱装有3个红球.某人从三箱中任取一箱,从中任意摸出一球,求取得红球的概率.B 级——能力提升练11.某试卷只有1道选择题,但有6个答案,其中只有一个是正确的.考生不知道正确答案的概率为14,不知道正确答案而猜对的概率为16.现已知某考生答对了,则他猜对此题的概率为( )A .14 B .119 C .1116D .1924【答案】B 【解析】设A ={不知道正确答案},B ={猜对此题},则P (A )=14,P (A )=1-14=34,P (B |A )=16.∴P (A |B )=P A P B |APA PB |A +PAP B |A=14×1614×16+34×1=119. 12.甲箱中有3个白球,2个黑球;乙箱中有1个白球,3个黑球.现从甲箱中任取一球放入乙箱中,再从乙箱任取一球.(1)已知从甲箱中取出的是白球的情况下,从乙箱也取出的是白球的概率是________; (2)从乙箱中取出白球的概率是________.【答案】25 825【解析】设A =“从甲箱中取出白球”,B =“从乙箱中取出白球”,则P (A )=35,P (A )=25,P (B |A )=25,P (B |A )=15,利用全概率公式,得P (B )=P (A )P (B |A )+P (A )P (B |A )=35×25+25×15=825.13.设袋中装有10个阄,其中8个是白阄,2个是有物之阄,甲、乙二人依次抓取一个,求没人抓得有物之阄的概率.解:设A ,B 分别为甲、乙抓得有物之阄的事件.∴P (A )=P (B )P (A |B )+P (B )P (A |B ) =210×19+810×29=15, P (B )=P (A )P (B |A )+P (A )P (B |A )=210×19+810×29=15. ∴1-P (A )-P (B )=1-15-15=35.C 级——探究创新练14.盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率.解:设A ={第一次抽出的是黑球},B ={第二次抽出的是黑球}. 由全概率公式,得P (B )=P (A )P (B |A )+P (A -)P (B |A -).由题意P (A )=ba +b,P (B |A )=b +c a +b +c ,P (A -)=a a +b,P (B |A -)=b a +b +c.所以P (B )=b b +ca +b a +b +c +ab a +b a +b +c =ba +b.。
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。
本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。
二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。
2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。
3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。
三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。
作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。
教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。
四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。
五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。
3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。
你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。
新课标A版必修3导学案 古典概型及随机数的产生

编号:SX2-021第1页 第2页装订线批阅时间装订线古典概型及随机数的产生 姓名 班级 组别 使用时间【学习目标】1.正确理解古典概型的两大特点2.掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A3.了解随机数的概念;4.利用计算机产生随机数,并能直接统计出频数与频率。
学习重难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数. 知识链接:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。
师生共同探讨:根据上述情况,你能发现它们有什么共同特点? 自主学习: 1、阅读课本P125-P132,找出并理解基本事件、古典概率模型、随机数、伪随机数的概念 2.基本事件的特点:(1)任何两个基本事件是__________.(2)任何事件(除__________)都可以表示成基本事件的______. 3.古典概率模型的两个特点:(1)试验中所有可能出现的基本事件只有_________,(2)每个基本事件出现的可能性__________ 4. 古典概型的概率计算公式:P (A )=____________________________ 合作探究: 例1掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
(分析提示:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
)小结:利用古典概型的计算公式时应注意两点: (1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。
例2:现有一批产品共有10件,其中8件为正品,2件为次品: (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中取出一件,然后不放回,再取一件,求3件都是正品的概率.(提示:不放回抽取每次抽出的产品不能重复出现,而有放回抽取每次抽出的产品可以重复出现)例3:使用计算器或计算机操作完成课本P130-P132的取随机数的例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】高中
§
§事件与基本事件空间
◆课前导学
(一)学习目标
1.能判断必然事件、不可能事件与随机事件;
2. 会写出试验的基本事件空间.
(二)重点难点
重点:会写出试验的基本事件空间;
难点:会写出试验的基本事件空间.
◆课中导学
◎学习目标一:能判断必然事件、不可能事件与随机事件.
