倍长中线与截长补短常见题型.
全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短与倍长中线一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明.5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论.7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论.9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.全等三角形辅助线之截长补短与倍长中线参考答案与试题解析一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是15.【考点】角平分线的性质.【专题】计算题.【分析】作DE⊥AB于E,如图,则DE=6,根据角平分线定理得到DC=DE=6,再由BD:DC=3:2可计算出BD=9,然后利用BC=BD+DC进行计算即可.【解答】解:作DE⊥AB于E,如图,则DE=6,∵AD平分∠BAC,∴DC=DE=6,∵BD:DC=3:2,∴BD=×6=9,∴BC=BD+DC=9+6=15.故答案为15.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED (AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.【解答】证法一:如答图所示,延长AC,到E使CE=CD,连接DE.∵∠ACB=90°,AC=BC,CE=CD,∴∠B=∠CAB=(180°﹣∠ACB)=45°,∠E=∠CDE=45°,∴∠B=∠E.∵AD平分∠BAC,∴∠1=∠2在△ABD和△AED中,,∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.【点评】本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之.【解答】证明:如图延长AD至E,使AD=DE,连接BE.在△ACD和△EBD中:∴△ACD≌△EBD(SAS),∴AC=BE(全等三角形的对应边相等),在△ABE中,由三角形的三边关系可得AE<AB+BE,即2AD<AB+AC,∴AD<(AB+AC).【点评】本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD ﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE ﹣AD.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:DE=BE﹣AD.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【考点】全等三角形的判定与性质.【分析】在CB上取点G使得CG=CD,可证△BOE≌△BOG,得BE═BG,可证△CDO≌△CGO,得CD=CG,可以求得BE+CD=BC.【解答】解:在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△CODF≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,∵在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证CD=CG和BE=BG是解题的关键.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】探究型.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠CEG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的性质.【专题】探究型.【分析】作BE⊥BC,AE⊥AC,两线相交于点E,则四边形AEBC是正方形,由∠DAC=30°,得∠DAE=60°,由AD=AC,得AD=AE,所以,三角形AED是等边三角形,可得∠AED=60°,∠DEB=30°,所以,△ADC≌△EDB,可得BD=CD;【解答】解:BD=CD.证明:作BE⊥BC,AE⊥AC,两线相交于点E,∵△ABC是等腰直角三角形,即AC=BC,∴四边形AEBC是正方形,∵∠DAC=30°,∴∠DAE=60°,∵AD=AC,∴AD=AE,∴△AED是等边三角形,∴∠AED=60°,∴∠DEB=30°,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BD=CD.【点评】本题主要考查了等腰直角三角形的性质、等边三角形的性质和全等三角形的判定与性质,作辅助线构建正方形,通过证明三角形全等得出线段相等,是解答本题的基本思路.8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)在AD上截取AF=AM,证明△DFM≌△MBN即可;(2)在AD的延长线上截取AF=AM,证明△DFM≌△MBN即可.【解答】证明:(1)如图1,在AD上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=120°,∵BN是∠DBA外角平分线,∴∠MBN=120°,∴∠DFM=∠MBN,∵∠DMN=60°,∴∠BMN+∠AMD=120°,∴∠A=60°,∴∠FDM+∠AMD=120°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴△FDM≌△BMN(ASA),∴DM=MN.(2)点M在AB的延长线上,如图2所示,在AD的延长线上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=60°,∵BN是∠DBA外角平分线,∴∠MBN=60°,∴∠DFM=∠MBN,∵∠BMN=∠AMD+∠DMN,∠FDM=∠A+∠AMD,∠DMN=∠A=60°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴△FDM≌△BMN(ASA),∴DM=MN.【点评】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,通过辅助线构造全等三角形是解决问题的关键.9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AB到F,使BF=CE,连接EF与BC相交于点N,利用“角角边”证明△BFN和△CEN全等,根据全等三角形对应边相等可得BN=CN,EN=FN,再根据正方形的性质可得∠BAN=∠DAM,然后求出∠BAN=∠EAN,再根据等腰三角形三线合一可得AE=AF,从而得证.【解答】证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,又∵M是CD的中点,∴∠BAN=∠DAM,∵∠BAE=2∠DAM,∴∠BAN=∠EAN,∴AN既是△AEF的角平分线也是中线,∴AE=AF,∵AF=AB+BF,∴AE=BC+CE.