中职对口升学数学试卷
中职对口高考数学试题

对口高考数学试题一、 选择题(每题5分,共60分)1、已知集合U=﹛1,2,3,4﹜,A=﹛2,4﹜,B=﹛3, 4﹜,则 (UC A)UB = ( ) A 、﹛3﹜ B 、﹛1,3,4﹜ C 、﹛2,3,4﹜D 、﹛1,3,4,3﹜ 2、sin150。
的值等于( )A 、-12B 、12C D 、-3、下列式子中正确的是( )A 、lg 3﹤0B 、lg5>lg2C 、0.1l g 5o >0.1l g 3oD 、0.5l g 0.3o >0.5l g 0.2o4、函数y=lg(2x -1)的定义域为( )A 、(-1,1)B 、[-1,1]C 、(-∞,-1)U (1, +∞)D 、(-∞,-1]U[1, +∞)5、下列命题正确的是( )A 、x=y 是∣x ∣=∣y ∣的必要条件B 、x=3是2x -9=0的充要条件C 、x>y 是的2x >2y 的充分条件D 、a>b,c>0是ac>bc 的充分条件6、下列函数是偶函数的是( )A 、f(x)=2x+1B 、f(x)= 1xC 、f(x) =2x +2x+1D 、f(x) =-2x 7、函数221y x x =++的单调递增区间是( )A 、(-∞,-1)B 、(-1,+∞)C 、(-∞,1)D 、(1,+∞)8、已知sin x =m -12有意义,则实数m 的取值范围是( ) A 、[-1,1] B 、[-12,32] C 、(-12,32) D 、[-32,32] 9、抛物线22y x =的准线方程为A .18y =- B .14y =- C .12y =- D .1y =-10、以双曲线22154x y -=的右焦点为焦点的抛物线的标准方程是( ) A 、24y x = B 、212y x = C 、26y x = D 、212x y =11、下列说法正确的是( )A 、经过平面外一点有且只有一条直线平行于这个平面B 、经过平面外一点有且只有一条直线垂直于这个平面C 、经过直线外一点有且只有一个平面平行于这条直线D 、经过直线外一点有且只有一条直线垂直于这条直线12、为了解某一地区高一年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下列说法中正确的是( )A 、7000名学生是总体B 、每个学生是个体C 、500名学生是抽取的一个样本D 、样本容量是500二、填空题(每题5分,共20分)13、cos70cos10sin70sin10+=-----------------14、已知函数f(x)= x a 的图像经过(-2,9),则f(1)=------------------15、已知偶函数y=f(x)在[0, π]上是增函数,则f (﹣π), f (2π),f (﹣2)的大小关系 是------------------------16、若α+=-------------------------- 三、解答题17、在ABC 中,角A 、B 、C 的边分别为a 、b 、c ,60,1A ab =︒==,求: ⑴角B ;⑵边c 。
中职升学数学试卷及答案

中职升学数学试卷一、单项选择题(本大题共12小题,每小题4分,共48分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.若集合{1,2}M =,{2,3}N =,则M N 等于()A .{2}B .{1}C .{1,3}D .{1,2,3}2.若函数()cos()f x x ϕ=+(πϕ≤≤0)是R 上的奇函数,则ϕ等于()A .0B .4πC .2πD .π3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是()A.2m =-B.2m =C.2n =-D.2n =4.已知向量(1,)a x = ,(1,)b x =- .若a b ⊥,则||a 等于()A .1B C .2D .45.若复数z 满足(1)1i z i +=-,则z 等于()A .1i+B .1i-C .iD .i-6.若直线l 过点(1,2)-且与直线2310x y -+=平行,则l 的方程是()A.3280x y ++=B.2380x y -+=C.2380x y --=D.3280x y +-=7.若实数x 满足2680x x -+≤,则2log x 的取值范围是()A.[1,2]B.(1,2)C.(,1]-∞D.[2,)+∞8.设甲将一颗骰子抛掷一次,所得向上的点数为a ,则方程012=++ax x 有两个不相等实根的概率为()A .32B .31C .21D .1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为,则此双曲线的渐近线方程为()A.y =B.2y x=±C.22y x =±D.12y x =±10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成立的是()A .3()2f -<(1)f -<(2)f B .