构造函数法证明导数不等式的八种方法
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数与构造函数是数学中非常重要的两个概念,它们可以帮助我们证明不等式,优化函数等问题。
接下来将分别介绍导数与构造函数在证明不等式时的技巧。
一、导数在证明不等式中的应用导数是函数的重要特征之一,它可以表示函数在某个点的变化率。
在证明不等式时,我们可以使用导数的性质来帮助我们证明某个不等式是否成立。
1. 利用导数判断函数在某个区间的单调性假设函数f(x)在区间[a,b]上具有一阶导数,则f(x)在区间[a,b]上为单调递增的条件是:f'(x)>0,而在区间[a,b]上为单调递减的条件则是:f'(x)<0。
如果我们需要证明某个不等式在某个区间上成立,可以通过证明函数的导数在该区间上的符号,从而得出原函数在该区间上的单调性,从而得出结论。
例如:证明当x>0时,e^x>x+1证明:考虑函数f(x)=e^x-x-1如果x>0,则f'(x)>0,因此函数f(x)在(0,∞)上单调递增。
又f(0)=e^0-0-1=0,因此当x>0时,f(x)>f(0)=0即e^x-x-1>0,即e^x>x+1。
2. 利用导数求函数的极值导数可以帮助我们求出函数的极值,例如函数的最大值和最小值。
如果我们需要证明某个不等式的最大值或最小值,可以通过推导函数的导数,找出函数的极值,从而得出结论。
f'(x)=2x-2/x^3,因此f(x)在x=1处取得极小值。
又因为当x>0时,x^2+1/x^2≥2 |x=1,因此当x>0时,x^2+1/x^2≥2。
3. 利用导数证明柯西-施瓦茨不等式柯西-施瓦茨不等式是数学中的重要不等式之一,它可以用来计算向量的点积的上界。
柯西-施瓦茨不等式的表述为:对于任意两个n维实向量a和b,有|a·b|≤|a|·|b|其中a·b为向量a和b的点积,|a|和|b|为向量a和b的模。
构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
导数数列型不等式证明问题

导数数列型不等式的证明涉及到导数的概念、性质和运算,通常需要运用放缩、构造辅助函数、微分中值定理等方法。
以下是一些常见的导数数列型不等式的证明方法:
放缩法:通过放缩不等式,使得不等式的证明变得更加容易。
例如,可以利用导数的性质,将原不等式转化为容易证明的等式或不等式。
构造辅助函数法:根据导数的性质,构造出一个辅助函数,通过研究该函数的性质,证明不等式。
例如,可以构造一个函数,使其在指定区间上单调递增或递减,从而证明不等式。
微分中值定理法:利用微分中值定理,将不等式转化为一个容易证明的等式或不等式。
例如,可以根据微分中值定理,将原不等式转化为一个关于某个变量的函数,然后对该函数求导,证明其单调性,从而证明不等式。
需要注意的是,在证明导数数列型不等式时,需要充分理解导数的性质和运算规则,并能够灵活运用。
同时,还需要注重证明过程中的严谨性和准确性,避免出现错误。
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数与构造函数是微积分中的重要概念,它们在证明不等式中起着重要作用。
本文将介绍一些导数与构造函数在证明不等式中的技巧,并通过具体的例子来加深理解。
1. 利用导数的性质进行不等式证明在证明不等式时,可以通过导数的性质来进行推导。
当需要证明一个函数在某个区间上单调递增或单调递减时,可以通过求导数并分析导数的正负性来进行证明。
假设一个函数f(x)在区间[a, b]上可导,求出其导数f'(x)并分析f'(x)的正负性,如果f'(x)恒大于零,那么函数f(x)在区间[a, b]上就是单调递增的;如果f'(x)恒小于零,那么函数f(x)在区间[a, b]上就是单调递减的。
通过这种方法,可以利用导数的性质来证明函数的单调性质,从而进一步推导出不等式。
2. 构造函数进行不等式证明构造函数是指通过一些技巧将原函数进行变形,从而更好地应用各种数学性质来进行不等式证明。
当需要证明一个不等式时,可以通过构造一个辅助函数来简化原不等式的证明过程。
通过巧妙地构造函数,可以使得不等式的证明更加直观、简单。
例1:证明当x>0时,有e^x>1+x。
解:可以通过在函数f(x) = e^x - (1+x)上应用导数的性质来证明这个不等式。
求导数得f'(x) = e^x - 1,显然f'(x)恒大于零,因此f(x)在区间(0, +∞)上单调递增。
又当x=0时,有f(0) = e^0 - (1+0) = 0,因此在区间(0, +∞)上有f(x)>0,即e^x>1+x。
通过导数的性质,成功证明了不等式e^x>1+x。
通过以上两个例子,可以看到导数与构造函数在不等式证明中的重要作用。
