(备战2012中考15分钟精华题)考点9分式方程

合集下载

备战中考数学:分式方程的解题秘籍之基础知识

备战中考数学:分式方程的解题秘籍之基础知识

备战中考数学:分式方程的解题秘籍之基础知识归纳 1:分式方程的有关概念基础知识归纳:1、分式方程分母里含有未知数的方程叫做分式方程.2、分式方程的增根分式方程化成整式方程解得的未知数的值,如果这个值令最简公分母为零则为增根.基本方法归纳:判断分式方程时只需看分母中必须有未知数;分式方程的解只需带入方程看等式是否成立即可.注意问题归纳:未知数的系数必须不能为零;判断一个数增根的条件缺一不可:1、这个数是解化成的整式方程的根,2、使最简公分母为零.本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.考点:1.分式方程的解;2.解一元一次不等式.归纳2:分式方程的解法基础知识归纳:1、解分式方程的步骤:解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.基本方法归纳:分式方程首要是方程两边同乘以分母最小公倍数、去掉分母,转化为整式方程求解,其次注意一定要验根.注意问题归纳:解完方程后一定要注意验根.本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.考点:解分式方程.归纳3:分式方程的应用基础知识归纳:1、分式方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.考点:分式方程的应用.。

中考数学复习总结第9讲:分式方程(含答案)

中考数学复习总结第9讲:分式方程(含答案)

中考数学复习第9讲:分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分方程和整式方程根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程。

2、解分式方程的一般步骤:1、 2、 3、3、增根:在进行分式方程去分母的变形时,有时可产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

【名师提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程的培根与无解并非用一个概念,无解完包含产生培根这一情况,也包含原方程去分母后的整式方程无解。

如:1x a x ---3x=1无解,有a 的值培根】 三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 完要检验是否为原方程的根,又要检验是否符合题意。

【名师提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水、航行这一类型】【重点考点例析】考点一:分式方程的概念(解为正、负数) 例1 (2009•孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 思路分析:先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求a 的取值范围.解:去分母得,2x +a =x -1,∴x =-1-a ,∵方程的解是正数,∴-1-a >0即a <-1。

