二面角的求法3
求二面角的几何法

3种求二面角的几何法二面角的度量问题是立几中学生比较困难的一个问题,课本上是通过它的平面角来进行度量的,关键在于充分利用平面角的定义。
下面来介绍求二面角的大小的几种方法:直二面角情况:一般是通过几何求证的方法,主要依据是直线与平面垂直的判定定理。
例1. 如图 ABCD 是矩形,AB =a ,BC =b (a >b),沿对角线AC 把 △ADC 折起,使 AD ⊥BC ,证明:平面 ABD ⊥平面BCD 。
证明:由题意可知:AD ⊥BC ,AD ⊥DC∴ AD ⊥面BCD 又 AD 面ABD ∴ 平面ABD ⊥平面BCD例2. 在四棱锥 A-BCDE 中,底面是直角梯形,其中 BC ∥DE ,∠BCD =90°,且 DE =CD =21BC ,又AB =AE =21BC ,AC =AD , 求证:面ABE ⊥面BCD 。
证明:取BE 的中点M ,CD 的中点N , 连结 AM ,AN ,MN ,∵ AB =AC (已知) ∴ AM ⊥BE同理 AC =AD 有AN ⊥CD 在直角梯形BCDE 中,∵ M 、N 分别是BE 、CD 的中点 ∴ MN ∥BC 又 ∠BCD =90° ∴ MN ⊥CD ∴ CD ⊥面AMN ∴ CD ⊥AM又 AM ⊥BE ,CD 、BE 是梯形的两个腰,即它们一定相交,CB∴ AM ⊥面BCD , 又AM 面ABE ∴ 面ABE ⊥面BCD 。
当二面角不是直二面角时可以采用下面几种方法。
1.充分利用二面角的定义,证明某角即为二面角的平面角,如找不到现成的,则可以通过三垂线定理或其逆定理把它作出来再计算。
例3.如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC 是边长为 2的正三角形,求二面角 P-AB -C 的大小。
解:由已知条件,D 是BC 的中点∴ CD =BD =2 又△ADC 是正三角形 ∴ AD =CD =BD =2∴ D 是△ABC 之外心又在BC 上 ∴ △ABC 是以∠BAC 为直角的三角形, ∴ AB ⊥AC , 又 PC ⊥面ABC∴ PA ⊥AB (三垂线定理)∴∠PAC 即为二面角 P-AB-C 之平面角, 易求 ∠PAC =30°例4.如图在三棱锥 S-ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交 AC 、SC 于D 、E ,又SA =AB ,BS =BC , 求以BD 为棱,BDE 与BDC 为面的二面角的度数。
求二面角的五种方法

五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
二面角8种求法

二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。
笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。
例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。
例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。
二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。
如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。
例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。
例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
求二面角的六种方法

求二面角的六种方法一、引言二面角是几何学中的一个重要概念,它用于描述两个平面的夹角。
求解二面角的方法有多种,本文将介绍六种常用的方法,包括向量法、三角函数法、三边长法、内外法、旋转法和平行四边形法。
对于每种方法,我们将详细介绍其原理和具体步骤,并给出相关的实例来加深理解。
二、向量法向量法是最常用的求解二面角的方法之一,其基本原理是通过两个平面的法向量来计算二面角。
具体步骤如下:2.1 确定两个平面首先,我们需要确定需要求解的两个平面。
平面可以由三个不共线的点或者法向量和过点的方程来确定。