(1)f -<3()2f -<(2)f C .(2)f <(1)f -<3()2f -D .(2)f <3()2f -<(1)f -11.若圆锥的表面积为S ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为()B.D.12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A.(B.[C.33()33-D.33[,]33-二、填空题(本大题共6小题,每小题4分,共24分)13.sin150︒=.14.已知函数()f x 11x =+,则[(1)]f f =.15.用数字0,3,5,7,9可以组成个没有重复数字的五位数(用数字作答).16.在ABC ∆中,====B A b a 2cos ,23sin ,20,30则.17.设斜率为2的直线l 过抛物线22y px =(0)p >的焦点F ,且与y 轴交于点A .若OAF ∆(O 为坐标原点)的面积为4,则此抛物线的方程为.18.若实数x 、y 满足220x y +-=,则39x y+的最小值为.三、解答题(本大题7小题,共78分)19.(6分)设关于x 的不等式||x a -<1的解集为(,3)b ,求a b +的值.20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最小正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值.21.(10分)已知数列{n a }的前n 项和为n S 2n n =-,n N +∈.(1)求数列{n a }的通项公式;(2)设2na nb =1+,求数列{n b }的前n 项和n T .22.(10分)对于函数()f x ,若实数0x 满足00()f x x =,则称0x 是()f x 的一个不动点.已知2()(1)(1)f x ax b x b =+++-.(1)当1a =,2b =-时,求函数()f x 的不动点;(2)假设12a =,求证:对任意实数b ,函数()f x 恒有两个相异的不动点.23.(14分)甲、乙两位选手互不影响地投篮,命中率分别为31与p .假设乙投篮两次,均未命中的概率为254.(1)若甲投篮4次,求他恰命中3次的概率;(2)求乙投篮的命中率p ;(3)若甲、乙两位选手各投篮1次,求两人命中总次数ξ的概率分布与数学期望.24.(14分)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =.(1)证明:当点E 在棱AB 上移动时,11D E A D ⊥;(2)当E 为AB 的中点时,求①二面角1D EC D --的大小(用反三角函数表示);②点B 到平面1ECB 的距离.25.(14分)已知椭圆C :22221x y a b+=(0)a b >>的离心率为23,且该椭圆上的点到右焦点的最大距离为5.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,且过点(9,)D m 的直线DA 、DB 与此椭圆的另一个交点分别为M 、N ,其中0m ≠.求证:直线MN 必过x 轴上一定点(其坐标与m 无关).数学试题答案及评分参考一、单项选择题(本大题共12小题,每小题4分,共48分)题号123456789101112答案DCAB CBAACDB D二、填空题(本大题共6小题,每小题4分,共24分)13.1214.2315.9616.1317.28y x=18.6三、解答题(本大题共7小题,共78分)19.(本小题6分)解:由题意得11x a -<-<,………………………………………………………………1分11a x a -+<<+,…………………………………………………………1分113a b a -+=⎧⎨+=⎩,………………………………………………………………2分解得21a b =⎧⎨=⎩,………………………………………………………………1分所以3a b +=.…………………………………………………………1分20.(本小题10分)解:(1)由题意得()cos f x x x=+…………………………………………………1分2sin(6x π=+,……………………………………………………2分所以函数()f x 的最小正周期2T π=.