又因为x -1≠0,∴a ≠-2。

则a 的取值范围是a <-1且a ≠-2故选D .点评:由于我们的目的是求a 的取值范围,根据方程的解列出关于a 的不等式,另外,解答本题时,易漏掉a ≠-2,这是因为忽略了x -1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.例2 (2012•鸡西)若关于x 的分式方程2213m x x x+-=-无解,则m 的值为( ) A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.5 思路分析:去分母得出方程①2m +x )x -x (x -3)=2(x -3),分为两种情况:①根据方程无解得出x =0或x =3,分别把x =0或x =3代入方程①,求出m ;②求出当2m +1=0时,方程也无解,即可得出答案.解:方程两边都乘以x (x -3)得:(2m +x )x -x (x -3)=2(x -3),即(2m +1)x =-6,①①∵当2m +1=0时,此方程无解,∴此时m =-0.5,②∵关于x 的分式方程2213m x x x+-=-无解, ∴x =0或x -3=0,即x =0,x =3,当x =0时,代入①得:(2m +0)×0-0×(0-3)=2(0-3),解得:此方程无解;当x =3时,代入①得:(2m +3)×3-3(3-3)=2(3-3),解得:m =-1.5,∴m 的值是-0.5或-1.5,故选D .点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x 的值,题目比较好,需要考虑周全,不要漏解,难度也适中.对应训练1.(2010•牡丹江)已知关于x 的分式方程22x +-2a x +=1的解为负数,那么字母a 的取值范围是 .答案:a >0且a ≠22.(2011•黑龙江)已知关于x 的分式方程1a x +-221a x x x --+=0无解,则a 的值为 .答案:0、12、或-1 解:去分母得ax -2a +x +1=0. ∵关于x 的分式方程1a x +-221a x x x --+=0无解, (1)x (x +1)=0,解得:x =-1,或x =0,当x =-1时,ax -2a +x +1=0,即-a -2a -1+1=0,解得a =0,当x =0时,-2a +1=0,解得a =12. (2)方程ax -2a +x +1=0无解,即(a +1)x =2a -1无解,∴a +1=0,a =-1.故答案为:0、12或-1. 点评:本题主要考查了分式方程无解的情况,需要考虑周全,不要漏解,难度适中.考点二:分式方程的解法例3 (2012•上海)解方程:261339x x x x +=+--. 思路分析:观察可得最简公分母是(x +3)(x -3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x +3)(x -3),得x (x -3)+6=x +3,整理,得x 2-4x +3=0,解得x 1=1,x 2=3.经检验:x =3是方程的增根,x =1是原方程的根,故原方程的根为x =1.点评:本题考查了分式方程的解法.注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.对应训练3.(2012•苏州)解分式方程:231422x x x x+=++. 解:去分母得:3x +x +2=4, 解得:x =12, 经检验,x =12是原方程的解.考点三:分式方程的增根问题 例4 (2012•攀枝花)若分式方程:2+12kx x --=12x-有增根,则k = . 思路分析:把k 当作已知数求出x =22k-,根据分式方程有增根得出x -2=0,2-x =0,求出x =2,得出方程22k-=2,求出k 的值即可. 解:∵分式方程2+12kx x --=12x -有增根, 去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k ≠0时,x =22k-; 当2-k =0是,此方程无解,即此题不符合要求;∵分式方程2+12kx x --=12x-有增根, ∴x -2=0,2-x =0,解得:x =2,即22k-=2, 解得:k =1.故答案为:1.点评:本题考查了对分式方程的增根的理解和运用,题目比较典型,是一道比较好的题目,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.对应训练4.(2012•佳木斯)已知关于x 的分式方程12a x -+=1有增根,则a = . 解:方程两边都乘以(x +2)得,a -1=x +2,∵分式方程有增根,∴x +2=0,解得x =-2,∴a -1=-2+2,解得a =1.故答案为:1.考点四:分式方程的应用例5 (2012•岳阳)岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a 个月,乙队做b 个月(a 、b 均为整数)分工合作的方式施工,问有哪几种施工方案?思路分析:(1)设乙队需要x 个月完成,则甲队需要(x -5)个月完成,根据两队合作6个月完成求得x 的值即可;(2)根据费用不超过141万元列出一元一次不等式求解即可.解:(1)设乙队需要x 个月完成,则甲队需要(x -5)个月完成,根据题意得: 11156x x +=-, 解得:x =15,经检验x =15是原方程的根.答:甲队需要10个月完成,乙队需要15个月完成;(2)根据题意得:15a +9b ≤141,11015a b +=, 解得:a ≤4 b ≥9.∵a 、b 都是整数∴a =4 b =9或a =2 b =12点评:此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.对应训练5.(2012•珠海)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x 元,根据题意列方程得,6006003054x x -=, 解得,x =4,检验:当x =4时,分母不为0,故x =4是原分式方程的解.答:第一次每只铅笔的进价为4元.(2)设售价为y 元,根据题意列不等式为:600600(4)(5)4205444y y ⨯-+⨯-⨯…, 解得,y ≥6.答:每支售价至少是6元.【聚焦中考】1.(2012•莱芜)对于非零的实数a 、b ,规定a ⊕b =﹣.若2⊕(2x ﹣1)=1,则x =( ) A . B . C . D . ﹣分析: 根据新定义得到﹣=1,然后把方程两边都乘以2(2x ﹣1)得到2﹣(2x ﹣1)=2(2x ﹣1),解得x =,然后进行检验即可.选A .点评: 本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.也考查了阅读理解能力.2.(2012•潍坊)方程666003x x-=+的根是 . 答案:x =303.(2012•日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?解:设九年级学生有x 人,根据题意,列方程得:193619360.888x x ⨯=+, 经检验x =352是原方程的解.)答:这个学校九年级学生有352人.4.(2012•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.答:小丽所乘汽车返回时的速度是75千米/时.5.(2012•临沂)某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量. 答:手工每小时加工产品27件.6.(2012•济南)冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?