2.2 求解法向量找到两个平面的法向量,分别记作n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 。
2.3 计算二面角的余弦值通过法向量n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 的点积计算二面角的余弦值:cosθ=n1⃗⃗⃗⃗ ⋅n2⃗⃗⃗⃗ ∥n1⃗⃗⃗⃗ ∥∥n2⃗⃗⃗⃗ ∥2.4 计算二面角通过余弦值反函数(如反余弦函数)计算二面角的值:θ=arccos(cosθ)三、三角函数法三角函数法是另一种常用的求解二面角的方法,主要基于三角函数的关系来计算二面角。
具体步骤如下:3.1 确定两个平面同样,我们首先需要确定需要求解的两个平面。
3.2 求解法向量和对应边长求解两个平面的法向量n 1⃗⃗⃗⃗ 和n 2⃗⃗⃗⃗ ,以及两个平面上的边长。
3.3 计算三角函数的值根据边长和法向量的乘积,分别计算sinα=∥n 1⃗⃗⃗⃗⃗ ×n 2⃗⃗⃗⃗⃗ ∥∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥和cosα=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥,其中α为两个边向量构成的夹角。
3.4 计算二面角通过三角函数的反函数(如反正弦函数、反余弦函数)计算夹角α的值,即得到二面角的值。
四、三边长法三边长法是一种适用于三角形的方法,其原理是利用给定的三边长计算三角形的角度,进而求得二面角。
具体步骤如下:4.1 确定三个边长根据具体情况,确定三个边长a 、b 和c 。
谈谈二面角的三种求法

解题宝典所以x 12+y 12+x 22+y 22>(x 1-x 2)2+(y 1-y 2)2,当A ,B ,O 三点共线时,x 12+y 12+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,所以x 12+y 12+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.我们由该根式可联想到两点间的距离公式,于是设出A 、B 两点的坐标,即可将问题转化为证明|AO |+|BO |>|AB |,根据三角形两边之和大于第三边的性质来解题.运用几何法解题,需进行数形互化,结合几何图形来分析问题.五、运用基本不等式若a ,b >0a 、b >0,则a +b ≥2ab ,当且仅当a =b 时等号成立,该式叫做基本不等式.在解答不等式问题时,可以根据不等式的结构特征进行适当的变形,如凑系数、常数代换、添项、去项等,以配凑出两式的和或积,以便能利用基本不等式证明不等式.运用基本不等式时,要确保“一正”“二定”“三相等”的条件成立.例5.已知正实数x ,y 满足2x +5y =20,若不等式10x +1y≥m 2+4m恒成立,求实数m 的取值范围.解:在2x +5y =20的左右同除以20,得x 10+y4=1,则10x +1y =æèçöø÷10x +1y æèçöø÷x 10+y 4=54+5y2x +x 10y ≥94,当且仅当x =203,y =43取等号.则m 2+4m ≤94,解得-92≤m ≤12.由于10x +1y 为分式,所以将已知关系式变形为x 10+1y=1,即可通过常数代换,将10x +1y 化为和式54+5y 2x +x10y .而5y 2x 、x 10y的积为定值,这样便可运用基本不等式求得10x +1y 的最小值,从而求得m 的取值范围.解答不等式问题的方法很多,我们需根据不等式的结构特征进行变形、代换,联系相关的公式、性质、定理等将问题转化为几何问题、最值问题、运算问题等,并选用合适的方法进行求解.(作者单位:安徽省宣城中学)二面角问题的常见命题形式有:(1)求二面角的大小或范围;(2)证明两个平面互相垂直;(3)根据二面角的大小求参数的取值范围.这类问题主要考查同学们的空间想象能力和运算能力.那么,解答这类问题有哪些方法呢?下面结合实例进行归纳总结.一、直接法直接法是指直接从题目的条件出发,通过合理的运算和严密的推理,得出正确的结果.我们知道,二面角的大小可用其平面角表示,因此求二面角的大小,关键是求其平面角的大小.在求二面角时,需先仔细审题,明确题目中点、线、面的位置关系,灵活运用三垂线定理、勾股定理、正余弦定理、夹角公式,根据二面角以及平面角的定义,作出并求出平面角,即可运用直接法快速求得问题的答案.