……………………………1分(2)由1()2f α=得1sin(64πα+=,…………………………………………………………1分因为(,)63ππα∈-,所以(0,)62ππα+∈,…………………………1分15cos(64πα+=,…………………………1分从而sin sin[()]66ππαα=+-sin(cos cos()sin6666ππππαα=+-+131514242=⨯-3158-=.…………………………3分21.(本小题10分)解:(1)当1n =时,211110a S ==-=,………………………………1分当2n ≥时,1n n n a S S -=-22()[(1)(1)]n n n n =-----22n =-,……………………………………………2分综合得22n a n =-,n ∈N +………………………………………2分(2)222121n an n b -=+=+141n -=+,…………………………………1分21(1444)n n T n -=+++++ 1(14)14n n ⨯-=+-4133n n =+-.…………………………………4分22.(本小题10分)(1)解:由题意得2(21)(21)x x x +-++--=,……………………………1分即2230x x --=,解得11x =-,23x =,……………………………………2分所以函数()f x 的不动点是1-和3.……………………………1分(2)证明:由题意得21(1)(1)2x b x b x +++-=,①……………………………1分即21(1)02x bx b ++-=,……………………………1分因为判别式22(1)b b ∆=--222b b =-+……………………………2分2(1)1b =-+0>,……………………………1分所以方程①有两个相异的实根,即对任意实数b ,函数()f x 恒有两个相异的不动点.……1分23.(本小题14分)解:(1)记甲投篮4次,恰命中3次的概率为1P ,由题意得1P =334128C (3381⨯⨯=.……………………………4分(2)由题意得24(1)25p -=,……………………………3分解得35p =.……………………………………………1分(3)由题意ξ可取0,1,2,…………………………………1分154)531()311()0(=-⨯-==ξP ,15853311(531(31)1(=⨯-+-⨯==ξP ,1535331)2(=⨯==ξP .所以ξ的概率分布列为……………………………………………3分1514153215811540)(=⨯+⨯+⨯=ξE .……………………………………2分24.(本小题14分)(1)证明:连接1AD .在长方体1111ABCD A B C D -中,因为1AD AA =,所以11AA D D 为正方形,从而11AD A D ⊥.因为点E 在棱AB 上,所以1AD 就是1ED 在平面11AA D D 上的射影,从而11D E A D ⊥.……………………………………………4分ξ12P154158153(2)解:①连接DE .由题意知11AD AA ==,1AE EB ==.在Rt DAE ∆中,DE ==,在Rt EBC ∆中,EC ==,从而2224DE EC DC +==,所以EC DE ⊥,又由1D D ⊥面ABCD 知1D D EC ⊥,即1EC D D ⊥,从而EC ⊥面1D DE ,所以1EC D E ⊥,因此1D ED ∠是二面角1D EC D --的平面角.…………………2分在1Rt D DE ∆中,11tan2D D D ED DE ∠==,得1D ED ∠2arctan2=,即二面角1D EC D --的大小为arctan 2.…………………3分②设点B 到平面1ECB 的距离为h ,由11EB BC BB ===知11EC B C B E ===123342ECB S ∆==.……………………………1分因为11B ECB B ECBV V --=,所以111133ECB ECB S h S BB ∆∆⋅=⋅,即131113232h ⋅⋅=⋅⋅,所以33h =,故点B 到平面1ECB 的距离为33.……………………………4分25.(本小题14分)解:(1)设右焦点为)0,(c ,则由题意得⎪⎩⎪⎨⎧=+=532c a a c ,……………………………………………2分解得⎩⎨⎧==23c a ,所以549222=-=-=c a b ,椭圆C 的方程为15922=+y x .………………………………………2分(2)由(1)知)0,3(),0,3(B A -,直线DA 的方程为)3(12+=x my ………………………………………1分直线DB 的方程为)3(6-=x my ………………………………………1分设点M 的坐标为),(11y x ,点N 的坐标为),(22y x ,由⎪⎪⎩⎪⎪⎨⎧=++=159)3(1222y x x m y ,………………………………………1分得0451291254)1295(22222222=-+++m x m x m ,由于),0,3(-A M ),(11y x 是直线DA 与此椭圆的两个交点,所以2222211295451293m m x +-=⋅-,解得221803240mm x +-=,从而2118040)3(12m m x m y +=+=.