整式的除法专题训练50题(有答案)
整式的除法专题训练

整式的除法专题训练(一)填空1.4x4y2÷(-2xy)2=______.3.2(-a2)3÷a3=______.4.______÷5x2y=5xy2.5.y m+2n+6=y m+2·______.6.______÷(-5my2z)=-m2y3z4.7.(16a3-24a2)÷(-8a2)=______.8.(m+n)2(m-n)÷(m+n)2=______.10.(-8x4y+12x3y2-4x2y3)÷(4x2y)=______.11.(a+b)(a-b)(a4+a2b2+b4)÷(b6-a6)=______.12.(a3+2a2+a+1)÷(a2+a-1)的余式是______.13.(6x6-4x5+2x4-x-5)÷(2x4-x-3),则商式为______,余式为______.14.用A表示一个多项式,如果A(x2+xy+y2)=x3-y3,那么A=______.15.已知a≠b,且a(a+2)=b(b+2),则a+b的值是______.16.6x6-6x5+3x4+6x3+10x2-8x+1=(6x4-4x+2)×(______)+(______).17.多项式2x3+6x2+6x+5除以一个多项式A,商为x+1,余式5x+8,那么除式A为______.18.(2m3+bm2+2m+2)÷(m2+m-1)的余式是2m+4,则b=______.19.已知(3x3+nx+20)÷(x2+2x-3)所得余式为3x+2,则n=______.20.如果4x3+9x2+mx+n能被x2+2x-3整除,则m=______,n=______.21.x3+4x2+5x+2用整式______除,则商式和余式都是x+1.22.已知(3x3+nx+m)÷(x2+2x-3)所得余式为3x+2,则m=______,n=______.23.已知x2-3x-2=0,则-x3+11x+6=______.(二)选择24.21a8÷7a2= [ ]A.7a4;B.3a6;C.3a10;D.3a16.25.x9y3÷x6y2= [ ]A.x3y;B.x3y3;C.x3y2;D.x3.26.28a4b2÷7a3b= [ ]A.4ab2;B.4a4b;C.4a4b2;D.4ab.[ ]A.8xyz;B.-8xyz;C.2xyz;D.8xy2z2.28.25a3b2÷5(ab)2= [ ]A.a;B.5a;C.5a2b;D.5a2.29.正确地进行整式运算可得 [ ]A.2x+3y=5xy;B.4x3y-5xy3=-xy;C.3x3·2x2=6x6;D.4x4y3÷(-2xy3)=-2x3.30.下列计算正确的是 [ ]A.a m a n=a2m;B.(a3)2=a5;C.a3m-5÷a5-m=a4m-10;D.x3x4x5=x60.31.下列计算错误的是 [ ] A.(x4)4=x16;B.a5a6÷(a5)2÷a=a2;C.(-a)(-a2)+a3+2a2(-a)=0;D.(x5)2+x2x3+(-x2)5=x5.32.(x4y+6x3y2-x2y3)÷3x2y= [ ] A.x2+2xy-y2;[ ]34.下列整式除法正确的是 [ ] A.(3x2y3+6x2y2)÷3xy2=xy+2xy;B.(5a2b4-25a3)÷(-5b4)=-a2+5a3b4;C.(2x2-5x-3)÷(x-3)=2x+1;D.(a+b)4(a-b)÷2(a+b)(a2-b2)=2(a+b)2×(a-b).35.(2x3-5x2+3x-2)÷(-x+1+2x2)= [ ] A.x+1;B.x-1;C.x+2;D.x-2.36.(x2+2xy-8y2+2x+14y-3)÷(x-2y+3)= [ ]A.x-4y-1;B.x+4y+1;C.x+y;D.x+4y-1.37.(x3+2x2+x+1)÷(x2+x-1)的余式是 [ ]A.x+1;B.x-1;C.x+2;D.x-2.38.(1+x+2x2+x3)÷(x2+x-1)的余式是 [ ]A.x+1;B.x+2;C.x-1;D.x-2.39.除式=6x2+3x-5,商式=4x-5,余式=-8,则被除式为 [ ]A.(6x2+3x-5)(4x-5)+8;B.(6x2+3x-5)÷(4x-5)-8;C.(6x2+3x-5)+(4x-5)×(-8);D.(6x2+3x-5)(4x-5)-8.40.(x3-2x2+ax+2)÷(x2-4x+1)=x+2,则 [ ]A.a=-7;B.a=7;C.a=7x;D.a=-7x.41.(x3-3x2-9x+23)=(x2-x-11)·N+1,则N= [ ] A.x-2;B.x+2;C.-x-2;D.-x+2.42.若x3-3x2+ax+b能被x-2整除,则 [ ]A.a=9,b=22;B.a=9,b=-22;C.a=-9,b=22;D.a=-9,b=-22.43.9x4-6x2y2+y4=(3x2-y2)·M,则M= [ ]A.3x2+y2;B.(3x)2-y2;C.(3x)2+y2;D.3x2-y2.44.