广州大学数学分析第二学期试卷(A)

合集下载

广州大学高等数学期末试题2006-2007(2)(90) (11)

广州大学高等数学期末试题2006-2007(2)(90) (11)

广州大学2007-2008学年第二学期考试卷高等数学(A 卷)(90学时)参考解答与评分标准一.填空题(每空2分,本大题满分30分)1.设y z x =,则zx ∂=∂1y yx -,z y∂=∂ln y x x.2.已知(,)z f u v =具有二阶连续偏导数,且,23u xy v x y ==+,则zx ∂=∂(,)2(,)u v yf u v f u v ''+,(,)u f u v y ∂'=∂(,)3(,)uuuv xf u v f u v ''''+.3.曲线23,,x t y t z t ===在点(1,1,1)处的切向量T = (1,2,3),切线方程为111123x y z ---==.4.点M 的直角坐标(,,)x y z 与球面坐标(,,)r ϕθ的关系为x =sin cos r ϕθ,sin sin y r ϕθ=,cos z r ϕ=.在球面坐标下,体积元素dv =2sin r drd d ϕϕθ.5.设L 为曲线弧2(01)y x x =≤≤,则ds dx =,=⎰73.学院专业班级姓名学号6.在区间(1,1)-内,写出下列幂级数的和函数: (1)221(1)n n x x -++-+=211x +;(2) 321(1)321n n x x x n +--+++=+ arctan x.7.已知级数1n n a ∞=∑条件收敛,则幂级数1n n n a x ∞=∑的收敛区间为(1,1)-.8.微分方程560y y y '''-+=的通解为y =2312x xC e C e +,微分方程562x y y y e '''-+=的通解为y =2312x x xC e C e e ++.二.解答下列各题(每小题8分,本大题满分16分) 1.写出函数2ln()z x y =-的定义域,并求函数的全微分.解: 定义域为:20x y ->。

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。

2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。

3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。

4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。

5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。

( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。

( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)x y y x f x y f x y =。

( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。

( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。

( )三、计算题 ( 每小题9分,共45分)1、 用格林公式计算曲线积分(sin 3)(cos 3)x x AO I e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

、计算三重积分22()V xy dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。

、计算第一型曲面积分SI d S =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。

11-12 高等数学2试题(A)及解答

11-12 高等数学2试题(A)及解答

广州大学2011-2012学年第二学期考试卷课 程:高等数学Ⅰ2(90学时) 考 试 形 式:闭卷考试学院:____________ 专业班级:__________ 学号:____________ 姓名:___________任课教师 是否重修考( )(是打√)一.填空题(每小题3分,本大题满分30分)1.已知(1,2,3)a =,(3,2,1)b =,则a b ⨯= .2.yOz 面上的抛物线21z y =-绕z 轴旋转一周所得曲面方程为 . 3.(,)(0,2)limx y →= .4.对函数yz x =利用近似计算公式d z z ∆≈,则 2.02(1.04)≈ .5.曲线2211x ty t z t =⎧⎪=-⎨⎪=+⎩上点(2,3,5)处的切线方程为 .6.将下列函数展开成(1)x -的幂级数: 13x=- ,(13x -<<). 7.微分方程xy y e -'+=的通解为y = .8.微分方程690y y y '''-+=的通解为y = .9.设2x f xy '=,2y f x '=,则(1,2)(0,0)f f -= .10.已知曲线L 为球面2222x y z R ++=被平面0x y z ++=所截得的圆周,则2d Ly s =⎰________.1.已知(,)z f x y =是由方程2sin z z x y +=确定的隐函数,求z x ∂∂和22z x∂∂.2.求函数2(,)624ln f x y x y xy y =+--的极值.1.计算d d Dxy x y ⎰⎰,其中D 是由直线1x y +=与两坐标轴所围成的闭区域.2.设L 是由曲线22y x x =-与x 轴所围区域D 的正向边界曲线,利用格林公式计算曲线积分22()d ()d LI y x y x x xy y =-++⎰.判断级数12! nnnn n∞=⋅∑的收敛性. 五.(本题满分11分)求幂级数1(1) 2n nn nx∞=+-∑的收敛域及和函数.设Ω是由曲面224z x y =--及xOy 面所围成的有界闭区域,求Ω的表面积.七.(本题满分8分)假定物体在空气中的冷却速度是正比于该物体的温度和它周围的空气温度之差,若室温为020c 时,一物体由0100c 冷却到060c 须经过20分钟,问共经过多少时间方可使此物体的温度从开始时的0100c 降低到030c .试证曲面(,)0f x az y bz ++=上任一点处的切平面与平面z ax by =+垂直,其中f 可微,,a b 为常数.广州大学2011-2012学年第二学期考试卷课 程:高等数学Ⅰ2(90学时) 考 试 形 式:闭卷考试参考解答与评分标准(A 卷)一.填空题(每小题3分,本大题满分30分)1.已知(1,2,3)a =,(3,2,1)b =,则a b ⨯=(4,8,4)--.2.yOz 面上的抛物线21z y =-绕z 轴旋转一周所得曲面方程为221z x y =--. 3.(,)(0,2)limx y →=18.4.对函数yz x =利用近似计算公式d z z ∆≈,则 2.02(1.04)≈1.08.5.曲线2211x ty t z t =⎧⎪=-⎨⎪=+⎩上点(2,3,5)处的切线方程为35244y z x ---==. 6.将下列函数展开成(1)x -的幂级数:13x =-101(1)2n n n x ∞+=-∑,(13x -<<). 7.微分方程x y y e -'+=的通解为y =()xe x C -+. 8.微分方程690y y y '''-+=的通解为y =312()xC C x e+.9.设2x f xy '=,2y f x '=,则(1,2)(0,0)f f -=2.10.已知L 为球面2222x y z R ++=被平面0x y z ++=所截得的圆周,则2d Ly s =⎰323R π.1.已知(,)z f x y =是由方程2sin z z x y +=确定的隐函数,求z x ∂∂和22z x∂∂.解:令2(,,)sin F x y z z z x y =+-,则2x F xy =-,cos 1z F z =+, 2cos 1x z z F xyx F z ∂=-=∂+, 。