…………2分由⎪⎪⎩⎪⎪⎨⎧=+-=159)3(622y x x m y ,………………………………………1分得04569654)695(22222222=-+-+m x m x m ,由于),0,3(B N ),(22y x 是直线DB 与此椭圆的两个交点,所以22222269545693m m x +-=⋅,解得22220603m m x +-=,从而2222020)3(6m m x m y +-=-=.…………2分若21x x =,则由222220603803240mm m m +-=+-,得402=m 此时121==x x ,从而直线MN 的方程为1=x ,它过点E )0,1(;若21x x ≠,则402≠m ,直线ME 的斜率2222401018032408040mm m m m mk ME-=-+-+=,直线NE 的斜率222240101206032020m m mm m mk NE-=-+-+-=,得NE ME k k =,所以直线MN 过点)0,1(E ,因此直线MN 必过x 轴上的点)0,1(E .………………………………2分。
山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题本试卷分选择题和非选择题两部分。
满分100分,考试时间为90分钟。
选择题一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设集合P={1、2、3、4},Q={x ||x |≤2,x ∈R }则P ∩Q 等于( ) A 、{1、2} B 、{3、4} C 、{1} D 、{-1、-2、0、1、2}2.已知数列 ,12,7,5,3,1-n 则53是它的( )A.第22项B. 第23项C. 第24项D. 第28项 3.[]0)(log log log 543=a ,则 =a ( ) 5 B.25 C. 125 D.625 4.设向量a =(2,-1),b=(x,3)且a⊥b则x=( )A.21B.3C.23D.-25.下列四组函数中,表示同一函数的是( ) A .2)1(与1-=-=x y x yB .11与1--=-=x x y x yC .2lg 2与lg 4x y x y ==D .100lg与2lg xx y =-=6.函数x x ycos 4sin 3+=的最小正周期为( )A. πB. π2C. 2πD.5π7.若函数2()32(1)f x x a x b =+-+在(,1]-∞上为减函数,则 ( )A .2-=aB .2=aC .2-≥aD .2-≤a8.在ABC ∆中,已知222c bc b a ++=,则A ∠的度数为( )3π B. 6π C. 32πD. 3π或32π9.已知直线b a ,是异面直线,直线c a//,那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面10.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( ) A.x y162= B. x y 122= C.x y 16-2= D. x y 12-2=非选择题二、填空题(本大题共8小题,每空4分,共计32分。
中职对口升学高考《数学》试题

(1)求数列{an}的通项公式;
(2)求数列{an}的第8项到第18项的和.
34.()
35.(6分)设抛物线的对称轴为坐标轴,顶点为坐标原点,焦点在圆 的圆心,过焦点作倾斜角为 的直线与抛物线交于A、B两点.
A. B. C. D.
3.“a=b”是“lga=lgb”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.下列函数是奇函数且在(0, )内是单调递增的是( )
A.y=cos(π+x) B.y=sin(π-x) C.y=sin ( -x) D.y=sin2x
5.将函数y=3sin(x+ )的图像向右平移 个周期后,所得的图像对应的函数是( )
27.直线l∥平面,直线b⊥平面,则直线l与直线b所成角是.
28.在△ABC中,∠C=900, 则 .
29.已知正方形ABCD所在平面与正方形ABEF所在平面成直二面角,则 __________.
30.从数字1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 _____________.