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,难点在于作辅助线构造出等腰三角形和全等三角形.10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】延长CB到G,使BG=DF,连接AG,由四边形ABCD为正方形,利用正方形的性质得到AB=AD,AB∥CD,∠D=∠ABC=90°,进而得到∠5=∠BAF=∠1+∠3,∠ABG=180°﹣∠ABC=90°,利用SAS得到三角形ABG与三角形ADG全等,利用全等三角形对应角相等得到∠G=∠5,∠1=∠2=∠4,等量代换得到∠G=∠EAG,利用等角对等边得到AE=GE,由GE=BE+BG,等量代换即可得证.【解答】解:延长CB到G,使BG=DF,连接AG,∵四边形ABCD为正方形,∴AB=AD,AB∥CD,∠D=∠ABC=90°,∴∠5=∠BAF=∠1+∠3,∠ABG=180°﹣∠ABC=90°,在△ABG和△ADG中,,∴△ABG≌△ADF(SAS),∴∠G=∠5,∠1=∠2=∠4,∴∠G=∠5=∠1+∠3=∠4+∠3=∠EAG,∴AE=GE=BE+GB=BE+DF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】延长CE到F,使CE=EF,连接FB,由△AEC≌△BEF得出对应的边角相等,进而求证△CBF≌△CBD,即可得出结论.【解答】证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠ACB,∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;∵CB是△ADC的中线,∴AB=BD,又∵AB=AC,AC=FB,∴FB=BD,又CB=CB,∴△CBF≌△CBD(SAS),∴CD=CF=CE+EF=2CE.【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质.解决此题的关键是通过延长中线构造全等三角形.考点卡片1.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE4.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.5.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.6.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.。
全等三角形证明题辅助线专题--截长补短和倍长中线

全等三角形证明题辅助线专题--截长补短和倍长中线一、截长补短1.如图所示,AC∥BD,EA、EB分别平分∠CAB和∠DBA,点E在线段CD上,求证:AB=AC+BD.2.如图,在四边形ABCD中,AD=CD,BD平分∠ABC,DE⊥AB于点E,求证:AE+BC=BE.3.如图,△ABC中,∠CAB=∠CBA=45∘,点E为BC的中点,CN⊥AE交AB于点N,连接EN.求证AE=CN+EN.4.如图,△ABC的∠B和∠C的平分线BD,CE相交于点F,∠A=60°,(1)求∠BFC的度数.(2)求证:BC=BE+CD.5.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:第2页,共28页BC=AB+CE.6.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?2(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明;2若不成立,请写出它们之间的数量关系,并证明.7.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF = 60°.探究图中线段BE,EF,FD之间的数量关系.8.如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,(1)求∠AOC的度数;(2)求证:OE=OD;(3)猜测AE,CD,AC三者的数量关系,并证明.第4页,共28页9.如图在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于点D,延长DB点F,使BF=BD,连接AF.(1)求证:AF=CD;(2)若CE平分∠ACB交AB于点E,试猜想AC、AF、AE三条线段之间的数量关系,并证明你猜想的结论.二、倍长中线10.如图,在△ABC和△DEF中,AB=DE,AC=DF,AM和DN分别是中线,且AM=DN.求证:△ABC≌△DEF.11.(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图①,△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:Ⅰ.由已知和作图能得到△ADC≌△EDB,依据是______.A.SSS B.SAS C.AAS D.HLⅡ.由“三角形的三边关系”可求得AD的取值范围是______.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【初步运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.12.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BC交AC于F,求证:AF=EF.第6页,共28页13.如图,在△ABC中,AD是中线,∠BAC=∠BCA,点E在BC的延长线上,CE=AB,连接AE.求证:AE=2AD.14.如图,Rt△ABC中,∠ABC=90°(1)如图1,若BD为高线,AB=4,BC=3,AC=5,求BD的长(2)如图2,若BD为中线,求证:BD=1AC215.如图,在五边形ABCDE中,∠E=90O,BC=DE,,连接AC,AD,且AB=AD,AC⊥BC.(1)求证:AC=AE(2)如图,若∠ABC=∠CAD,AF为BE边上的中线,求证:AF⊥CD;(3)如图,在(2)的条件下,AE=8,DE=5,则五边形ABCDE的面积为_______。
截长补短与倍长中线模型的应用小结教学案精编

倍长中线与截长补短题型一:倍长中线【例1】 已知ABC △中,AD 平分BAC ∠,且BD CD =,求证:AB AC =.【例2】 ⑴如下左图,已知ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =.给出下列结论:①AD =2AC ;②CD =2CE ;③∠ACE =∠BCD ;④CB 平分∠DCE ,则以上结论正确的是 .⑵如下右图,在△ABC 中,点D 、E 为边BC 的三等分点,给出下列结论:①BD =DE =EC ;②AB +AE >2AD ;③AD +AC >2AE ;④AB +AC >AD +AE ,则以上结论正确的是 .A B CEDCBAED BED CBA【例3】 如图,已知在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【例4】 在正方形ABCD 中,PQ ⊥BD 于P ,M 为QD 的中点,试探究MP 与MC 的关系.ABQPMDC BA题型二:截长补短FE D CB AD CB A 【例5】 在ABC △中,A ∠的平分线交BC 于D ,AB AC CD =+,40B ∠=︒,求C ∠的大小.D CB A【例6】 如图,在ABC △中,2B C ∠=∠,BAC ∠的平分线AD 交BC 于点D .