例1.如图1,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直且平分SC ,分别交AC ,SC 于点D ,E ,且SA =AB ,SB =BC ,求二面角E -BD -C的大小.解:∵SB =BC ,E 是SC 的中点,∴SC ⊥BE ,∵SC ⊥DE ,BE ⊂平面BDE ,DE ⊂平面BDE ,∴SC ⊥平面BDE ,∵BD ⊂平面BDE ,∴SC ⊥BD ,∵SA ⊥底面ABC ,BD ⊂平面ABC ,∴SA ⊥BD ,又∵SC ⋂SA =S ,SC ⊂平面SAC ,SA ⊂平面SAC ,∴BD ⊥平面SAC ,又∵DC ⊂平面SAC ,DE ⊂平面SAC ,∴DC ⊥BD ,DE ⊥BD ,∴∠DEC 是所求二面角的平面角.∵SA ⊥底面ABC ,AB ⊂平面ABC ,AC ⊂平面ABC ,∴SA ⊥AB ,SA ⊥AC ,设SA =2,得AB =2,BC =SB =22,∵AB⊥BC ,∴AC =23,∴∠ACS =30°,又∵DE ⊥SC ,∴∠EDC =60°,林菊芳图139解题宝典即二面角E -BD -C 的大小为60°.可采用直接法解答本题.先利用三垂线定理,在二面角E -BD -C 的棱BD 上的点D 处,找到与BD 垂直的两条射线DC 和DE ,就能根据二面角的平面角的定义确定∠DEC 即为所求的角;再根据勾股定理求得∠DEC 的大小,即可解题.例2.如图2,凸六边形MBB 1NC 1C 的边长相等,BB 1C 1C 为矩形,∠BMC =∠B 1NC 1=90°.将ΔBCM ,ΔB 1C 1N 分别沿BC ,B 1C 1翻折,使平面ABC ,平面A 1B 1C 1分别与平面BB 1C 1C 垂直,如图3所示.其中E ,G 分别是BC ,CC 1的中点.(1)求证:多面体ABC -A 1B 1C 1为直三棱柱;(2)求二面角A -EG -A 1的平面角的余弦值.图2图3解:(1)略.(2)取B 1C 1中点F ,连接A 1F ,EF ,由(1)可知,多面体ABC -A 1B 1C 1是直三棱柱,∴平面A 1B 1C 1⊥平面BB 1C 1C ,∴A 1F ⊥平面BB 1C 1C ,同理可证AE ⊥平面BB 1C 1C ,过F 作FD ⊥EG 交EG 于点D ,连接A 1D ,∴∠A 1DF 为二面角A -EG -F 的平面角,又∵AE ⊥平面BB 1C 1C ,AE ⊂平面AEG ,∴平面AEG ⊥平面BB 1C 1C ,∴二面角A -EG -A 1的平面角为π2-∠A 1DF ,设A 1B 1=t ,则21=B 1=t ,CE =CB 2=C 1B 12=,A 1F =,∴EG=CE 2+CG 2=,∴FD =EF ∙sin =EF ∙CE EG =,∴A 1D=A 1F 2+FD 2=,∴cos α=cos æèöøπ2-∠A 1DF =sin ∠A 1DF =A 1F A 1D 我们先根据面面垂直的性质定理证明A 1F ⊥平面BB 1C 1C ;然后根据线面垂直的性质定理和二面角的定义确定二面角A -EG -F 的平面角∠A 1DF ;再根据勾股定理和正余弦函数的定义,即可运用直接法求得问题的答案.二、面积射影法当不易作出二面角的平面角时,可以考虑采用面积射影法求二面角的大小.先确定一个半平面在另一个半平面的射影;然后分别求得这两部分图形的面积,并将二者相除,所得的结果即为二面角的余弦值.要注意二面角α的范围为:.例3.如图4,正方体的棱长为3,顶点A 在平面α内,三条棱AB ,AC ,AD 都在平面α的同侧.若顶点B ,C 到平面α的距离分别为2,3,求平面ABC 与平面α所成锐二面角的余弦值.图4图5解:作BB 1⊥平面α于B 1,CC 1⊥平面α于C 1,连接BC ,B 1C 1,过点B 作BG ⊥CC 1,垂足为G 点,如图5所示.可得AC 1=AC 2-CC 12=32-()32=6,AB 1=AB 2-BB 12=32-()22=7,∴B 1C 1=BG =BC 2-CG 2=13+26,cos ∠B 1AC 1=AC 12+AB 12-B 1C122×AC 1×AB 1=7,sin ∠B 1AC 1=1-cos 2∠B 1AC 1=S ΔB 1AC 1=12×AC 1×AB 1×sin ∠B 1AC 1=12×6×7=3,S ΔBAC =12×AB ×AC =12×3×3=92,设平面ABC 与平面α所成锐二面角为θ,可得cos θ=S ΔB 1AC 1S ΔBAC =23,即平面ABC 与平面α所成锐二面角的余弦值为23.