广州大学大一公共课高等数学期末考试卷及答案5

广州大学大一公共课高等数学期末考试卷及答案5

广州大学20XX-20XX 学年第二学期考试卷课 程:高 等 数 学(下)(本科) 考 试 形 式: 闭卷 考试一.填空题:(每小题3分,共计15分)1.已知 {3,5,6},{1,2,3}a b ==-,则 a b ⋅= 。

2.由上半球面 z =和锥面 )(322y x z += 所围成的立体在xoy 面上的投影为_______________________________________ 。

3.已知2z e z x y +=+,则zx∂=∂_____________________ 。

4.设 33ln()z x y =+, 则 (1,1)|dz =___________ 。

5.部分和数列 {n s }有界是正项级数1nn u∞=∑ 收敛的____________条件。

二.单项选择题:选出正确答案填入下表中(每小题3分,共计15分)1.直线L :11111x y z --==-和平面 :2(1)3(1)0x y z π+-+-= 的位置关系是 [ ](A)L 在π上; (B)L 与π平行但不在π上。

(C) L 与π垂直;2. 函数22z x y =+在点(1,2)处沿从点(1,2)到点(4,2)-的方向的方向导数为 [ ](A ) 2-; (B ) 2; (C ) 45。

3.10(,)dy f x y dx =⎰ [ ](A) 2110(,)xdx f x y dy ⎰⎰;(B) 2101(,)x dx f x y dy ⎰⎰;(C)10(,)dx f x y dy ⎰。

4.设L 为取正向的圆周 229x y +=, 则曲线积分 2(22)(4)Lxy y dx x x dy -+-=⎰ [ ] (A) 0 ;(B)18π; (C)18π-。

5. 级数nn ∞=为 [ ](A) 绝对收敛级数;(B) 条件收敛级数; (C) 发散级数。

三.解答下列各题(每小题6分,共计12分)1.验证:函数r =满足方程 22221r r x y r∂∂+=∂∂。

2002高等数学试题A卷解答.

2002高等数学试题A卷解答.