求证:AB BD AC +=.【例7】 已知:在ABC △中,AB CD BD =-,AD BC ⊥,求证:2B C ∠=∠.【例8】 ⑴正方形ABCD 中,对角线AC 与BD 交于O ,点E 在BD 上,AE 平分∠DAC ,求证:2ACAD EO =-; ⑵正方形ABCD 中,M 在CD 上,N 在DA 延长线上,CM =AN ,点E 在BD 上,NE 平分∠DNM ,EF ⊥MN ,请问MN 、AD 、EF 有什么数量关系?MFEDCBANO EDCBADC B A训练1. 如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.MECBA训练2. ABC △中,AB AC >,AD 、AE 分别是BC 边上的中线和A ∠的平分线,则AD 和AE 的大小关系是AD ______AE .(填“>”、 “<”或“=”)训练3. 已知:如图,BDE △是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD AC =,求证:DE DC AE +=.训练4. 已知等腰ABC △,100A ∠=︒,ABC ∠的平分线交AC 于D ,求证:BD AD BC +=.D C B AE BA题型一 倍长中线 课后演练【演练1】 在ABC △中,59AB AC ==,,则BC 边上的中线AD 的长的取值范围是什么?【演练2】 在Rt ABC △中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.FEDCBA题型二 截长补短 课后演练【演练3】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?(提示:过点M 作MG BD ∥交AD 于点G )NEB M A D【演练4】 如图所示,已知ABC △中,A C B C =,90C ∠=︒,AD 平分BAC ∠,求证:AC CD AB +=.DCBA【演练5】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .F EDCB A。
专题 全等三角形模型——截长补短与倍长中线(解析版)

全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
截长补短法以及倍长中线法是几何证明中十分重要的方法

截长补短法以及倍长中线法是几何证明中十分重要的方法
【探究对象】
截长补短法是几何证明题中十分重要的方法,通常来证明几条线段的数量关系,常见做辅助线方法有:
截长法:
⑴过某一点作长边的垂线;
⑵在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短法:
⑴延长短边。
⑵通过旋转等方式使两短边拼合到一起,证与长边相等。
2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
中线倍长法及截长补短经典讲义

几何证明中常用辅助线(一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。
已知:如图,△ABC中,AD是BC边上的中线,求证:AD ﹤21(AB+AC)小结:涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。
它可以将分居中线两旁的两条边AB、AC和两个角∠BAD和∠CAD集中于同一个三角形中,以利于问题的获解。
例2、中线一倍辅助线作法△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长AD于F,延长MD到N,作BE⊥AD的延长线于E 使DN=MD,连接BE 连接CD例3、△ABC中,AB=5,AC=3,求中线AD的取值范围例4、已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE课堂练习:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAEC作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论2、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF(二)截长补短法教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC .求证:∠BAD +∠BCD =180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中,⎩⎨⎧==CD AD DFDE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180°.例2. 如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .DABCM TEABCD图1-1FEDCBA图1-2求证:CD =AD +BC .分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的. 证明:在CD 上截取CF =BC ,如图2-2在△FCE 与△BCE 中,⎪⎩⎪⎨⎧=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1.又∵AD ∥BC ,∴∠ADC +∠BCD =180°,∴∠DCE +∠CDE =90°, ∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△FDE 与△ADE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠43DEDE ADE FDE ∴△FDE ≌△ADE (ASA ),∴DF =DA , ∵CD =DF +CF ,∴CD =AD +BC .例3. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD .求证:∠BAP +∠BCP =180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中,⎩⎨⎧==BP BP PDPE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD .∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE .在Rt △APE 与Rt △CPD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE PDC PEA PD PE ∴Rt △APE ≌Rt △CPD (SAS),∴∠PAE =∠PCD 又∵∠BAP +∠PAE =180°,∴∠BAP +∠BCP =180° 例4. 已知:如图4-1,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC .ADB CEF1234图2-2ABCDP12N图3-1P12NABCD E 图3-2DCB A12图4-1证明:方法一(补短法)延长AC 到E ,使DC =CE ,则∠CDE =∠CED ,如图4-2∴∠ACB =2∠E ,∵∠ACB =2∠B ,∴∠B =∠E , 在△ABD 与△AED 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD E B 21 ∴△ABD ≌△AED (AAS ),∴AB =AE . 又AE =AC+CE =AC +DC ,∴AB =AC +DC . 方法二(截长法)在AB 上截取AF =AC ,如图4-3 在△AFD 与△ACD 中,⎪⎩⎪⎨⎧=∠=∠=AD AD AC AF 21 ∴△AFD ≌△ACD (SAS ),∴DF =DC ,∠AFD =∠ACD .又∵∠ACB =2∠B ,∴∠FDB =∠B ,∴FD =FB . ∵AB =AF +FB =AC +FD ,∴AB =AC +CD .上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。