答:油桃每斤为8元,则樱桃每斤是16元.7.(2012•泰安)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?故甲,乙两公司单独完成此项工程,各需20天,30天;(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y -1500)元, 根据题意得12(y +y -1500)=102000,解得y =5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少.8.(2012•威海)小明计划用360元从大型系列科普丛书《什么是什么》(每本价格相同)中选购部分图书.“六一”期间,书店推出优惠政策:该系列丛书8折销售.这样,小明比原计划多买了6本.求每本书的原价和小明实际购买图书的数量.分析: 根据:用360元钱打折后可购书本数﹣打折前360元钱可购书本数=6,列分式方程. 所以,每本书的原价为15元,小明实际可购买图书30本.点评: 本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.【备考真题过关】 一、选择题1.(2012•丽水)把分式方程214x x=+转化为一元一次方程时,方程两边需同乘以( ) A .x B .2x C .x +4 D .x (x +4) 答案:D .2.(2012•随州)分式方程100602020v v=+-的解是( ) A .v =-20 B .v =5 C .v =-5 D .v =20答案:B .3.(2012•宜宾)分式方程21221339x x x -=-+-的解为( ) A .3 B .-3 C .无解 D .3或-3 答案:C4.(2012•台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .40340204x x =⨯+ B .40340420x x =⨯+ C .40140204x x +=+ D .40401204x x =-+ 答案:A5.(2012•宁夏)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( )A .4030201.5x x -= B .4030201.5x x-= C .3040201.5x x -= D .3040201.5x x -= 答案:B7.(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A .B .C .D .分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.8.(2012•吉林)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()A.B.C.D.分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.选:C.点评:此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(2012•黑河)若关于x的分式方程=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5分析:先把方程两边乘以x(x﹣3)得到x(2m+x)﹣x(x﹣3)=2(x﹣3),整理得(2m+1)x=﹣6,由于关于x的分式方程=无解,则可能有x=3或x=0,然后分别把它们代入(2m+1)x=﹣6,即可得到m的值,然后再讨论方程(2m+1)x=﹣6无解得到m=﹣.选D.点评:本题考查了分式方程的解:把分式方程转化为整式方程,然后把整式方程的解代入原方程进行检验,若整式方程的解使分式方程的分母不为零,则这个整式方程的解是分式方程的解;若整式方程的解使分式方程的分母为零,则这个整式方程的解是分式方程的增根.10.(2012•赤峰)解分式方程的结果为()A.1 B.﹣1 C.﹣2 D.无解分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.选D.点评:此题考查了分式方程的求解方法.此题比较简单,注意掌握转化思想的应用,注意解分式方程一定要验根.二、填空题11.(2012•襄阳)分式方程253x x=+的解是.答案:x=212.(2012•铁岭)某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.答案:5451 20x+=13.(2012•资阳)观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.答案为:x=n+3或x=n+4.点评:此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.14.(2012•连云港)今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调台数,条例实施后比实施前多10%,则条例实施前此款空调的售价为元.分析:可根据:“同样用11万元所购买的此款空调台数,条例实施后比实施前多10%,”来列出方程组求解.答案为:2200.点评:此题主要考查了分式方程的应用,解题关键是找准描述语,找出合适的等量关系,列出方程,再求解.15.(2012•鞍山)A、B两地相距10千米,甲、乙二人同时从A地出发去B地,甲的速度是乙的速度的3倍,结果甲比乙早到小时.设乙的速度为x千米/时,可列方程为.分析:根据甲乙速度关系得出两人所行走的时间,进而得出等式方程即可.答案为:+=.点评:此题考查了由实际问题抽象出分式方程,解决行程问题根据时间找出等量关系是解决本题的关键.三、解答题16.(2012•盐城)解方程:321 x x=+.故原方程的解为:x=-3.17.(2012•咸宁)解方程:28124x x x -=--. 原分式方程无解. 18.(2012•泰州)当x 为何值时,分式32x x --的值比分式12x -的值大3? 当x =1时,分式32x x --的值比分式12x -的值大3. 19.(2012•长春)某班有45名同学参加紧急疏散演练,对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快30秒,求指导前平均每秒撤离的人数.答:指导前平均每秒撤离的人数为1人.20.(2012•北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.答:一片国槐树叶一年的平均滞尘量为22毫克.21.(2012•玉林)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由. 即甲车单独完成需要15天,乙车单独完成需要30天;(2)①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.22.(2012•河池)解分式方程:.分析: 先把方程两边都乘以3(x ﹣3)得到3(5x ﹣4)+x ﹣3=6x +5,解得x =2,然后进行检验确定分式方程的解.所以原方程的解为x =2.点评: 本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.24.(2012•贵阳)为了全面提升中小学教师的综合素质,贵阳市将对教师的专业知识每三年进行一次考核.某校决定为全校数学教师每人购买一本义务教育《数学课程标准(2011年版)》(以下简称《标准》),同时每人配套购买一本《数学课程标准(2011年版)解读》(以下简称《解读》),其中《解读》的单价比《标准》的单价多25元.若学校购买《标准》用了378元,购买《解读》用了1053元,请问《标准》和《解读》的单价各是多少元? 考点: 分式方程的应用。