广州大学2002-2003学年第二学期考试卷课 程:高 等 数 学(下)(本科) 考 试 形 式: 闭卷 考试参 考 答 案 及 评 分 标 准一.填空题:(每小题3分,共计15分)1.已知 ||1,||5,3a b a b ==⋅=,则 =⨯||b a4。

2.xoy 平面上的双曲线 224936x y -= 绕 y 轴旋转一周所生成的旋转曲面方程是 22244936x z y +-=。

3.设 22(,)z f x y xy =+, 其中 f 具有一阶连续偏导数, 则zx∂=∂122xf yf ''+ 。

4.函数22z x y =+在点(1,2)处沿从点(1,2)到点(4,2)-的方向的方向导数为2-。

5.若级数1nn u∞=∑ 条件收敛, 则级数1||nn u∞=∑ 必定发散。

二.单项选择题:选出正确答案填入下表中(每小题3分,共计15分)1.直线L :223314x y z -+-==-和平面 :3x y z π++= 的位置关系是 [ ](A) L 与π垂直;(B) L 在π上;(C) L 与π平行但不在π上。

2. 函数(,)z f x y =在点(,)x y 的偏导数x z 及y z 存在是(,)f x y 在该点可微分的 [ ](A ) 必要条件; (B ) 充分条件; (C ) 充要条件。

3. 若22:2D xy y +≤, 则二重积分(,)Df x y dxdy ⎰⎰ 极坐标形式的二次积分为 [ ](A) 2sin 00(cos ,sin )d f r r rdr πθθθθ⎰⎰; (B) 2sin 00(cos ,sin )d f r r dr πθθθθ⎰⎰;(C) 1(cos ,sin )d f r r rdr πθθθ⎰⎰。

4.设L 为取正向的圆周 222x y a +=, 则曲线积分 2(22)(4)Lxy y dx xx dy -+-=⎰[ ](A) 0 ;(B) 22a π; (C) 22a π-。

数学分析(下)_习题集(含答案)(1)

数学分析(下)_习题集(含答案)(1)