通过分析导数的性质以及巧妙地构造辅助函数,可以更好地理解、应用和证明各种不等式。
在实际的数学问题中,通常会遇到各种复杂的不等式,通过灵活运用导数与构造函数的技巧,可以更加轻松地解决这些问题。
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
2022年高考数学利用导数构造函数解不等式

D. (-∞ ,+∞)
所以 g(x) 为 R 的单调递增函数,又因为 g(-1) = f(-1) - 2 × (-1) = 4 所以不等式的解集为 (-1,+∞)
【答案】选 A
【例9】:已知 f(x) 定义域为 (0,+∞),f(x) 为 f(x) 的导函数,且满足 f(x) < -xf(x),则不等式 f(x + 1) > (x - 1)f(x2 1) 的解集是 ( )
1
所以 f(x)g(x) < 0 的解集是 (-3,+∞)
【例3】:已知定义为 R 的奇函数 f(x) 的导函数为 f(x),当 x ≠ 0 时,f(x) +
f (x) x
> 0,若 a =
1 2
f
1 2
,b = -2f(-2) ,c
=
ln
1 2
f(ln2),则下列关于 a,b,c 的大小关系正确的是
1 4
x2 ≥ 0,即
f(x) > 0
【例6】:已知函数 f(x) 的定义域为 R,且 f(x) > 1 - f(x) ,f(0) = 4,则不等式 f(x) > 1 + eln3-x 的解集为 ( )
A. (0,+∞)
B.
1 2
,+∞
C. (1,+∞)
【解析】f(x) > 1 + eln3-x ⇒ ex f(x) > ex + eln3 ⇒ ex f(x) - ex > 3
x+1>0
x > -1
g(x + 1) > g(x2 - 1) , x2 - 1 > 0 ⇒ x > 1 或 x < -1 ⇒ x > 2
高中数学构造函数法解决导数不等式问题

构造函数法解决导数不等式问题在函数中解决抽象函数问题首要前提是对函数四种基本性质熟练掌握,导数是函数单调性延伸,如果把题目中直接给出增减性换成一个'()f x ,则单调性就变相当隐晦了,另外在导数中抽象函数不等式问题中,我们要研究往往不是()f x 本身单调性,而是包含()f x 一个新函数单调性,因此构造函数变相当重要,另外题目中若给出是'()f x 形式,则我们要构造则是一个包含()f x 新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式重中之重是构造函数。
例如:'()0f x >,则我们知道原函数()f x 是单调递增,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增,因此构造函数过程有点类似于积分求原函数过程,只不过构造出新函数要通过题目中给出条件能判断出单调性才可。
既然是找原函数,那么就可能遇上找不到式子原函数时候,但是我们判断单调性只需要判断导函数正负即可,例如()g x 原函数是不能准确找到,但是如果我们知道一个式子导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 导函数中包含一个能判断符号式子和()g x 相乘或相除形式,我们也可以将()m x 大致看成()g x 原函数。
构造函数模型总结:关系式为“加”型:(1)'()()0f x f x +≥ 构造''[()][()()]x x e f x e f x f x =+(2)'()()0xf x f x +≥ 构造''[()]()()xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 符号进行讨论)关系式为“减”型(1)'()()0f x f x -≥ 构造'''2()()()()()[]()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造''2()()()[]f x xf x f x x x -= (3)'()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--==(注意对x 符号进行讨论)例1.设(),g()f x x 是R 上可导函数,''()g ()f x x ,分别是(),g()f x x 导函数,且满足''()()()g ()0f x g x f x x +<,则当a x b <<时,有( ).()()()()A f a g b f b g a > .()()()()B f a g a f a g b >.()()()()C f a g a f b g b > .