分式方程篇(解析版)--中考数学必考考点总结+题型专训

分式方程篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。

2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。

3.解分式方程。

具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。

把分式方程化成整式方程。

②解整式方程。

③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。

若公分母不为0,则未知数的值即是原分式方程的解。

若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。

1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣临近中考,大家的复习任务变得越发的紧张,为了帮助同学们提升复习的效率,所以王老师今天特意为大家总结中考数学必考的内容——分式知识点,以及方式方程专题练习50题,只要能够掌握了,考试就会一分不扣。

分式知识点关键词:分式、分式的基本性质、分式的约分、分式的通分、分式的运算、整数指数幂、科学计数法、分式方程、最后结果一定时最简形式必须清晰知道的基本概念:分式:1,定义:一般地,如果A和B为两个整式,并且B中含有字母,那么式子A/B就叫做分式,A为分子,B为分母。

请联系前面讲的分数,基本是一样的2,与分式有关的一些知识点:1>分式有意义,要求分母不为0,隐含分母要有字母;2>分式无意义,分母为0;3>分式值为0,分子为0 ,且分母不为0;4>分式值为负或小于0,分子分母异号;5>分式值为正或大于0,分子分母同号;6>分式值为1,分子分母值相等;7>分式值为-1,分子分母值互为相反数;这些知识点看上去非常简单,甚至给人感觉都是废话。

那是因为没有放在具体的题目中,其实你那些没有拿到的分都是从这些很简单的知识里面来的。

比如,一个很复杂的分式,分子分母都很复杂,但是如果能够知道它的值为1,则表示分子和分母是相等的。

这些东西要有谦虚的心态在以后的学习中才能慢慢体会到的。

这里给大家强调三点!1.分母中一定要含有字母的式子才叫分式;也就是分式的分母要满足两个条件的,a>不为0,b>必须含有字母;2.分式与整式的和,也是分式。

3.判断分式有无意义时,一定要讨论原分式,而不能时化简后的分式!举例:问(x2-1)/x2-x-2何时有意义?答案是x≠2和x≠-1;而如果化简后只能得到x≠2这个答案了。

分式的基本知识:1.分式的基本性质,分式的分子分母同时乘以或除以一个不等于0的数,分式的值不变;2.分式的符号,分式的分子分母和分式本身的符号,改变其中任何两个,分式的值不变;3.分式的约分,就是把一个分式的分子和分母的公因式约去,约至它们再也没有公因式时就是最简分式了。