如果4x3+9x2+mx+n能被x2+2x-3整除,则 [ ] A.m=10,n=3;B.m=-10,n=3;C.m=-10,n=-3;D.m=10,n=-3.45.(3x-4x2+x4-4)=M·(x2+2x-1)+(-x-3),则M为 [ ]A.x2+2x+1;B.x2-2x+1;C.-x2+2x+1;D.x2+2x-1.46.多项式x2+x+m能被x+5整除,则此多项式也能被下述多项式整除的是 [ ] A.x-6;B.x+6;C.x-4;D.x+4.47.3x4-2x3-32x2+66x+m能被x2+2x-7整除,则m为 [ ]A.35;B.-32;C.-35;D.32.(三)计算48.-3(ab)2·(3a)2·(-ab)3÷(12a3b2).50.(2mn)2·(m2+n2)-(m2n2)3÷m3n4+3m2n4.51.162m÷82n÷4m×43(n-m+1).整数).53.(4x n-1y n+2)2÷(-x n-2y n+1).54.[2yx3+(-2y3-2y2-1)x2+(2y4+y2+y)x-y3]÷(2xy-1)÷(x-y).55.(x2a+3b+4c)m÷[(x a)2m·(x3)bm·(x m)4c].56.四个连续奇数的第二个数是2n+1,已知前两个数的积比后两个数的积少64,求这四个奇数.57.利用竖式除法计算(4+2x3-5x2)÷(x-2).58.用竖式除法计算(2a3+3a-3+9a2)÷(4a+a2-3).59.(6x4-3x3-7x-3)÷(2x2-x-2).60.长方形面积是x2-3xy+2y2,它的一边长是x-y,求它的周长.61.(a5-2a4b-4a3b2+b5)÷(a3+2ab2+b3).62.x(13x2+3x3-1)÷(x2+4x-3).63.(2x4+7x3-12x2-27x)÷(2x2+3x)÷(x-2).64.(x5+x4+5x2+5x+6)÷(x2+x+1)÷(x+2).65.已知整式A=x3-1+x-x2,B=x2-3x+5,求A÷B的商和余式.66.求[4yx4-2x3+yx2-1]÷(x-y)÷(2xy-1)的商式和余式.67.已知除式=3x2+2y,商式=9x4-6x2y+4y2,余式=x-8y3,求被除式.68.已知除式=2x3-3x2+1,商式=x+2,余式=6x2-2,求被除式.69.已知被除式=x4+y4,商式=x3+x2y+xy2+y3,余式=2y4,求除式.70.已知被除式=18x4+82x2+56-71x-45x3,商式=6x2-7x+8,余式=16-4x,求除式.71.一个多项式除以x2+3x-5,商式为x2+x+1,余式为2x-1,求这个多项式.73.已知被除式=4x3+2x2-1,除式=2x-4,余式=39,求商式.74.已知被除式=x5-4x3+2x2+1,除式=x+2,商式=x4-2x3+2x-4,求余式.75.已知x-2能整除x2+kx-14,求k的值.76.已知3x-1能整除6x2+13x+b,求b的值.77.求多项式[2x4-5x3-26x2-x+28]÷(x-1)÷(2x+3)÷(x+2)的商式和余式.78.已知多项式3x3-13x2+18x+m能被(x-1)(x-2)整除,其商为3x+n,求m,n的值.79.已知多项式x3+3x2+ax+b能被x+2整除,且商式被(x-3)除时余3,求a,b的值.80.若多项式(a+b)x2+2bx-3a以x+1和x+2除之分别余1和-22,试求a,b的值.81.已知x3+(a+b)x2+(-2a+b)x+3a-b能被(x-1)2整除,求a,b的值.82.已知多项式x3+ax2-(a+2)x+3a-6能被x2+2x+3整除,且商式为Ax+B,求A,B的值.83.如果多项式x2-2(m+1)x+m能被x+1整除,求m的值.84.已知被除式=-2y4-y3+5y2+5y+5,商式=y2-2,余式=3y+7,求除式.85.已知x2-3x-2=0,求-x3+11x+6的值.86.已知被除式=x4-2x3y-x2y+y2,除式=x2-2y,余式=-4xy2+3y2,求商式.87.已知多项式F被x2-2x-3除时余式为x+4,试求F被x+1除时的余式.88.已知被除式=x4-3x2+ax-1,除式=bx+1,商式=x3-x2-2x+4,余式=-5,求a,b的值.整式的除法专题训练答案(一)填空1.x22.18xyz23.-2a34.25x3y35.y2n+46.5m3y5z57.-2a+38.m-n9.-110.-2x2+3xy-y211.-112.a+213.3x2-2x+1;3x3+7x2-6x-214.x-y15.-217.2x2+4x-318.419.-1820.-10,-321.x2+3x+122.20,-1823.0(二)选择24.B 25.A 26.D 27.A 28.B 29.D 30.C 31.B 32.C 33.B 34.C 35.D 36.D 37.C 38.B 39.D 40.A 41.A 42.C 43.D 44.C 45.B 46.C 47.C (三)计算49.8.50.4m4n2+7m2n4-m3n2.51.64.52.4+23m+2n-1.53.