13.已知 的第k项为常数项,则k为( )
A.6 B.7 C.8 D.9
14.点M(3,4)关于x轴对称点的坐标为( )
A.(-3,4) B.(3,-4) C.(3,4) D.(-3,-4)
15.已知点P是△ABC所在平面外一点,若PA=PB=PC,则点P在平面ABC内的射影O是△ABC的 ( )
A.重心 B.内心 C.外心 D.垂心
10.下列四组函数中表示同一函数的是( )
对口升学数学试题及答案

对口升学数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \frac{1}{x} \)答案:B2. 已知等差数列的首项为2,公差为3,求该数列的第5项。
A. 17B. 14C. 11D. 8答案:A3. 计算以下极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]A. 0B. 1C. 2D. 3答案:B4. 以下哪个选项是二项式定理的展开式?A. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)B. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \)C. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)D. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \)答案:B5. 已知函数 \( f(x) = ax^2 + bx + c \) 的图像与x轴有两个交点,且这两个交点的横坐标之和为-4,求b的值。
A. 4B. -4C. 2D. -2答案:B6. 计算以下定积分:\[ \int_{0}^{1} x^2 dx \]A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A7. 已知圆的方程为 \( (x-2)^2 + (y-3)^2 = 9 \),求该圆的半径。
A. 3B. 4C. 5D. 6答案:A8. 计算以下二重积分:\[ \iint_{D} (x^2 + y^2) dxdy \]其中D是由x=0,y=0,x+y=1构成的区域。
对口高考数学试卷中职

1. 若函数f(x)=x²-2x+1的对称轴为x=a,则a的值为()A. 1B. 0C. -1D. 22. 已知函数y=2x+3的图象上有一点P(2,7),则该函数图象上与点P关于y轴对称的点为()A. (-2,7)B. (2,-7)C. (-2,-7)D. (2,7)3. 在等腰三角形ABC中,AB=AC,若∠B=50°,则∠C的度数为()A. 50°B. 60°C. 70°D. 80°4. 若等差数列{an}的前n项和为Sn,且S3=12,S6=36,则公差d的值为()A. 2B. 3C. 4D. 65. 已知函数y=3x²-2x+1的图象与x轴有两个交点,则该函数的顶点坐标为()A. (0,1)B. (1,0)C. (-1,0)D. (0,-1)6. 在直角坐标系中,点A(2,3)关于y=x的对称点为()A. (3,2)B. (2,3)C. (-3,-2)D. (-2,-3)7. 已知函数y=2x-1的图象上有一点P(1,1),则该函数图象上与点P关于原点对称的点为()A. (1,-1)B. (-1,1)C. (-1,-1)D. (1,1)8. 在直角坐标系中,点M(3,4)到直线x+y=5的距离为()A. 2B. 3C. 4D. 59. 已知等比数列{an}的公比q=2,且a1+a3+a5=24,则a2+a4+a6的值为()A. 24B. 48C. 72D. 9610. 在直角坐标系中,点P(2,3)到直线y=3x+2的距离为()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,每小题5分,共25分)11. 已知函数y=x²-4x+3,若该函数图象的顶点坐标为(2,-1),则该函数的解析式为__________。
12. 在等腰三角形ABC中,AB=AC,若∠B=40°,则∠C的度数为__________。
中职对口高考考题数学试卷

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √362. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 4C. 3D. 23. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 80°C. 85°D. 90°4. 下列不等式中,正确的是()A. 2x > 4B. 3x ≤ 9C. 5x < 10D. 4x ≥ 85. 下列各式中,同类项是()A. 2a^2 + 3bB. 4x^2 - 5xC. 3a^2 + 2a - 1D. 5ab - 2a^26. 若x^2 - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或4D. 1或37. 下列函数中,反比例函数是()A. y = x^2 + 1B. y = 2x - 1C. y = 1/xD. y = 3x^2 + 48. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 平行四边形C. 梯形D. 长方形9. 已知正方形的边长为4cm,则它的周长为()A. 8cmB. 12cmC. 16cmD. 20cm10. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2二、填空题(每题3分,共30分)11. 若a + b = 5,a - b = 1,则a = ______,b = ______。