全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短与倍长中线一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D 到AB的距离为6,则BC的长是.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△AB C中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN 于点E.(1(2(35的数量关6.(2012BF交AC 于点E7.(2010内的一点,且AD=AC8.已知点N.(1(2)若点9.(2015证:1011.(2010全等三角形辅助线之截长补短与倍长中线参考答案与试题解析一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D 到AB的距离为6,则BC的长是15 .【考点】角平分线的性质.【专题】计算题.【分析】作DE⊥AB于E,如图,则DE=6,根据角平分线定理得到DC=DE=6,再由BD:DC=3:2可计算出BD=9,然后利用BC=BD+DC进行计算即可.【解答】解:作DE⊥AB于E,如图,则DE=6,∵AD∵BD:∴BD=故答案为【点评】2.(2010AB=AC+CD.【考点】【专题】【分析】∴【解答】(180°﹣∠ACB)=45°,∠E=∠CDE=45°,∵AD∴∠1=∠2在△ABD∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,【点评】3.如图,(【考点】【专题】【分析】之.【解答】在△ACD在△ABE可得AE<∴AD<【点评】4.(2013D,BE⊥MN 于点E.(1(2(3【考点】【专题】证明题.【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE﹣AD.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:【点评】“AAS”;5的数量关【考点】【分析】BE+CD=BC【解答】∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∵在△COD∵在△BOE,∴BE=BG,∴BE+CD=BG+CG=BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证CD=CG和BE=BG是解题的关键.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC 于点E,∠ABE+∠CEB=180°,判断BD与CE的数量关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】探究型.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠C EG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.7.(2010内的一点,且AD=AC【考点】【专题】【分析】由AD=AC,得AD=AE【解答】证明:作∵△ABC∴四边形∵AD=AC,∴AD=AE,∴△AED在△ADC中,SAS),∴BD=CD.【点评】8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立?请你画出图形并证明你的结论.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)在AD上截取AF=AM,证明△DFM≌△MBN即可;(2)在AD的延长线上截取AF=AM,证明△DFM≌△MBN即可.【解答】证明:(1)如图1,在AD上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=120°,∵BN是∠DBA外角平分线,∴∠MBN=120°,∴∠DFM=∠MBN,∵∠DMN=60°,∴∠BMN+∠AMD=120°,∴∠A=60°,∴∠FDM+∠AMD=120°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴DM=MN.(2)点M在∵△ABD∴△AMF∵BN在△FDM∴DM=MN.【点评】9.(2015证:【考点】【专题】证明题.【分析】延长AB到F,使BF=CE,连接EF与BC相交于点N,利用“角角边”证明△BFN和△CEN全等,根据全等三角形对应边相等可得BN=CN,EN=FN,再根据正方形的性质可得∠BAN=∠DAM,然后求出∠BAN=∠EAN,再根据等腰三角形三线合一可得AE=AF,从而得证.【解答】证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,又∵M是CD的中点,∴∠BAN=∠DAM,∵∠BAE=2∠DAM,∴∠BAN=∠EAN,∴AN既是△AEF的角平分线也是中线,∴AE=AF,∵AF=AB+BF,∴AE=BC+CE.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,难点在于作辅助线构造10求证:【考点】【专题】【分析】与三角形ADG得到【解答】∵四边形在△ABG【点评】11.(2010【考点】【专题】【分析】延长CE到F,使CE=EF,连接FB,由△AEC≌△BEF得出对应的边角相等,进而求证△CBF≌△CBD,即可得出结论.【解答】证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠ACB,∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;∵CB是△ADC的中线,∴AB=BD,又∵AB=AC,AC=FB,∴FB=BD,又CB=CB,∴△CBF≌△CBD(SAS),∴CD=CF=CE+EF=2CE.【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质.解决此题的关键是通过延长中线构造全等三角形.1(1(2(3(4略.2(1(23注意:有时不必的平4(1(2(3成条件,就可以得到另外两个元素为结论.5.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.6.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线类
1如图,在 ABC 中,.B =2. C , BAC 的平分线 AD 交BC 与D .求证: AB BD = AC .