-16x n y n+3.54.x-y2.55.1.56.5,7,9,11.提示:依题意得(2n+3)(2n+5)-(2n-1)(2n+1)=64.解得n=3.所以四个奇数分别为2n-1=5,2n+1=7,2n+3=9,2n+5=11.57.2x2-x-2.58.商式=2a+1,余式=5a.59.商式=3x2+3,余式=-4x+3.60.4x-6y.61.商式=a2-2ab-6b2,余式=3a2b3+14ab4+7b5.62.商式=3x2+x+5,余式=-18x+15.63.商式=x+4,余式=-2x2-3x.64.x2-2x+3.65.商式=x+2,余式=2x-11.67.27x6+x.68.2x4+x3+x.69.x-y.70.3x2-4x+5.71.x4+4x3-x2-6.73.2x2+5x+10.74.9.75.k=5.76.b=-5.77.商式=x-5,余式=-2.78.m=-8,n=-4.提示3x3-13x2+18x+m=(x-1)(x-2)(3x+n)=3x3+(n-9)x2+(6-3n)x+2 n.79.a=-7,b=-18.提示:依题意得80.a=-22,b=43.提示:依题意得81.a=0,b=-1.提示:依题意得83.-1.84.-2y2-y+1.85.0.提示:原式=(-x3+3x2+2x)-(3x2-9x-6)=-x(x2-3x-2)-3(x2-3x-2).再把已知条件x2-3x-2=0代入,得值等于0.86.x2-2xy+y.87.余式=3.提示:设F被x2-2x-3除得的商式为q,又余式为x+4,所以F=q(x2-2x-3)+x+4=q(x+1)(x-3)+(x+1)+3=(x+1)[q(x-3)+1] +3,即余式=3.88.a=2,b=1.提示:依题意得x4-3x2+ax-1=(bx+1)(x3-x2-2x+4)+(-5).右边展开后与左边对比同类项系数可得结果.89.(1)当m<2时,有正数解.(2)当m=8时,无解.90.(1)a是大于-4的整数.>0时,y>0,这就有a>-4.。
整式的除法练习题

整式的除法练习题在初中数学学习中,我们经常会遇到整式的除法练习题,这些题目旨在锻炼我们运用整式的除法进行计算的能力。
本文将给出一些常见的整式的除法练习题,并给出解答过程,帮助读者更好地掌握整式的除法运算方法。
1. 计算下列两个整式相除的商和余数:(1)(5x^3 + 2x^2 - 3x + 1) ÷ (x - 2)解答过程:首先,我们可以使用长除法的方法进行计算。
5x^2 + 12x + 21______________________x - 2 | 5x^3 + 2x^2 - 3x + 1- (5x^3 - 10x^2)______________________12x^2 - 3x + 1- (12x^2 - 24x)______________________21x + 1- (21x - 42)______________________43所以,(5x^3 + 2x^2 - 3x + 1) ÷ (x - 2)的商为5x^2 + 12x + 21,余数为43。
(2)(3x^4 - 2x^3 + 5x^2 - x + 3) ÷ (x^2 - 3)解答过程:使用长除法进行计算。
3x^2 + 7x + 22________________________x^2 - 3 | 3x^4 - 2x^3 + 5x^2 - x + 3- (3x^4 - 9x^2)________________________7x^2 - x + 3- (7x^2 - 21)________________________20x + 24- (20x - 60)________________________84所以,(3x^4 - 2x^3 + 5x^2 - x + 3) ÷ (x^2 - 3)的商为3x^2 + 7x + 22,余数为84。
2. 解决下列问题:(1)某汽车运动员参加一场比赛,行驶的路程是x^2 - 9千米,其中x表示时间(单位:小时)。
整式的除法练习题(含答案)

《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是() A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( )A 、222)2)(2(y x y x y x -=+-B 、229)3)(3(y x y x y x -=+- C 、1625)54)(54(2+=---n n n D 、22))((m n n m n m -=+--- 二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==yx , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
整式除法练习题带答案