《数学分析(下)》课程习题集一、计算题 1. 设f xyz z yxf u),,(222++=具有二阶连续偏导数,求xz u ∂∂∂2.2. 设f z yxf u ),(222++=具有二阶连续偏导数,求22xu ∂∂,.2yz u ∂∂∂3. 0)cos(=--+xyz z y x ,求yz xz ∂∂∂∂,.4. 已知),(yx x f z=,求yz xz ∂∂∂∂,.5. 已知),(),,(v u f xy y x f z+=可微,求yx z ∂∂∂2.6. 设.,dz yx y x z 求-+=7. 设),(z x f u =,而),(y x z 是由方程)(z y x z ϕ+=所确的函数,求du .8. 设)1,0(≠>=x x x zy,证明它满足方程z yzx xz y x 2ln 1=∂∂+∂∂.9. 设yxez=,证明它满足方程0=∂∂+∂∂yz yxz x.10. 已知zyxu= ,求yx u ∂∂∂2.11. 求曲面22yxz+=包含在圆柱x yx 222=+内部的那部分面积.12. 计算二重积分Dx d y ⎰⎰,其中积分区域为22{(,)|14}D x y x y=≤+≤.13. ⎰⎰-Dydxdy e2,其中D 是以点) 0 , 0 (、) 1 , 1 (和) 1 , 0 (为顶点的三角形域.14. 计算二重积分⎰⎰Ω+=dxdyy xI )(22,其中Ω是以a y a x y x y =+==,,和)0( 3>=a a y 为边的平行四边形.15. 把下列积分化为极坐标形式,并计算积分值:⎰⎰-+a xax dyy xdx2020222)(.16. 求级数11(1)nn n xn∞-=-∑的和函数.17. 求幂级数∑∞=+1)1(n nn n x的和函数.18. 求级数∑∞=+0)1(n nxn 的收敛域及和函数,并求∑∞=+021n nn 的和.19. 讨论∑∞=--11ln )1(n n nn 的收敛性.20. 判别级数∑∞=⋅1!2n nnnn 的收敛性.21.求幂级数11(1))2nnnn x ∞=--∑的收敛区间.22. 求幂级数∑∞=122n nnxn 的收敛区间.23. 计算nn nx n)1(21-∑∞=的收敛半径和收敛域.24. 求幂级数nn nx n∑∞=+12)11(的收敛半径和收敛域.25. 求下列幂级数的收敛区间:+⋅++⋅+⋅+⋅nn n xxxx 33332313322.二、 填空题26. 幂级数nn x n∑∞=11的收敛半径为( ).27. 设级数∑∞=053n nn ,则其和为( ).28. 设级数∑∞==14n n u ,则级数=-∑∞=1)2121(n nn u ( ).29. 当1<x 时,幂级数∑∞=+-013)1(n n n x的和函数为( ).30. 若∑∞=-1)1(n n u 收敛,则=∞→n n u lim ( ).31. 几何级数)0(11>∑∞=+a aqn n 当( )时收敛.32. 幂级数∑∞=+0!1n nxn n 的和函数为( ).33. 幂级数∑∞=12n n nx 的收敛域为( ).34. 幂级数∑∞=-12)1(n nn nn x的收敛域为( ).35.=)(x f x sin 的幂级数展开式为( ). 36. 级数∑∞=1n n u 发散的充分条件是( ).37. 设级数∑∞=+111n p n收敛,则p 的取值范围是( ).38. =∞→nnn nn !2lim( ).39.2xe-的幂级数展开式为( ).40. =>∞→nk n an lim1a 时,当( ).41. =→→yxy y x sin lim0( ).42. 二元函数1122-+=y xz的定义域为( ).43.=++→→22220)sin(limyxy x y x ( ).44.11lim22220-+++→→yx yx y x =( ).45.xyxy y x 11lim0-+→→=( ).46. 设22ln yxxy arctgz ++=,则=∂∂)1,1(xz ( ). 47. 设='+=)0,1(),32ln(),(y f xy x y x f 则( ).48. 设=++=)1,1(,1ln ),(22df y xy x f 则( ). 49. 设),(y x z z=是由方程yz x ln =确定的隐函数,则xz ∂∂=( ).50. 设xu yx euy∂∂=-则,sin在点(2,π1)处的值为( ).51. 函数xy yxz333-+=的极小值为( ).52. 若函数y xyax x y x f 22),(22+++=在点(1,-1)处取得极值,则常数=a ( ).53. 函数33812),(y xy xy x f +-=的极小值点为( ).54. 函数22)(4),(y x y x y x f ---=的极值为( ). 55. 函数y x yxy xy x f --++=2),(22的极值为( ).56. 