2如图,在 ABC 中,AB B^AC , BAC 的平分线 AD 交BC 与D .求证: .B =2. C .
3 女口图,ABC 中, AB=2AC ,AD 平分 BAC ,且 AD=BD ,求证:CD!AC
4如图,在四边形ABCD 中,BC > BA,AD = CD ,BD 平分.ABC ,求证: AC =180°
5 已知 ABC 中,/A =6°, BD 、CE 分别平分 ^ABC 和三ACB , BD 、 CE 交于点0,试判断BE 、CD 、BC 的数量关系,并加以证明
.
C
C
6 如图,在 ABC 中,.B =60 , AD 、CE 分别平分.BAC 、. BCA ,且 AD
7 如图,已知在 L ABC 内,.BAC =60° , ■ C = 40° , P , Q 分别在 BC , AP ,BQ 分别是• BAC ,■ ABC 的角平分线。
求证:
BQ+AQ=AB+BP
8在 ABC 中,AB AC ,AD 是.BAC 的平分线.P 是AD 上任意一点.求 证:AB - AC PB -PC .
9如图,P 是ABC 的外角• EAC 的平分线AD 上的点(不与A 重合)求 证:PB PC AB AC
与CE 的交点为F .求证: FE =FD
.
CA 上,并且 C
10.如图,在Rt ABC中,AD是斜边BC上的高,BE是.ABC的平分线,AD 交BE 于O,EF _AD 于F,求证:AF =0D .
11.已知在ABC中,.A =90,B的平分线交AC于E,交BC边上的高AH 于D,过D作DF // BC交AC于F,求证:AE =FC .
12已知在△ABC中,AB=AC,D在AB 上, E在AC的延长线上,DE交
BC 于F,且DF=EF,求证:BD=CE
巧添辅助线——倍长中线
〔.△ABC 中,AB=5 , AC=3,求中线AD 的取值范围
2如图,△ABC 中,E 、F 分别在AB 、AC 上, DE _LDF , D 是中点,试比 较BE+CF 与EF 的大小.
4、如图,A ABC 中,BD=DC=AC , E 是DC 的中点,求证:AD 平分ZBAE.
5 已知 CD=AB ,ZBDA= /BAD ,AE 是△ABD 的中线,求证:ZC= ZBAE
6如图:在A ABC 中,AB=AC,延长AB 到D ,使BD=AB, E D
为AB 中点, 连接CE,CD ,请问CD 与CE
有怎样的数量关系,并证明你的结论
3.如图,AD 为- ABC 的中线,
交AC 于F.求证:BE CF
A
7.已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,
AB = AC ,D 、E 在 BC 上,且 DE=EC ,过
D 作 DF // BA 交 A
E 于点
F , DF=AC. 求证:
AE 平分.BAC
9•在四边形 ABCD 中,AB /DC , E 为BC 边的中点,ZBAE= ZEAF ,AF
与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系, 并证明你的结论
延长BE 交AC 于F ,求证:
AF=EF
8.已知:如图,在 ABC 中
,
10.已知:如图,ABC中,C=90 , CM_AB于M , AT平分.BAC交CM于D,交BC于T,过D作DE//AB交BC于E,求证:CT=BE.
D B
C。