八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版
八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学【几何模型三角形轴对称】试卷专题练习(word版

一、八年级数学全等三角形解答题压轴题(难)

1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);

(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;

(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.

【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析

【解析】

【分析】

(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;

(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此

CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;

(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出

EM=PN=1

2

AD,EC=MF=

1

2

AB,我们只要再证得两对应边的夹角相等即可得出全等的结

论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.

【详解】

(1)如图1,连接CF,线段CE与FE之间的数量关系是CE=2FE;

解法1:

∵∠AED=∠ACB=90°

∴B、C、D、E四点共圆

且BD是该圆的直径,

∵点F是BD的中点,

∴点F是圆心,

∴EF=CF=FD=FB,

∴∠FCB=∠FBC,∠ECF=∠CEF,

由圆周角定理得:∠DCE=∠DBE,

∴∠FCB+∠DCE=∠FBC+∠DBE=45°

∴∠ECF=45°=∠CEF,

∴△CEF是等腰直角三角形,

∴CE=2EF.

解法2:

易证∠BED=∠ACB=90°,

∵点F是BD的中点,

∴CF=EF=FB=FD,

∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,

∴∠DFE=2∠ABD,

同理∠CFD=2∠CBD,

∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,

即∠CFE=90°,

∴CE=2EF.

(2)(1)中的结论仍然成立.

解法1:如图2﹣1,连接CF,延长EF交CB于点G,

∵∠ACB=∠AED=90°,

∴DE∥BC,

∴∠EDF=∠GBF,

又∵∠EFD=∠GFB,DF=BF,

∴△EDF≌△GBF,

∴EF=GF,BG=DE=AE,

∵AC=BC,

∴CE=CG,

∴∠EFC=90°,CF=EF,

∴△CEF为等腰直角三角形,

∴∠CEF=45°,

∴CE=2FE;

解法2:如图2﹣2,连结CF、AF,

∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又点F是BD的中点,

∴FA=FB=FD,

而AC=BC,CF=CF,

∴△ACF≌△BCF,

∴∠ACF=∠BCF=1

2

∠ACB=45°,

∵FA=FB,CA=CB,

∴CF所在的直线垂直平分线段AB,

同理,EF所在的直线垂直平分线段AD,

又DA⊥BA,

∴EF⊥CF,

∴△CEF为等腰直角三角形,

∴CE=2EF.

(3)(1)中的结论仍然成立.

解法1:如图3﹣1,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、

CF,

∵DF=BF,

∴FM∥AB,且FM=1

2 AB,

∵AE=DE,∠AED=90°,∴AM=EM,∠AME=90°,∵CA=CB,∠ACB=90°

∴CN=AN=1

2

AB,∠ANC=90°,

∴MF∥AN,FM=AN=CN,

∴四边形MFNA为平行四边形,

∴FN=AM=EM,∠AMF=∠FNA,

∴∠EMF=∠FNC,

∴△EMF≌△FNC,

∴FE=CF,∠EFM=∠FCN,

由MF∥AN,∠ANC=90°,可得∠CPF=90°,

∴∠FCN+∠PFC=90°,

∴∠EFM+∠PFC=90°,

∴∠EFC=90°,

∴△CEF为等腰直角三角形,

∴∠CEF=45°,

∴CE=2FE.

【点睛】

本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.

2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.

【解析】

【分析】

(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得

△ABC ≌△ADE ;

(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;

(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .

【详解】

(1)∵∠BAD=∠CAE=90°,

∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,

∴∠BAC=∠DAE ,

在△BAC 和△DAE 中,

AB AD BAC DAE AC AE =??∠=∠??=?

, ∴△BAC ≌△DAE (SAS );

(2)∵∠CAE=90°,AC=AE ,

∴∠E=45°,

由(1)知△BAC ≌△DAE ,

∴∠BCA=∠E=45°,

∵AF ⊥BC ,

∴∠CFA=90°,

∴∠CAF=45°,

∴∠FAE=∠FAC+∠CAE=45°+90°=135°;

(3)延长BF 到G ,使得FG=FB ,

∵AF ⊥BG ,

∴∠AFG=∠AFB=90°,

在△AFB 和△AFG 中,

BF F AFB AFG AF AF G =??∠=∠??=?