设,),arctan(xe y xy z ==则=dxdz ( ).57. 设==dz ez xy则,sin ( ).58. 设=∂∂+∂∂+=yz yxz xy x z 则),ln(( ).59. 设='=)0,0(,),(x f xy y x f 则( ). 60.222zy x u ++=在(1,1,1)点的全微分为( ).61. 设)1ln(32z yx u+++=,则=∂∂+∂∂+∂∂)1,1,1()(zu yu xu ( ).62. 二重积分=+⎰⎰σd y xD)6(2( ), 其中D 是由1,,222===x x y x y 所围成的区域; 63. 若函数,)()(),()(1∑-=+-∞=n nn a x a x f r r a r a x f 为收敛半径),内能展开成幂级数(在则=k a ( ),且内任意可导;在),()(r a r a x f +-64. 设023=+-y xz z ,则)1,1,1(xz ∂∂=( ).65. =∞→2)!(limn nn n ( ). 66. 积分=⎰⎰-yydx edy022( ).67. 改变积分⎰⎰xedy y x f dxln 01),(的次序后所得积分为( ).68. =⎰⎰1210xyxdy edx ( ).69. 二重积分⎰⎰=+Dyx d eσ( ),其中D 是由x y ln =,x 轴,2=x 所围成的区域. 70. 已知D 是长方形域:,10;≤≤≤≤y b x a 且1)(=⎰⎰Ddxdy x yf ,则⎰badx x f )( =( ).71. ,1,≤≤y x D π:设则⎰⎰-Ddxdy y x )sin (=( ). 72. 设D :,1,3≤≤y x 则=+⎰⎰Dd y x x σ)(( ). 73. 设D :,20,0ππ≤≤≤≤y x 则=⎰⎰Dydxdyx cos sin ( ). 74. 设D 是由1,1,1,1=-==-=y y x x围成的矩形区域,则=⎰⎰Ddxdy ( ). 75. 设f 是连续函数而D :⎰⎰=+>≤+Ddxdy yxf y yx )(,0,12222则且( ). 三、单选题 (略)……答案一、计算题 1. 解:zu ∂∂=212xyf z f +,)2()2(22221212112yzfxfxy yfyzfxf z xz u ++++=∂∂∂.2. 解:令222z yx t++=,则)(t f u =,xu ∂∂=)(2t f x ',zu ∂∂=)(2t f z '.)(4)(2222t f xt f xu ''+'=∂∂,)(42t f yz yz u ''=∂∂∂.3. 解:1s in ()1s in (),.1s in ()1s in ()z y z x y z z x z x y z xx y x y z y x y x y z ∂+∂+==∂-∂-4. 解:x z ∂∂=yf f 121+,yz ∂∂=22yx f -.5. 解:xz ∂∂=yf f 21+yz ∂∂=x f f 21+,22122112)(xyff y x f f yx z ++++=∂∂∂.6. 解:2()()()()()x y x y d x y x y d x y d zd x y x y ⎛⎫+-+-+-== ⎪--⎝⎭2()()()()()x y d x d y x y d x d y x y -+-+-=-222()y d x x d yx y -+=-2222.()()y x d x d y x y x y =-+--7. 解:u u d u d x d y xy∂∂=+∂∂,()z x y z ϕ=+ (1)方程(1)两边对x 求导:1()z z y z x xϕ∂∂'=+∂∂,1.()1z xy z ϕ∂-∴='∂-方程(1)两边对y 求导:()(),z z z y z yyϕϕ∂∂'=+∂∂ ().()1z z yy z ϕϕ∂-∴='∂-而;()1zx f u f f z f x x zxy z ϕ∂∂∂∂=+⋅=-'∂∂∂∂-()();()1()1z z f z u f z z f yzyy z y z ϕϕϕϕ⋅∂∂∂-=⋅=⋅=-''∂∂∂--()().()1()1zz x f f z u u d u d x d y f d x d y xyy z y z ϕϕϕ⋅∂∂∴=+=--''∂∂--8. 解:1-=∂∂y yxxu ,x xyu yln =∂∂,z x xxyxyx yzx xz y x yy 2ln ln 1ln 11=+=∂∂+∂∂-.9. 解:yex z yx1=∂∂,2yx eyz yx-=∂∂,则012=-=∂∂+∂∂y x yeyxey z yxz xyxyx.10. 解:xu ∂∂=1-zyxzy ,=∂∂∂yx u 2121ln 1--+zyzyxzx y xz.11.