12. 已知函数y = -2x + 3,当x = -1时,y的值为 ______。
13. 在△ABC中,∠A = 2∠B,∠C = 3∠B,则∠B的度数为 ______。
14. 若x^2 - 6x + 9 = 0,则x的值为 ______。
2022年黑龙江省中职专业对口升学考试招生数学试卷

2022年黑龙江省中职专业对口升学考试招生数学试卷一、选择题1.已知集合A={x|x−a=0},B={x|ax−1=0},若A∩B=A,则实数a=A.1B.−1C.1或−1D.1或−1或02.a+c>b+d是a>b,c>d的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.不等式−x2−x+6<0的解集是A.(−3,2)B.(−2,3)C.(−∞,−2)∪(3,+∞)D.(−∞,−3)∪(2,+∞)4.不等式1<|x−2|<3的解集是A.∅B.(1,3)C.(3,5)∪(−1,1)D.(5,+∞)5.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数6.在区间(−∞,0)上为增函数的是A.y=−2xB.y=2xC.y=|x|D.y=−x27.已知a x=2,a y=3,则a x+2y=A.8B.12C.18D.248.设sinαcosα<0,tanαsinα<0,则α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角9.若角α的终边在第二象限且经过点(−1,√3),则sinα=A.√32B.−√32 C.12D.−12 10.已知−π2<x <π2,则不等式tan x >sin x >cos x 的解集是A.(−π2,−π4)B.(−π4,0) C.(0,π4)D.(π4,π2)11.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,…的第1000项是A.42B.45C.48D.5112.已知平面向量BA⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,则BA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ = A.AC⃗⃗⃗⃗⃗ B.CA⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗D.DA ⃗⃗⃗⃗⃗13.已知向量a =(m,1),b ⃗ =(2,n ),若|a |=2,a ⊥b⃗ ,则mn A.−6B.±6C.±3D.314.已知向量a ,b ⃗ 均为单位向量,向量a 与向量b ⃗ 的夹角为600,那么|a +3b⃗ |= A.√7B.√10C.√13D.415.过点(1,0)且与直线x−2y−2=0平行的直线方程是A.x−2y−1=0B.x−2y+1=0C.2x+y−2=0D.x+2y−1=016.O是半径为5的圆的圆心,点A在直线l上,OA=5,则直线l与圆的位置关系是A.相离B.相切C.相交D.无法判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岑溪市中等专业学校
2017年春节期16级《数学》期末考试试卷 专业_______ 班别________ 学号________ 姓名_________
一. 单项选择题:本大题共八小题,每题5分,共40分。
在每题所给的A,B,C,D 四个选项中,只有一个选项是正确的,请选出正确的选项。
1.设集合M ={-2,0,2},N ={0},则…………………( )
A.φ=N
B.M N ∈
C.M N ⊂
D.N M ⊂
1. 下列函数属于增函数的是…………………………………( )
A. y= —
B.y=x ²
C.y=2x-3
D.y=(—) 3.(—) 的值等于................................( ) A.-16 B.16 C.— D.-— 4.已知函数y=2 ,当x=( )时,y=1.
A.x=1
B.x=0
C.x=-1
D.x=0.5
5.计算(3x )²(-2x )³的值为.......................( )
A.54x
B.-54x
C.72x
D.-72x
6.设lg100 = x,则x+2=.............................( )
A.2
B.4
C.6
D.12
7.函数y=x ²+2的增区间为...........................( )
A.R
B.(-∞,0) C(0,+∞) D.以上都不对.
8.下列函数是奇函数的是............................( ) x 2 2 1 x 2 1 -4 16 1 16
1 x+1 5 5 5 5
A.y=x ²
B.y=x ³
C.y=|8x |
D.y=2x-6 二.填空题:本大题共四小题,每小题5分,共20分。
9.f (x )=—— 的定义域为:_______________. 10.解不等式x ²-x-12>0,则不等式的解集为_______________.
11.求值:lg2+lg5=_____________.
12.比较两数的大小:0.25²和0.26²,较大的数是:_______.
三.解答题,本大题共四小题,每题10分,共40分。
14.已知全集U=R ,A={x |x<5},B={x |<8}求CuA,B n CuA 。
15.化简求值:
16.解不等式|2x-3|≥7。
17.已知二次函数y=x ²-x-6,说出:
(1)x 取何值时,y=0;
(2)X 取哪些值时,y>0,x 取哪些值时,y<0;
(3)X 取何值时,y 取到最小值,并求出最小值y min . 3x-5
2 2232x 62
x。