, ∴△AFB ≌△AFG (SAS ),

∴AB=AG ,∠ABF=∠G ,

∵△BAC ≌△DAE ,

∴AB=AD ,∠CBA=∠EDA ,CB=ED ,

∴AG=AD,∠ABF=∠CDA,

∴∠G=∠CDA,

在△CGA和△CDA中,

GCA DCA

CGA CDA

AG AD

∠=∠

?

?

∠=∠

?

?=

?

∴△CGA≌△CDA,

∴CG=CD,

∵CG=CB+BF+FG=CB+2BF=DE+2BF,

∴CD=2BF+DE.

【点睛】

本题考查全等三角形的判定与性质,解决第

3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.

3.如图,在ABC

?中,90

C

∠=?,4cm

AC BC

==,点D是斜边AB的中点.点E 从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA 方向运动,规定当点E到终点C时停止运动.设运动的时间为x秒,连接DE、DF.

(1)填空:ABC

S

?

=______2

cm;

(2)当1

x=且点F运动的速度也是1cm/s时,求证:DE DF

=;

(3)若动点F以3cm/s的速度沿射线CA方向运动,在点E、点F运动过程中,如果存在某个时间x,使得ADF

?的面积是BDE

?面积的两倍,请你求出时间x的值.

【答案】(1)8;(2)见解析;(3)

4

5

或4.

【解析】

【分析】

(1)直接可求△ABC的面积;

(2)连接CD,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即

BD=CD,且BE=CF,即可证△CDF≌△BDE,可得DE=DF;

(3)分△ADF的面积是△BDE的面积的两倍和△BDE与△ADF的面积的2倍两种情况讨论,根据题意列出方程可求x的值.

【详解】

解:(1)∵S△ABC=

1

2

?AC×BC

∴S△ABC=

1

2

×4×4=8(cm2)

故答案为:8

(2)如图:连接CD

∵AC=BC,D是AB中点

∴CD平分∠ACB

又∵∠ACB=90°

∴∠A=∠B=∠ACD=∠DCB=45°

∴CD=BD

依题意得:BE=CF

∴在△CDF与△BDE中

BE CF

B DCA

BD CD

=

?

?

∠=∠

?

?=

?

∴△CDF≌△BDE(SAS)

∴DE=DF

(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,

∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)

∴DN=DM

当S△ADF=2S△BDE.

∴1

2

×AF×DN=2×

1

2

×BE×DM

∴|4-3x|=2x

∴x1=4,x2=4 5

综上所述:x=4

5

或4

【点睛】

本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.

4.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F

(1) 如图1,直接写出AB与CE的位置关系

(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK

【答案】(1)AB⊥CE;(2)见解析.

【解析】

【分析】

(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.(2)延长HK于DE交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得

DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.

【详解】

解:(1)∵Rt△ABC≌Rt△CED,

∴∠ECD=∠A,∠B=∠E,BC=DE,AC=CD

∵∠B+∠A=90°

∴∠B+ECD=90°

∴∠BFC=90°,∴AB⊥CE

(2)在Rt△ACD中,AC=CD,∴∠ADC=45°,

又∵∠CDE=90°,∴∠HDG=∠CDG=45°

∵CH=DB,∴CH+CD=DB+CD,即HD=BC,

∴DH=DE,

在△DGH和△DGE中,

DH=DE

HDG=EDG=45

DG=DG

?

?

∠∠

?

?

?

∴△DGH≌△DGE(SAS)

∴∠H=∠E

又∵∠B=∠E

∴∠H=∠B,

∴HK=BK

【点睛】

本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.

5.如图①,在ABC中,90

BAC

∠=?,AB AC

=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE

⊥于D,CE AE

⊥于E.

(1)求证:BD DE CE

=+.

(2)若将直线AE绕点A旋转到图②的位置时(BD CE

<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.

【答案】(1)见解析;(2)BD=DE-CE,理由见解析.

【解析】

【分析】

(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;

(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为

AD+AE=BD+CE ,所以BD=DE-CE .