解:由222z x y x⎧⎪=⎨+=⎪⎩ 消去z 得投影柱面:222x y x+=,在xoy 面上的投影区域为 22:2xy D x y x+≤2x y z z ==21122222222=++++=++∴yxy yxx zzyx所求面积为:2c o s 2002x yD Ax d yd d r πθθ==⎰⎰⎰⎰220c o s .d πθθ==12.解:由对称性,可只考虑第一象限部分,14DD =,Dx d y ⎰⎰=41D x d y ⎰⎰2201s in 44r d r d r rππθ==-⎰⎰.13. 解:dx edydxdy eyyDy⎰⎰⎰⎰--=10022ee eydy eyy210121221-=-==--⎰.14. 解:⎰⎰⎰⎰Ω-=+=+a ayay adx y xdydxdy y x34222214)()(.15. 解:在极坐标系下,半圆22xax y-=的方程变为⎰⎰==≤≤=2cos 204343,20,cos 2πθπθπθθa adr r d a r 原式.16. 解:11()(1)nn n xs x n∞-==-∑,显然(0)0s =.21()1,(11)1s x x x x x'=-+-=-<<+两边积分得0()ln (1)xs t d t x '=+⎰即()(0)ln (1)()ln (1),s x s x s x x -=+∴=+又1x =时,111(1)n n n∞-=-∑收敛,11(1)ln (1)(11)nn n xx x n∞-=-=+-<<∑.17. 解:令111()(1)1n n n n n n xxxS x n n nn ∞∞∞=====-++∑∑∑11111nn n n xxnxn +∞∞===-+∑∑,设11(),nn xS x n∞==∑121(),1n n xS x n +∞==+∑则1111(),1n n S x xx ∞-='==-∑101()ln (1).1xS x d x x x∴==---⎰21(),1nn xS x xx∞='==-∑20()l n (1).1x x S x d x x x x∴==----⎰1211()()()ln (1)[ln (1)]S x S x S x x x x xx∴=-=--++-11(1)ln (1).x x=+-- (1,0)(0,1x ∈- 即 11(1)ln (1),(1,0)(0,1)()0,0x x S x xx ⎧+--∈-⎪=⎨⎪=⎩.18. 解:令)(x f =∑∞=+0)1(n nxn ,则)(x f =∑∞=+0)1(n nxn ∑∞=+'=1)(n n x '⎪⎭⎫ ⎝⎛=∑∞=+01n n x .)1(112x x x -='⎪⎭⎫ ⎝⎛-=1<x 当1±=x 时,级数∑+±)1()1(n n发散,所以级数的收敛域)1,1(-, 令1-=x ,得4)21(211==+∑∞=f n n n.19. 解:∑∞=-1ln )1(n nnn 发散,令xx x f ln )(=,则当2e x >时,02ln 2)(<-='xxx x f ,从而)(x f 在),(2+∞e 上单减,故当9>n 时,数列⎭⎬⎫⎩⎨⎧n n ln 单调减少,又0ln lim =∞→n n n ,故∑∞=--11ln )1(n n n n 为 leibniz 级数,所以它条件收敛.20. 解:12)1(2lim !2)1()!1(2limlim111<=+=⋅⋅++⋅=∞→++∞→+∞→en n n nn n u u nn nnn n n nn n ,所以级数∑∞=⋅1!2n nnnn 收敛.21.解:11limlim22n n n na R a ρ+→∞→∞===∴=,即1122x -<收敛,(0,1)x ∈收敛 .当0x =时,级数为1n ∞=∑,当1x =时,级数为1nn ∞=∑(0,1).22. 解: 级数缺奇次幂的项,而 2(1)112(1)2limlim2n n n n nn n nu n xu n x+++→∞→∞+=⋅2211lim.22n n xxn→∞+==当211,2x <即x <时,级数收敛; 当211,2x>即x >,级数发散.收敛半径为R =又当x =±时,级数为1n n ∞=∑发散,故收敛区间为(23. 解:21212lim1=++∞→nn nn n ,∴收敛半径21=R ,当21=x 时,∑∞=-1)1(n nn收敛,当23=x时,∑∞=11n n发散,故收敛域为)23,21[.24. 解:由于en n nn nn nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e1,当ex 1=时,)(01)1()1()11(2∞→≠→±+n e nnn n,所以收敛域为)1,1(ee -. 25. 解:313)1(3limlim11=+=+∞→+∞→n nn nn n n n a a ,R=3。