经常观察图形可发现,平面ABC 在另一个平面α内的射影为ΔB 1AC 1,于是作BB 1⊥平面α于B 1,CC 1⊥平面α于C 1,连接BC ,B 1C 1,分别求得ΔABC的面积和ΔBAC 的面积,并求得其比值,即可求得平面ABC 与平面α所成锐二面角的余弦值.三、空间向量法若根据已知条件可确定线面或线线垂直关系,即40解题宝典可以某一点为原点,三条互相垂直的直线为坐标轴,建立空间直角坐标系.给各个点赋予坐标,利用向量的夹角公式,通过空间向量运算,即可求得二面角的大小.例4.如图6所示,在多面体ABCDEF中,四边形ABCD为正方形,AB=2,AE=3,DE=5,二面角E-AD-C的余弦值为,EF//BD,且EF=λDB()λ>0,求平面ABF与平面CEF所成锐二面角的余弦值的取值范围.图6图7解:∵AB=AD=2,AE=3,DE=5,∴AD2+DE2=AE2,即AD⊥DE,∵在正方形ABCD中,AD⊥DC,DE⊂平面EDC,DC⊂平面EDC,∴AD⊥平面EDC,又∵AD⊂平面ABCD,AD⊂平面ADE,∴平面ABCD⊥平面EDC,且∠EDC是二面角E-AD-C的平面角,∴cos∠EDC,作OE⊥CD于点O,得OD=DE∙cos∠EDC=1,OE=2,又∵平面ABCD⊥平面EDC,OE⊂平面EDC,∴OE⊥平面ABCD,取AB中点M,连接OM,得OM⊥CD,如图7,以O为原点建立空间直角坐标系,可得A()2,-1,0,B()2,1,0,D()0,-1,0,C()0,1,0,E()0,0,2,DB=()2,2,0,EF=()2λ,2λ,0,EC=()0,1,-2,设平面CEF的一个法向量为m =()x1,y1,z1,∴ìíîm ∙EC=y1-2z1=0,m ∙EF=2λx1+2λy1=0,取x1=2,得{y1=-2,z1=-1,∴m =()2,-2,-1,又BF=()2λ-2,2λ-1,2,AB=()0,2,0,设平面ABF的一个法向量为n =()x2,y2,z2,∴ìíîn ∙AB=2y2=0,n ∙BF=()2λ-2x2+()2λ-1y2+2z2=0,取x2=2,得{y2=0,z2=2-2λ,∴n =()2,0,2-2λ,∴||cos m ,n =||m ∙n ||m ∙||nöøλ≠14,设t=λ-14æèöøt>-14且t≠0,∴t+2516t-32<-8或t+2516t-32≥1,∴1+4æèöøλ-14+2516æèöøλ-14-32∈æèöø12,1⋃(]1,5,∴||cos m ,n ∈èöø÷,13⋃æèçû13,,∴当λ=14时,||cos m,n =13,∴||cos m ,n ∈èû.即平面ABF与平面CEF所成锐二面角的余弦值的取值范围为èû.解答本题主要运用了空间向量法.首先利用面面垂直的性质定理得出OE⊥平面ABCD;然后找出两两垂直的三条直线,据此建立空间直角坐标系,求得各个点的坐标和各个平面的法向量(即垂直于平面的直线的方向向量),即可利用空间向量夹角公式解题.一般地,若容易作出二面角的平面角,往往可以采用直接法求二面角的大小.该方法比较常用,且较为简单,只需根据题意进行推理、运算,利用二面角的平面角的定义求解.如果不易找出或求出二面角的平面角,则往往需采用射影面积法和空间向量法,通过求平面图形的面积和平面的法向量,来求得二面角的大小.同学们要熟练掌握这些常用方法的特点和应用技巧,以在求解二面角问题时做到得心应手.(作者单位:湖北省团风中学)41。
怎样求解二面角问题

二面角问题在立体几何中比较常见,常见的命题形式有求二面角的大小、求二面角的余弦值,证明两个平面互相垂直等.此类问题的难度一般较大,需综合运用立体几何知识、平面几何知识、解三角形知识、三角函数知识,才能顺利求得问题的答案.本文结合实例,重点探讨一下求解二面角问题的几种常用方法.一、定义法二面角是由从一条直线出发的两个半平面所组成的,而二面角的大小往往是用其平面角的大小来表示,因此在求二面角的大小时,通常要用到二面角的平面角的定义:过二面角的棱上的一点在两个半平面内作垂直于棱的射线,两射线所成的角.然后根据正余弦定理、勾股定理求得二面角的平面角的大小,即可求得二面角的大小.