()()()()D f a g a f b g a >解析:因为''()()()g ()0f x g x f x x +<不等式左边原函数为()()f x g x ,因此需要构造新函数,令()()()h x f x g x =,可知'()0h x <,则函数()h x 是单调递减函数,因此当a x b <<,有()()h a h b >即答案选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则x x x x F 12)(2--='=x x x x )12)(1(2++- 当1>x 时,)(x F '=xx x x )12)(1(2++- 从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F ∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。
读者也可以设)()()(x g x f x F -=做一做,深刻体会其中的思想方法。
3、换元法构造函数证明【例3】(2007年,山东卷)证明:对任意的正整数n ,不等式3211)11ln(nn n ->+ 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(23++-=x x x x h ,求导即可达到证明。
【解】令)1ln()(23++-=x x x x h , 则1)1(31123)(232+-+=++-='x x x x x x x h 在),0(+∞∈x 上恒正, 所以函数)(x h 在),0(+∞上单调递增,∴),0(+∞∈x 时,恒有,0)0()(=>h x h即0)1ln(23>++-x x x ,∴32)1ln(x x x ->+对任意正整数n ,取3211)11ln(),0(1nn n n x ->++∞∈=,则有 【警示启迪】我们知道,当()F x 在[,]a b 上单调递增,则x a >时,有()F x ()F a >.如果()f a =()a ϕ,要证明当x a >时,()f x >()x ϕ,那么,只要令()F x =()f x -()x ϕ,就可以利用()F x 的单调增性来推导.也就是说,在()F x 可导的前提下,只要证明'()F x >0即可.4、从条件特征入手构造函数证明【例4】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.a )(a f >b )(b f【解】由已知 x )(x f '+)(x f >0 ∴构造函数 )()(x xf x F =,则=)('x F x )(x f '+)(x f >0, 从而)(x F 在R 上为增函数。
b a > ∴)()(b F a F > 即 a )(a f >b )(b f【警示启迪】由条件移项后)()(x f x f x +',容易想到是一个积的导数,从而可以构造函数)()(x xf x F =,求导即可完成证明。
若题目中的条件改为)()(x f x f x >',则移项后)()(x f x f x -',要想到是一个商的导数的分子,平时解题多注意总结。
5、主元法构造函数例.(全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=(1) 求函数)(x f 的最大值;(2) 设b a <<0,证明 :2ln )()2(2)()(0a b b a g b g a g -<+-+<. 分析:对于(II )绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下:证明:对x x x g ln )(=求导,则1ln )('+=x x g . 在)2(2)()(b a g b g a g +-+中以b 为主变元构造函数, 设)2(2)()()(x a g x g a g x F +-+=,则2ln ln )]2([2)()('''x a x x a g x g x F +-=+-=. 当a x <<0时,0)('<x F ,因此)(x F 在),0(a 内为减函数.当a x >时,0)('>x F ,因此)(x F 在),(+∞a 上为增函数.从而当a x =时, )(x F 有极小值)(a F .因为,,0)(a b a F >=所以0)(>b F ,即.0)2(2)()(>+-+b a g b g a g 又设2ln )()()(a x x F x G --=.则)ln(ln 2ln 2lnln )('x a x x a x x G +-=-+-=. 当0>x 时,0)('<x G .因此)(x G 在),0(+∞上为减函数.因为,,0)(a b a G >=所以0)(<b G ,即2ln )()2(2)()(a b b a g b g a g -<+-+. 