数学分析试题与答案

数学分析试题与答案

2014---2015学年度第二学期《数学分析2》A 试卷一. 1.若f 2... .二. 1.若2.A.()x f 在[]b a ,上一定不可积;B.()x f 在[]b a ,上一定可积,但是()()⎰⎰≠ba ba dx x g dx x f ;C.()x f 在[]b a ,上一定可积,并且()()⎰⎰=b ab a dx x g dx x f ;D.()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D.不确定 4.设∑n u 为任一项级数,则下列说法正确的是() A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B.若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;1.1.⎰+02.∑∞=1!n n n n 3.()nnn nn21211+-∑∞= 五.判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n nnxx f n2.(][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。

(本题满10分) 七.将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。

(本题满分10分)八.证明:函数()∑=3cos nnxx f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)2014---2015学年度第二学期《数学分析2》B 卷•答案一、 1.?2.?3.?4.?5.?6.?7.?二=tdt t tt cos sin 2sin cos ⎰=⎰tdt t sin 2-----------------------------------4分 =2cos 2sin t t t C -++=C ----------------5分四.判别敛散性(每小题5分,共10分)1.dx xx ⎰-121arctan解:()241arctan lim1arctan 1lim 012211π=+=---→-→xx xx x x x -------3分且121<=p ,∴由柯西判别法知, 瑕积分dx xx ⎰-121arctan 收敛-------------------------5分2.()∑∞=2ln ln 1n nn解:ln lim n ∞→ 有五.1.f n 又f n 从而故知该函数列在D 上一致收敛.-------------------------5分 2.]1,1[,3sin 2-=∑D x nn解:因当D x ∈时,()nn n n x x u ⎪⎭⎫⎝⎛≤=323sin 2--------------2分而正项级数∑⎪⎭⎫⎝⎛n32收敛,-----------------------------4分由优级数判别法知,该函数列在D 上一致收敛.-------------5分 3.()()∑+∞∞-=+-,,12D nx n解:易知,级数()∑-n1的部分和序列{}n S 一致有界,---2分 而对()n x x V D x n +=∈∀21,是单调的,又由于 ()()∞→→≤+=∈∀n nn x x V D x n 011,2,------------------4分六.(⎰=12V π=76π七.dW ==1250πν=12250π(千焦)-----------------------------------10分 八.设()() 2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛.(本题满分9分) 证明:()() 2,1=n x u n 是],[b a 上的单调函数,所以有()()()b u a u x u n n n +≤------------------------------4分又由()∑a u n 与()∑b u n 都绝对收敛,所以()()[]∑+b u a u n n 收敛,--------------------------------------7分 由优级数判别法知:()∑x u n在],[b a 上绝对且一致收敛.--------------------------------2013---2014学年度第二学期《数学分析2》A试卷一.5.若6.若an=7.若8.二.1.A⎰101dxxB⎰∞+11dxxC⎰+∞sin xdx D⎰-1131dxx2.级数∑∞=1nna收敛是∑∞=1nna部分和有界的()A必要条件B充分条件C充分必要条件D无关条件3.正项级数∑n u收敛的充要条件是()A.0lim =∞→n n u B.数列{}n u 单调有界C.部分和数列{}n s 有上界D.1lim1<=+∞→ρnn n u n4.设a a a nn n =+∞→1lim则幂级数()1>∑b x a bn n 的收敛半径R=()A.aB.ba 1C.a 1D.ba 11⎪⎭⎫ ⎝⎛5.6..A.三.2.3.-⎰114.四.(16分)判别下列反常积分和级数的敛散性. 1.⎰+∞+-1324332x x dx ;2.dx x x ⎰++1)1ln(113.∑∞=-21ln n nn n; 4.∑∞=1!n n n nn e 五、判别函数序列或函数项级数在所给范围上的一致收敛性(每题5分,共10分)1.),(;,2,1,)(42∞-∞∈=+=-x n n x x f n2.nn n n 1)1(21∑∞=-+;+∞⋃-∞-=∈,5.05.0,D x 六.1.7π(2.七已知f2013---2014学年度第二学期《数学分析2》B 试卷一、 1.对任何可导函数()x f 而言,()()C x f dx x f +='⎰成立。

数学分析A试卷参考答案(高数)

数学分析A试卷参考答案(高数)

数学分析考试题学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共七道大题,如有不对,请与监考老师调换试卷! 一、单项选择题(每小题2分,满分10分) 1.当0x →时,函数211sin x x是( D ). (A )无穷小 (B )无穷大 (C )有界但不是无穷小 D )无界的,但不是无穷大 2.设()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是(D )(A )1lim [()()]h h f a f a h →+∞+-存在;(B )0(2)()lim h f a h f a h h →+-+存在;(C )0()()lim 2h f a h f a h h →+--存在;(D )0()()lim h f a f a h h→--存在;3.下列说法中与lim n n x a →∞=定义等价的说法是(A ).(A )(0,1),,,100;n N n N x a εε∀∈∃∀≥-< (B )1,,,;n N n N x a εε∀>∃∀>-< (C ),0,,;n N n N x a εε∀∃>∀>-< (D ),0,,;n N n N x a εε∃∀>∀>-<cos sin 22()(1)()222()(1)()22( D )x t t t y t tA y xB y xC y xD y xπππππππ=⎧=⎨=⎩=+=+=-=-4.曲线在处的切线方程为. .. . 答 5.设数列,n n x y 满足lim 0n n n x y →∞=,下列结论正确的是(D ).(A )若n x 收敛,则n y 必发散;. (B )若n x 无界,则n y 必有界; (C )若n x 有界,则n y 必为无穷小; (D )若1nx 为无穷小,则n y 必为无穷小; 二、填空题(每小题2分,满分10分)6.设1(0)2f '=,则332lim (0)n n ff n →∞⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦1 . 7.设(1)(2)()()(1)(2)()x x x n f x x x x n ---=+++,则(1)f '= 11(1)(1)n n n --+.8.极坐标方程(1cos )a ρθ=+在(,)2a π点处的切线的直角坐标方程为y x a =+.9.若212lim 1,11x ax x →⎛⎫-=⎪--⎝⎭则a 4 . 10.设(),0,,0x xe e xf x xk x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则k 2 .三、求下列极限(每小题5分,满分25分)11.求)lim .x xx →-∞解:)1lim limlim.2x x x xx →-∞→-∞===-12.求1402sin lim 1x x xe x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解: 14144002sin (2)sin lim lim 01111x x xx x x x e x e e x x x e e ++-→→-⎛⎫⎛⎫++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭; 1402sin lim 2111x x x e x x e -→⎛⎫+ ⎪+=-= ⎪- ⎪+⎝⎭, 所以1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭=1. 13.求tan sin x x x →解:3sin tan sin tan sin 3300011tan sin 2lim lim 244xx xxxx x x x x e e x xx x -→→→→--====。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州大学2005-2006 学年第二学期试卷
课程 数学分析 考试形式(闭卷,考试)
数学与信息科学学院 05级1~7班 学号 姓名
一、填 空 题 (每小题3分 , 共15分) 1. ()F x =
dt e x
t ⎰
2
的凸性区间为______________________ 。