例1.如图1,已知空间中有三条射线CA 、CP 、CB ,且∠PCA =∠PCB =60°,∠ACB =90°,求二面角B -PC -A 的余弦值.图1解:在PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,连接EF ,所以∠EDF 为二面角B -PC -A 的平面角,设CD =a ,因为∠PCA =∠PCB =60°,所以CE =CF =2a ,DE =DF =3a ,因为∠ACB =90°,所以EF =22a ,在△DEF 中,根据余弦定理得:cos ∠EDF =3a 2+3a 2-8a 22∙3a2=-13.解答本题主要运用了定义法,需根据二面角的平面角的定义,在二面角B -PC -A 的棱PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,从而确定了二面角B -PC -A 的平面角∠EDF ,再根据余弦定理求得cos ∠EDF 的值.二、垂面法垂面法是指作一个垂直的平面,根据其中的垂直关系求得问题的答案.在求解二面角问题时,若题目中涉及的垂直关系较多,可过二面角棱上的一点在两个半平面内作棱的垂线;也可将两个半平面内的垂线平移,使其交于一点;还可过一条垂线上的一点作另一个平面的垂线,从而构成一个垂面,则垂面上的两条垂线或其平行线所形成的夹角即为二面角的平面角.最后根据勾股定理即可求得二面角的平面角的大小.例2.如图2,在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA =AB =a ,求二面角B -PC -D 的大小.图2解:因为PA ⊥平面ABCD ,ABCD 是正方形,所以PA ⊥BD ,BD ⊥AC ,所以BD ⊥平面PAC ,可得BD ⊥PC ,分别过B 、D 作DH ⊥PC ,BH ⊥PC ,则∠BHD 为二面角B -PC -D 的平面角,因为PA =AB =a ,所以BC =a ,PB =AC =2a ,所以PC =3a ,根据勾股定理可得∠PBC =90°,所以在△PBC 中,12PB ∙BC =S △PBC =12PC ∙BH ,则BH ,同理可得DH ,因为BD =2a ,所以在△BHD 中,由余弦定理可得:cos ∠BHD =ö÷2+ö÷2-2a 2-12,因为0<∠BHD <π,则∠BHD =2π3,即二面角B -PC -D 的大小为2π3.本题中的垂直关系较多,于是分别过B 、D 作DH ⊥PC ,BH ⊥PC ,得到PC 的垂面BHD ,据此确定二面角B -PC -D 的平面角∠BHD ,再在△BHD 中由怎样求解二面角问题方法集锦43余弦定理即可求得∠BHD 的大小,进而求得二面角B -PC -D 的大小.值得注意的是,二面角α的范围为:[0,π].三、三垂线法三垂线法是利用三垂线定理解题的方法.运用三垂线法求解二面角问题,需先找到平面的垂线,然后过垂线上的一点作平面的斜线,若平面内的一条直线与平面的斜线垂直,那么这条直线与斜线在平面内的射影垂直,根据这些垂直关系就可以确定二面角的平面角,最后根据勾股定理、正余弦定理即可求得平面角的大小.例3.如图3所示,在四棱锥P -ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA =AB =a ,∠ABC =30°,求二面角P -BC -A 的大小.图3解:如图3,过A 作AH ⊥BC 于H ,连接PH ,因为PA ⊥平面ABCD ,所以PA ⊥BC ,PA ⊥AH ,所以BC ⊥平面PHA ,所以BC ⊥PH ,可知∠PHA 是二面角P -BC -A 的平面角,在Rt△ABH 中,AB =a ,∠ABH =∠ABC =30°所以AH =AB sin ∠ABH =a sin 30°=12a ,因为PA ⊥AH ,所以在Rt△PHA 中,tan ∠PHA =PA AH=2,所以∠PHA =arctan 2,故二面角P -BC -A 的大小为arctan 2.根据题意作AH ⊥BC ,便可知AH 为PH 在平面ABCD 内的射影,由三垂线定理可得BC ⊥PH ,由此可确定∠PHA 是二面角P -BC -A 的平面角,再在Rt△PHA 中根据正切函数的定义求得∠PHA 的大小,进而可得到二面角P -BC -A 的大小.