整式除法练习题带答案整式除法是初中代数中的重要内容,也是数学学习中一个相对难以掌握的部分。
在整式除法的练习题中,我们需要运用相关的规则和方法来求解问题。
下面我将给大家一些整式除法的练习题,并附上答案,在答案的解析中也会说明解题思路和关键步骤,希望能对大家的学习有所帮助。
练习题一:求解下列整式的除法,并写出商和余式:1. (2x^3 - 4x^2 + 3x - 1) ÷ (x - 1)2. (3x^4 + 2x^3 - 5x^2 + x - 2) ÷ (x + 2)解析一:1. 首先,我们将除式(x - 1)乘以被除数前面的最高次项系数,即x乘以2x^3,得2x^4;然后将这个结果(x^4)写在答案的位置上;接着,将刚刚得到的2x^4乘以除式的(-1),得-2x^4;将这部分的结果(-2x^4)与被除数中同类项(- 4x^2)相加或相减,然后将结果写在答案的位置上,即- 4x^2 + 2x^4;接下来,将刚刚得到的结果(- 4x^2 + 2x^4)中,x^2的系数2x^2,乘以除式(x - 1),得到2x^3 - 2x^2;将刚刚得到的2x^3 - 2x^2分别与被除数同类相消去,然后将结果2x^3 - 2x^2写在答案的位置上;将2x^3 - 2x^2中的x^2的系数(-2x)乘以除式(x - 1),得到-2x^2 + 2x;将刚刚得到的-2x^2 + 2x分别与被除数中同类项3x相减或相加后,将结果写在答案的位置上,即 3x - 2x^2 + 2x;将3x - 2x^2 + 2x中的x的系数2乘以除式(x - 1),得到2x - 2;将刚刚得到的2x - 2分别与被除数中同类项(-1)相减或相加后,将结果写在答案的位置上,即 -1 + 2x - 2;将-1 + 2x - 2中的常数项(-1)乘以除式(x - 1),得到-1;将刚刚得到的-1与被除数中同类项1相减或相加后,将结果写在答案的位置上,即 0。
整式的除法练习题含答案

精品文档《整式的除法》习题一、选择题)( 1.下列计算正确的是 6 35 22623 4 b)=-3a(b=a3bB.a+a-=aaD.(C.aba)-A.a=÷a223) ÷b 2.计算:(-3b的结果是)(4344 D.9b B.6b C.9A.-9bb) 小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( 3.“124232663223a? =aa a )a= C.aD.÷a)A.(aba=ab= B.(43)的式子是( 4.下列计算结果为xy23332233423(x-x)y(xy)C.xyy))?(xy÷A.(x)y÷)(xy)B.(xD.y()?(822362) 的值等于)=3,则a( 5.已知(abb)÷(a bD.81 C.12 B.9 A.6).下列等式成立的是( 6222+4a )÷4ax B.(2ax=2+axxA.(3a+a)÷a=3a2223a =aa+)÷)(-5=3a+2 D.(aaC.(15a+-10a)÷).下列各式是完全平方式的是(7122222b??ab?2x?11?4xax?xx? CA、、D、 B、4)8.下列计算正确的是(2222y?9x??y)(3x?y)yx?2y)(x?2y)?x?2(3x(、B 、A222m?n)?n?()?25n?16?mm?n)(?5?(4?5n)(4?n D、C、二、填空题23222=_____.ab)b 9.计算:(a)÷b(-a2-9ab+3a,其中一边长为3a,“学习园地”是一个长方形,它的面积为6a则这个“学10.七年级二班教室后墙上的习园地”的另一边长为_____.32-1,商式是x,余式是-1,则除式是11.已知被除式为x_____+3x.522)=_____.)÷(6x(-3y-3xx12.计算:xyyx?23,5?5?18513.若= 则,????23????2322y?2?x?y?8?x?x;.14 =22x?y2??y1004xy??x的值是,,则代数式.若15。
整式的除法练习题含答案

《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是() A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( ) A 、222)2)(2(y x y x y x -=+- B 、229)3)(3(y x y x y x -=+-C 、1625)54)(54(2+=---n n nD 、22))((m n n m n m -=+--- 二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==yx , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
(附答案)《整式的除法》典型例题

《整式的除法》典型例题
例1 计算:
(1);(2);
(3);(4).分析:这几个题都是多项式除以单项式,要用多项式的每一项分别除以单项式再把除得的结果相加.