【详解】

解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,

∴∠BDA=∠AEC=90°,

∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°

∴∠ABD=∠CAE ,

∵AB=AC ,

在△ABD 和△CAE 中,

BDA AEC ABD CAE AB AC ∠=∠??∠=∠??=?

∴△ABD ≌△CAE (AAS ),

∴BD=AE ,AD=CE ,

∵AE=AD+DE ,

∴BD=DE+CE ;

(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:

∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,

∴∠BDA=∠AEC=90°,

∴∠ABD+∠DAB=∠DAB+∠CAE ,

∴∠ABD=∠CAE ,

∵AB=AC ,

在△ABD 和△CAE 中,

BDA AEC ABD CAE AB AC ∠=∠??∠=∠??=?

∴△ABD ≌△CAE (AAS ),

∴BD=AE ,AD=CE ,

∴AD+AE=BD+CE ,

∵DE=BD+CE ,

∴BD=DE-CE .

【点睛】

此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.

6.如图,在ABC ?中,903, 7C AC BC ∠=?==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .

(1)填空:ABC ?的面积等于 ;

(2)连接CE ,求证:CE 是ACB ∠的平分线;

(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.

【答案】(1)

212

;(2)证明见解析;(3)32【解析】

【分析】 (1)根据直角三角形的面积计算公式直接计算可得;

(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;

(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=

1()2

AC CD +,根据CD 的长度计算出CE 的长度即可.

【详解】

解:(1)903, 7C AC BC ∠=?==, ∴112137222

ABC S AC BC =

?=??=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,

∴∠EMA=∠END=90°,

又∵∠ACB=90°,

∴∠MEN=90°,

∴∠MED+∠DEN=90°,

∵△ADE 是等腰直角三角形

∴∠AED=90°,AE=DE

∴∠AEM+∠MED=90°,

∴∠AEM=∠DEN

∴在△AEM 与△DEN 中,

∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE

∴△AEM ≌△DEN (AAS )

∴ME=NE

∴点E 在∠ACB 的平分线上,

即CE是ACB

∠的平分线

(3)由(2)可知,点E在∠ACB的平分线上,

∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN

∴AM=DN,

即AC-CM=CN-CD

在Rt△CME与Rt△CNE中,CE=CE,ME=NE,

∴Rt△CME≌Rt△CNE(HL)

∴CM=CN

∴CN=1

() 2

AC CD

+,

又∵∠MCE=∠NCE=45°,∠CME=90°,

∴CE=

2

2()

2

CN AC CD

=+,

当AC=3,CD=CO=1时,

CE=2

(31)22

+=

当AC=3,CD=CB=7时,

CE=

2

(37)52 2

+=

∴点E的运动路程为:522232

-=,

【点睛】

本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.

7.如图1,Rt△ABC中,∠A=90°,AB=AC,点D是BC边的中点连接AD,则易证AD=

BD=CD,即AD=1

2

BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于

1

2

BC.

理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,

即可证得AH=BC,此时AD=1

2

BC,由此可见倍长过中点的线段是我们三角形证明中常用

的方法.

(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;

(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出

△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.

(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.

【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.

【解析】

【分析】

(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.

(3)图5,图6中,上面的关系式仍然成立.

【详解】

(1)证明:如图2中,

∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),

∴∠B=∠HCD,AB=CH,

∴AB∥CH,

∴∠BAC+∠ACH=180°,

∵∠BAC=90°,

∴∠ACH=∠BAC=90°,

∵AC=CA,

∴△BAC≌△HCA(SAS),

∴AH=BC,

∴AD=DH=BD=DC,

∴AD=1

2 BC.

结论:直角三角形斜边上的中线等于斜边的一半.

(2)解:有这样分关系式.

理由:如图4中,延长ED到H山顶DH=DE.

∵ED=DH,∠EDB=∠HDC,DB=DC,

∴△EDB≌△HDC(SAS),

∴∠B=∠HCD,BE=CH,

∵∠B+∠ACB=90°,

∴∠ACB+∠HCD=90°,

∴∠FCH=90°,

∴FH2=CF2+CH2,

∵DF⊥EH,ED=DH,

∴EF=FH,

∴EF2=BE2+CF2.

(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).