6、构造二阶导数函数证明导数的单调性例.已知函数21()2x f x ae x =- (1)若f(x)在R 上为增函数,求a 的取值范围;(2)若a=1,求证:x >0时,f(x)>1+x解:(1)f ′(x)= ae x -x,∵f(x)在R上为增函数,∴f ′(x)≥0对x∈R恒成立,即a≥xe-x对x∈R恒成立记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x)e -x ,当x>1时,g′(x)<0,当x<1时,g′(x)>0.知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数,∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a ≥1/e,即a 的取值范围是[1/e, + ∞)(2)记F(X)=f(x) -(1+x) =)0(1212>---x x x e x 则F ′(x)=e x -1-x,令h(x)= F ′(x)=e x -1-x,则h ′(x)=e x -1当x>0时, h ′(x)>0, ∴h(x)在(0,+ ∞)上为增函数,又h(x)在x=0处连续, ∴h(x)>h(0)=0即F ′(x)>0 ,∴F(x) 在(0,+ ∞)上为增函数,又F(x)在x=0处连续,∴F(x)>F(0)=0,即f(x)>1+x .小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.7.对数法构造函数(选用于幂指数函数不等式)例:证明当2111)1(,0xx e x x ++<+>时8.构造形似函数例:证明当ab b a e a b >>>证明,例:已知m 、n 都是正整数,且,1n m <<证明:mn n m )1()1(+>+【思维挑战】1、(2007年,安徽卷) 设x a x x x f a ln 2ln 1)(,02+--=≥求证:当1>x 时,恒有1ln 2ln 2+->x a x x ,2、(2007年,安徽卷)已知定义在正实数集上的函数 ,ln 3)(,221)(22b x a x g ax x x f +=+=其中a >0,且a a a b ln 32522-=, 求证:)()(x g x f ≥3、已知函数x x x x f +-+=1)1ln()(,求证:对任意的正数a 、b , 恒有.1ln ln ab b a -≥- 4、(2007年,陕西卷))(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a < b ,则必有 ( )(A )af (b )≤bf (a )(B )bf (a )≤af (b ) (C )af (a )≤f (b )(D )bf (b )≤f (a )【答案咨询】1、提示:x a x x x f 2ln 21)(+-=',当1>x ,0≥a 时,不难证明1ln 2<xx ∴0)(>'x f ,即)(x f 在),0(+∞内单调递增,故当1>x 时,0)1()(=>f x f ,∴当1>x 时,恒有1ln 2ln 2+->x a x x 2、提示:设b x a ax x x f x g x F --+=-=ln 3221)()()(22则x a a x x F 232)(-+=' =xa x a x )3)((+- )0(>x 0>a ,∴ 当a x =时,0)(='x F , 故)(x F 在),0(a 上为减函数,在),(+∞a 上为增函数,于是函数)(x F 在),0(+∞上的最小值是0)()()(=-=a g a f a F ,故当0>x 时,有0)()(≥-x g x f ,即)()(x g x f ≥3、提示:函数)(x f 的定义域为),1(+∞-,22)1()1(111)(x x x x x f +=+-+=' ∴当01<<-x 时,0)(<'x f ,即)(x f 在)0,1(-∈x 上为减函数当0>x 时,0)(>'x f ,即)(x f 在),0(+∞∈x 上为增函数因此在)(,0x f x 时=取得极小值0)0(=f ,而且是最小值 于是x x x f x f +≥+=≥1)1ln(,0)0()(从而,即xx +-≥+111)1ln( 令a b x b a x -=+->=+1111,01则 于是ab b a -≥1ln 因此a b b a -≥-1ln ln 4、提示:x x f x F )()(=,0)()()(2'≤-='x x f x xf x F ,故xx f x F )()(=在(0,+∞)上是减函数,由b a < 有b b f a a f )()(≥⇒ af (b )≤bf (a ) 故选(A )。