解:(1);
(2);
(3);
(4).
说明:在多项式除以单项式一定要用多项式的每一项分别除以单项式,注意不要“漏除”.
例2 计算:.
分析:这道题是科学记数法表达的单项式之间的除法运算,同样可以运用法则运算.
解:
说明:数的运算更要注意运算的顺序.
例3计算题:
(1);(2);
(3);
(4);
(5).
解:(1)
(2)=
(3)=
(4)
(5)
=
说明:计算单项式除以单项式时要注意①商的符号;②运算顺序与有理数运算顺序相同.
例4(1)已知一多项式与单项式-7x5y4的积为21 x5y7- 28x6y5+7y(2x53y2)3,求这个多项式.
(2)已知一多项除以多项式所得的商是,余式是,求这个多项式.
解:(1)所求的多项为
(2)所求多项式为
说明:乘法和除法互为逆运算在多项式中经常运用。
根据是“被除式=除式×商式+余式”.
例5 计算:
(1);
(2).
分析:(1)题的底数不同,首先应化为同底数幂,把视作整体进行计算,(2)题先对除式进行乘方,把视作整体运用法则运算.
解:(1)
(2)
说明:多项式因式如果互为相反数时,注意符号.
学习这件事,不是缺乏时间,而是缺乏努力。
学习要有三心:一信心;二决心;三恒心.
知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。
整式的除法练习题含答案

整式的除法练习题含答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《整式的除法》习题一、选择题1.下列计算正确的是( )÷a 2=a 3 +a 4=a 5 C.(ab 3)2=a 2b 6 (3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )3.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6 ÷a 3=a 2 ?a 4=a 124.下列计算结果为x 3y 4的式子是( ) A.(x 3y 4)÷(xy )B.(x 2y 3)?(xy )C.(x 3y 2)?(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )6.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是( )A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( ) A 、222)2)(2(y x y x y x -=+- B 、229)3)(3(y x y x y x -=+-C 、1625)54)(54(2+=---n n nD 、22))((m n n m n m -=+---二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==y x , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的除法专题训练50题(有答案)
1、计算:x・x3+(-2x2)2+24x6÷(-4x2).
2、先化简,再求值:
其中
3、计算:
4、计算
5、计算(-1)2009+(3.14)0++
6、计算题:
7、计算.
[(x+y)2-y(2x+y)-8x]÷2x;
8、先化简,再求值.(-2a4x2+4a3x3-a2x4)÷(-a2x2),其中a=,x=-4.
9、28x4y2÷7x3y
10、化简求值:
已知|a+|+(b-3)2=0,求代数式[(2a+b)2+(2a+b)(b-2a)-6b]÷2b的值.
11、先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),
其中x=5,y=2.
12、计算:
13、计算:.
14、计算:
15、化简求值:
[(x-y)2+y(4x-y)-8x]÷2x,其中x=8,y=2009.
16、计算:(-3x2n+2y n)3÷[(-x3y)2] n
17、计算:[(2x-y)(2x+y)+y(y-6x)]÷2x;
18、先化简,再求值:,其中.
19、计算:.
20、先化简,再求值:
,其中
21、化简:[(+1)(+2)一2]÷
22、先化简,再求值:,其中
23、先化简,再求值:(2a+b)(2a-b)+b(2a+b)-4a2b÷b,其中a=-,b=2.
24、计算:=___________.
25、计算:(-2xy2)2・3x2y÷(-x3y4) =____________。
26、计算:3x6y4÷(xy3)=_____________; (am-bm)÷m =________________
27、已知,那么、的值为()
A、,
B、,
C、,
D、,
28、把下式化成(a-b)p的形式:
15(a-b)3[-6(a-b)p+5](b-a)2÷45(b-a)5
29、一个长方形的面积是平方米,其长为米,用含有的整式表示它的宽为________米.
30、已知一个单项式除以另一个单项式后,得到一个5次单项式,试写出另一个单项式________________(只写出一个正确的答案即可)
31、化简= .