【点睛】

本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

8.(1)如图(a )所示点D 是等边ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明.

(2)如图(b )所示当动点D 运动至等边ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(直接写出结论)

(3)①如图(c )所示,当动点D 在等边ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方、下方分别作等边DCF 和等边DCF ',连接AF 、BF ',探究AF 、BF '与AB 有何数量关系?并证明.

②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.

【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析

【解析】

【分析】

(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .

(2)通过证明BCD ACF △≌△,即可证明AF BD =.

(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;

②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得

'AF AB BF =+ .

【详解】

(1)AF BD =

证明如下:ABC 是等边三角形,

BC AC ∴=,60BCA ?∠=.

同理可得:DC CF =,60DCF ?∠=.

BCA DCA DCF DCA ∴∠-∠=∠-∠.

即BCD ACF ∠=∠.

BCD ACF ∴△≌△.

AF BD ∴=.

(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.

(3)①AF BF AB '+=

证明:由(1)知,BCD ACF △≌△.

BD AF ∴=.

同理BCF ACD '△≌△.

BF AD '∴=.

AF BF BD AD AB '∴+=+=.

②①中的结论不成立新的结论是AF AB BF '=+;

BC AC =,BCF ACD '∠=∠,F C DC '=,

BCF ACD '∴△≌△.

BF AD '∴=.

又由(2)知,AF BD =.

AF BD AB AD AB BF '∴==+=+.

即AF AB BF '=+.

【点睛】

本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.

9.(1)在等边三角形ABC 中,

①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;

②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线

交于点F ,此时BFE ∠的度数是____________度;

(2)如图③,在ABC ?中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).

【答案】(1)60;(2)60;(3)BFE α∠=

【解析】

【分析】

(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出

∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;

②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出

∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;

(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出

∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.

【详解】

解:(1)①如图①中,

∵△ABC 是等边三角形,

∴AC=CB ,∠A=∠BCD=60°,

∵AE=CD ,

∴△ACE ≌△CBD ,

∴∠ACE=∠CBD ,

∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.

故答案为60;

②如图②,

∵△ABC 是等边三角形,

∴AC=CB ,∠A=∠BCD=60°,

∴∠CAE=∠BCD=′120°

∵AE=CD,

∴△ACE≌△CBD,

∴∠ACE=∠CBD=∠DCF,

∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.

故答案为60;

(2)如图③中,

图③

点O是AC边的垂直平分线与BC的交点,

∴=,

OC OA

∴∠=∠=

OAC ACOα

=-,

∴∠=∠?

EAC DCBα

180

=,AE CD

AC BC

=,

∴???,

AEC CDB

∴∠=∠,

E D

BFE D DCF E ECA OACα

∴∠=∠+∠=∠+∠=∠=.

【点睛】

本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.

10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.

【答案】(1)见解析;(2)成立,理由见解析;(3)见解析

【解析】

【分析】

(1)因为DE=DA+AE ,故通过证BDA AEC ?△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.

(2)成立,仍然通过证明BDA AEC ?△△,得出BD=AE ,AD=CE ,所以

DE=DA+AE=EC+BD.

(3)由BDA AEC ?△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ?∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ?∠∠,所以BDF AEF ?△△,所以FD=FE ,BFD AFE ?∠∠,再根据=60BFD FA BFA =?∠+∠D ∠,得=60AF FA =?∠E +∠D ,即=60FE =?∠D ,故DFE △是等边三角形.

【详解】

证明:(1)∵BD ⊥直线m ,CE ⊥直线m

∴∠BDA=∠CEA=90°,∵∠BAC=90°

∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°

∴∠CAE=∠ABD,又AB=AC ,∴△ADB≌△CEA

∴AE=BD,AD=CE,∴DE=AE+AD= BD+CE

(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α

∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC

∴△ADB≌△CEA,∴AE=BD,AD=CE

∴DE=AE+AD=BD+CE

(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE

∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°

∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE

∵BF=AF,∴△DBF≌△EAF

∴DF=EF,∠BFD=∠AFE

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°

∴△DEF为等边三角形.

【点睛】

利用全等三角形的性质证线段相等是证两条线段相等的重要方法.

相关主题
相关文档
最新文档