2. 函数 12322
3
+-=x x y 的极大值点=0x _______________ 。

3. =-⎰2
)1sgn(dx x __________________________。

4. 计算无穷积分:
=⎰+∞
dx x x
1
sin 12
2
π
___________________ 。

5、求级数的和:=+∑

=1
)
1(1
n n n _________________ 。

二、单项选择题 (每小题3分 ,共15分)
1、若)(x f 为恒正连续函数,则___________ ≡ 0 。

A 、
⎰dx x f dx
d
)( ; B 、 ⎰)(x df ;
C 、 ⎰
1
)(dt t f dx
d ; D 、

x
dt t f dx
d 0
)(;
2、若)(x f 的一个原函数为)(x F ,则)12(+x f 的一个原函数为________ 。

A 、)12(+x F ;
B 、
2
1
)12(+x F ; C 、2)12(+x F ; D 、不存在。

3. 在区间[ - 1 , 1 ] 上不可积的函数为 ________。

A 、狄利克雷函数 D(x);
B 、取整函数 [x];
C 、符号函数 sgn x ;
D 、绝对值函数 x 。

4、若n a 满足 时,级数∑∞
=1n n a 收敛。

A 、0lim =∞
→n n a ; B 、n a 2
1
n ≤
(n=1,2,…); C 、=∞
→n n n a lim λ< 1 ; D 、λ=+∞→n
n n a a 1
lim
< 1 。

5、利用M 判别法证明函数项级数∑∞
=1
2
cos n n nx
在),(+∞-∞上一致收敛时可作优级数的为 。

A 、∑∞
=11n n ; B 、∑∞
=121
n n ;
C ∑∞
=1
cos n nx ; D 、∑

=1
cos n n
nx 。

三、计算题(共24分,每小题均为6分)
1、求极限2
1
)(cos lim x x x →
2、计算积分dx x x ⎰+))(ln 1(1
2
3 、 计算积分:dx x e

1
ln
4 、 计算积分:⎰
+
4
1x
dx
四、判断收敛性 ( 每小题4分, 共 8 分 ) 1. 判断无穷积分⎰+∞
+0
4
1
x xdx 的收敛性。

2. 判断级数∑

=+-12
1
)1(n n n 的绝对收敛与条件收敛性。

五、应用题(每小题6分,共12分)
1、半径为1的球内有一圆锥,其顶点在球心而底面圆周在球面上。

当圆锥
高为多少时,其体积最大。

2、求由抛物线2y
x=与直线y
x=所围成的平面图形面积。

六、证明题 (共26分)
1、叙述并证明闭区间套定理。

(6分)
2、证明不等式:1->x x e xe ( x > 0 ) (6分)
3、 (1) 若正项级数∑∞=1
n n a 收敛,证明:级数∑∞=12
n n a 亦收敛。

(2) 若∑∞
=1
n n a 为
一般级数时,举一例说明∑∞
=1
n n a 收敛,但
∑∞
=1
2n n
a
发散。

(6分)
4、2
211
)(x
n x f n ⋅+=
,(x > 0 ) ; (1) 求极限函数)(lim )(x f x f n n ∞
→=,(x > 0 ) ;
(2) 证明:函数列{})(x f n 在区间[)∞+,1 上一致收敛; (3) 函数列{})(x f n 在区间 (]10, 上不一致收敛。

(8分)。

相关文档
最新文档