32、四条线段A.B.C.d成比例,其中b=3cm,c=2cm,d=6cm,则a=_____cm。
33、计算:=________________.
34、计算的结果是()
A、―2
B、2
C、4
D、―4
35、计算的结果是( )
(A)a. (B)b. (C)1. (D)-b.
36、下列计算错误的是()
A.-(-2)=2 B. C.2+3=5 D.
37、下列运算中,结果正确的是 ( )
A. B. C. D.
38、下列计算中,正确的是()
A.2a2一a2 = a B.a6÷a2=a3 C.一(a2)3=a5 D.一2a a2=一2a3
39、若,,则的值是( )
A.1 B. C. D.
40、若m÷2n=,则m与n的关系是( )
A.m=2n B.m=―2n C.m一2n=l D.m一2n=―1 41、用乘法公式计算:-12x3y4÷(-3x2y3)·(-xy)
42、先化简,再求值先化简,,
其中=-2 .
43、
44、先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.
45、计算题:
;
46、,其中
47、[3(a+b)2-a-b]÷(a+b)=_________.
48、若3x=a,3y=b,则3x-y=_________.
49、计算:=________.
50、计算:=
51、计算:
52、计算:
53、[(a-b)(a+b)]2÷(a2-2ab+b2)-2ab.
54、已知多项式除以多项式A得商式为,余式为,则多项式A为________________
55、,其中.
参考答案
一、化简
1、-x4;
2、解:原式=x2+6-x2-2x-1+x2-4
=x2-2x+1
=(x-1)2
当x=-2时,原式=(-2-1)2=9
二、计算题
3、.
4、原式=3ab2+a2b2-3ab2-5a2b2
=-4a2b2
5、解:原式=-11+2-+4+2
=6+
6、解:原式=-5-3xy+4x²
7、;
8、;
9、28x4y2÷7x3y
=(28÷7)( x4÷x3)( y2÷y)
=4x4-3y2-1
=4xy
10、∵│a+│+(b+3)2=0,
∴a+=0,b-3=0,
∴a=-,b=3.
[(2a+b)2+(2a+b)(b-2a)-6b]÷2b =(4a2+b2+4ab+b2-4a2-6b)÷2b
=b+2a-3.
把a=-,b=3代入得
b+2a-3=3+2×(-)-3=-1.
11、-20
12、解:原式=[-0.4a n b n-2.5a n+1b2]2÷a2n b2
=a4n+2b2n+4÷a2n b2
=16a2n+2b2n+2
13、解:原式
14、(1)解:原式=
=
15、解:原式=(x2-2xy+y2+4xy-y2-8x)÷2x
=x(x+2y-8) ÷2x
=x+y-4
当x=8,y=2009时,
原式=×8+2009-4=2009
16、原式=-27x6n+6y3n÷(-x3y)2n=-27x6n+6y3n÷x6n y2n=-27x6y n
17、解:[(2x-y)( 2x+y)+y(y-6x)]÷2x
=(4x2-y2+y2-6xy)÷2x
=(4x2-6xy)÷2x
=2x-3y 18、解:
.
当,时,
原式
19、解:原式=9―8+3―1=3.
20、[(y+2)(y―2)一22y2+4]÷(y)
=(2y2―4―22y2+4)÷(y) =(―2y2)÷(y) =―y
当=10,y=,原式=―10×()=
21、(+1)(+2)―2]÷
=(2+3+2―2)÷
=(2+3)÷
=+3
22、解:原式=
=
=
=
把代入原式,原式=
23、解:原式=4a2-b2+2ab+b2-4a2=2ab
当a=-,b=2时,原式=2×(-)×2=-2
三、填空题
24、-2;
25、-12xy
26、3x5y ,a+b
27、A
28、原式=15(a-b)3×[-6(a-b)p+5](a-b)2÷45[-(a-b)5] =2(a-b)p+5
29、
30、xy3(答案不唯一)
31、
32、
33、-2m
四、选择题
34、C
35、B
36、D
37、B
38、D
39、D
40、C
41、-4x2y2
42、解:原式=
=
=
当=-2时
原式=
=-5
43、原式=
=………………2分
=………………4分
44、-20
45、解:原式
46、
47、3(a+b)-1.
48、.
49、.
50、
51、
52、16y;
53、原式=(a-b)2(c+b)2÷(a-b)2-2ab=a2+b2.【答案】a2+b2.
54、X²-2x-0.5
55、解:原式
将代入上式得: 原式。