初三数学总复习--分式方程及应用

初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。

2012中考中考数学分式方程

2012中考中考数学分式方程

1.解分式方程常见误区: 1.解分式方程常见误区: 解分式方程常见去分母时漏乘整数项; (2)去分母时弄错符号 去分母时弄错符号; (2)去分母时弄错符号; (3)换元出错 换元出错; (3)换元出错; (4)忘了验根 忘了验根. (4)忘了验根. 2.列分式方程解应用题常见误区: 2.列分式方程解应用题常见误区: 列分式方程解应用题常见误区 (1)单位不统一 单位不统一; (1)单位不统一; (2)解完分式方程后忽略 双检” 解完分式方程后忽略“ (2)解完分式方程后忽略“双检”.
6 解 : 设x − x = y, 则y − + 1 = 0 , y +y-6=0,即(y+3)(y∴y2+y-6=0,即(y+3)(y-2)=0, y1=-3,y2=2
2
x=-3,△<0; 当y=-3时,x2-x=-3,△<0; y=当y=2时,原方程为x2-x-2=0,x1=2,x2=-1. y=2时 原方程为x
课前热身
桂林) 4.(2008年·桂林)用换元法解方程 2008年 桂林 若设x x+1=y, 若设x2-3x+1=y,则原方程可化为 A.y2-6y+8=0 y+8 B . y 2- 6 y - 8 = 0 y+8 C.y2+6y+8=0 D . y 2+ 6 y - 8 = 0 5.用换元法解方程: 用换元法解方程: , ( A )
分式方程
要点、 要点、考点聚焦
1.解分式方程的基本思路 1.解分式方程的基本思路 将分式方程化为整式方程. 将分式方程化为整式方程 2.解分式方程的一般步骤 把方程两边都乘以最简公分母,化成整式方程; (1)把方程两边都乘以最简公分母,化成整式方程; 解这个整式方程; (2)解这个整式方程; 检验:把整式方程的根代入最简公分母, (3)检验:把整式方程的根代入最简公分母,若使 最简公分母值为0 则这个根是原方程的增根, 最简公分母值为0,则这个根是原方程的增根,必须 舍去. 舍去. 用换元法解分式方程是一种重要的思想方法, 3. 用换元法解分式方程是一种重要的思想方法,也是中 考的必考知识. 考的必考知识

专题09 中考数学初中数学复习考点精讲热考题型专项训练 分式方程(解析版)

专题09 中考数学初中数学复习考点精讲热考题型专项训练 分式方程(解析版)

专题09 分式方程【思维导图】【知识要点】知识点一:分式的基础概念:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。

与分式有关的条件:要求表示分式有意义分母≠0分式无意义分母=0分式值为0分子为0且分母不为0分式值为正或大于0分子分母同号①A>0,B>0②A<0,B<0分式值为负或小于0分子分母异号①A>0,B<0②A<0,B>0分式值为1分子分母值相等A=B分式值为-1分子分母值互为相反数A+B=0知识点二:分式的运算(重点)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中A、B、C是整式,C0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。

⏹分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。

最简公式的定义:分子与分母没有公因式的分式。

分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。

注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式⏹分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。

中考复习专题第9讲分式方程

中考复习专题第9讲分式方程

第九讲 分式方程【基础知识回顾】1、 分式方程的概念分母中含有 的方程叫做分式方程【提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】2、分式方程的解法:基本思路是 把分式方程转化为整式方程:3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。

【提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略。

2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。

如:1x a x ---3x=1有增根,则a= ,若该方程无解,则a= 。

】 4、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 ,既要检验是否为原方程的根,又要检验是否符合题意。

【提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型】【重点考点例析】考点一:分式方程的解考点三:由实际问题抽象出分式方程C.352025x x+=D.352025x x+=考点四:分式方程的应用例4 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.问今年5月份A款汽车每辆售价多少万元?【聚焦中考】13一、选择题1.x=1 B .x=2 C .x=3 D .x=42.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( ).A .405012x x =-B .405012x x =-C .405012x x =+D .405012x x=+3.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( ).A .2700450020x x =- B .27004500200x x =- C .2700450020x x =+ D .27004500200x x =+ 二、填空题12 3 三、解答题12.娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?3.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?4.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?5.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队m?每天能完成绿化的面积分别是多少2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档