(一)创设情境
日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等
结论:
1.在一定条件下必然发生某种结果的现象称为____________,当在相同的条件下多次观察同一现象,每次观察到的结果不一定相同,事先很难预料哪一种结果会出现,这种现象称为____________;
2.为了探索随机现象的规律性,需要对随机现象进行观察.我们把观察随机现象或为了某种目的而进行的实验统称为____________,那观察结果或实验结果称为____________;3.事件可分为____________ 、_______________ 、___________________.
[小试身手] 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于时,冰融化”;
(3)“某人射击一次,中靶”;
(4)“如果a>b,那么a-b>;
(5)“掷一枚硬币,出现正面”;
(6)“导体通电后,发热”;
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(8)“某电话机在1分钟内收到2次呼叫”;
(9)“没有水份,种子能发芽”;
(10)“在常温下,焊锡熔化”.
◎学习目标二:会写出试验的基本事件空间.
(二)概念形成
1.随机事件简称为___________,通常用_______字母来表示;
2.在试验中不能再分的最简单的随机事件,称为___________,所有基本事件构成的集合称为___________________,用___________字母______表示.
例1 掷一枚硬币,观察硬币落地后哪一面向上,写出试验的基本事件空间.
★变式1 一先一后掷两枚硬币,观察正、反面出现的情况,写出试验的基本事件空间.
★变式2 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(1)写出这个试验的基本事件空间;
(2)求这个试验的基本事件的总数;
(3)“恰有两枚正面向上”这一事件包含哪机关基本事件?
例2 掷一颗骰子,写出试验的基本事件空间.
x y表示结果,其中x表示第1颗骰子出现的点数,y ★变式做投掷2颗骰子试验,用(,)
表示第2颗骰子出现的点数.写出:
(1)试验的基本事件空间;
(2)事件“出现点数之和大于8”;
(3)事件“出现点数相等”;
(4)事件“出现点数之和大于10”.
x y,例3做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(,)
x为第1次取到的数字,y为第2次取到的数字”:
(1)写出这个试验的基本事件空间;
(2)求这个试验基本事件的总数;
(3)写出“第1次取到的数字是2”这一事件.
★变式若将“不放回”改为“有放回”呢?
◆课后导学
一、选择题
1.判断下列现象哪个是随机现象( )
A .地球围绕太阳旋转
B .一般,水沸腾的温度是100摄氏度
C .某路段一小时内发生交通事故的次数
D .一天有24小时
2.汽车司机在十字路口看到交通信号灯的颜色,是 ( )
A .必然现象
B .随机现象
C .既是必然现象也是随机现象
D .既不是必然现象也不是随机现象
3.一先一后抛掷两枚硬币,把国徽面作为正面(如果正面向上就记为正),那么这个试验的基本事件空间是 ( )
A .()(
)}{反,正,正,反=Ω B .()()()}{反,反,正,反,正,正=Ω C .()
()()}{反,正,反,反,正,正=Ω D .()()()()}{反,反,反,正,正,反,正,正=Ω 4.同时掷2枚色子,其点数之和的基本事件空间是 ( )
A .}{12,11,10,9,8,7,6,5,4,3,2=Ω
B .}{
6,5,4,3,2,1=Ω C .}{11,10,9,8,7,6,5,4,3,2=Ω D .}{12,11,10,9,8,7,6,5,4,3=Ω
5.有10件产品,其中8件是正品,2件是次品,任意从中抽取3件的必然的是( )
A .3件都是正品
B .至少有1件是次品
C .3件都是次品
D .至少有1件是正品
二、填空题
6.指出下列事件是必然事件、不可能事件,还是随机事件
①没有水分,种子发芽
②某电话总机在60秒内接到至少15次呼唤
③同性电荷,互相排斥
7.判断正误:必然事件是基本事件空间的某一真子集
( )
7.一个盒子中装有3个红球,4个蓝球,2个白球,这些球除颜色外都相同:
①现在每次从盒子中取一个球,写出关于球颜色的基本事件空间; ②如果每次从盒子中取出2个球,那么写出基本事件空间.
8.投掷一枚色子的试验,观察出现的点数,用基本事件空间的子集写出下列事件:
①出现偶数点
②点数大于4
③点数小于1
④点数大于6
9.投掷一枚色子,观察点数,令A }{6,4,2=,B }{
3,2,1=,把A ,B 看成数的集合,试用语言叙述下列表达式所表示的意思:
①B A ②B A ③B A
此文档是由网络收集并进行重新排版整理.word 可编辑版本!。