由此可见,求解二面角问题的关键有两步:第一步,根据二面角的平面角的定义、三垂线定理、垂面的性质,确定二面角的平面角;第二步,根据勾股定理、正余弦定理、三角函数的定义求得平面角的大小.(作者单位:江西省赣州市南康第三中学)二次函数是一种基本初等函数.二次函数问题的常见命题形式有求二次函数的解析式、最值、对称轴、单调区间、零点等.这类问题侧重于考查二次函数的图象和性质.下面重点谈一谈如何求解有关二次函数的最值问题、零点问题和不等式问题.一、二次函数的最值问题二次函数y =ax 2+bx +c 的图象是一条抛物线,若a >0,则抛物线的开口向上;若a <0,则抛物线的开口向下.当x =-b 2a 时,函数在R 上有最值b 2-4ac 4a.若函数的定义域为[m ,n ],则需分三种情况考虑:(1)当-b 2a ∈[m ,n ]时,函数在x =-b 2a 处取得最值;(2)当x =-b 2a,在[m ,n ]的左侧时,若a >0,则函数在x =m处取最小值,在x =n 处取最大值,若a <0,则相反;(3)当x =-b2a在[m ,n ]的右侧时,若a >0,则函数在x =m 处取最大值,在x =n 处取最小值;若a <0,则相反.例1.求y=-5x 2-6x +1的最大值.解:y =-5x 2-6x +1是二次函数,x 2的系数是-5,所以二次函数图象的开口向下,当x =-65时,函数有最大值1.利用二次函数的图象,即可确定二次函数在对称轴处取得最值.除了用图象法求解最值问题,还可以用配方法,比如y =x 2+4x +3=()x +22-1,可知当x =-2时函数的最小值为-1.例2.已知函数f (x )=x 2+(2a -1)x -3.方法集锦44。
正四面体二面角8种求法(教师版)

正四⾯体⼆⾯⾓8种求法(教师版)⼆⾯⾓求法例题1:已知正⽅体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底⾯正⽅形的中⼼,求⼆⾯⾓O 1-BC-O 的⼤⼩。
解:取BC 中点E ,连接OE 、O 1E ,易证⊿BOC 、⊿BO 1C 是等腰三⾓形。
∴OE ⊥BC ,O 1E ⊥BC ,∴∠OEO 1是⼆⾯⾓O 1-BC-O 的平⾯⾓,连OO 1,OO 1⊥平⾯ABCD ,∴OO 1⊥OE 在RT ⊿OEO 1中,OO 1=1,DE=21∴tan ∠OEO 1=22111==OE OO∴所求⼆⾯⾓θ=arctan2。
例题2:已知正⽅体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 1D 1的中点,求平⾯EFCA 与底⾯ABCD 所成的⼆⾯⾓。
解:连B 1D 1交EF 于G ,连BD 交AC 于O ,作GH ⊥BD ,H 是垂⾜,连GO ,易证GO ⊥AC ,⼜BD ⊥AC∴∠GOH 是所求⼆⾯⾓的平⾯⾓, GH=1,OH=42∴tan ∠GOH=22421==OH GH ∴所求⼆⾯⾓θ=arctan 22。
利⽤平⾯⾓定义法求⼆⾯⾓⼤⼩,在棱上取⼀点常常是取特殊点。
例1中E 点,例2中O 点都是特殊位置的点,所作两垂线也是题中特殊位置的线段。
例题3:已知正⽅体ABCD-A 1B 1C 1D 1中,求⼆⾯⾓B-AC-B 1的⼤⼩。
解:连接BD 交于AC 为O 点,连OB 1,∵BB 1⊥平⾯ABCD ,BO ⊥AC ∴B 1O ⊥AC ,∠BOB 1是⼆⾯⾓B-AC-B 1的平⾯⾓,tan ∠BOB 1=22211==BO BB ∴所求⼆⾯⾓θ=arctan 2. 例题4:已知正⽅体ABCD-A 1B 1C 1D 1中,求平⾯ACD 1与平⾯BDC 1所成的⼆⾯⾓。
解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求⼆⾯⾓B-EF-C 的棱,连A 1C ,易证A 1C ⊥平⾯BDC 1,垂⾜为H ,取AD 1中点O ,连OC 交EF 于G∵EF ∥AD 1,OC ⊥AD 1 ∴OC ⊥EF 即CG ⊥EF 。
二面角求值方法八种

二面角求值方法八种摘要】在奥妙无穷的空间形式里,二面角的平面角总是以量的大小决定着某些图形的空间形式,使得立体几何研究中,求二面角的大小成为了一个“角量计算”的重要内容。
那么怎样去求二面角的大小呢?笔者通过自身的实践,总结出常见的八种求法。
【关键词】二面角;二面角求值;八种1定义法11定义:二面角求值的“定义法”就是依二面角的平面角的定义,通过对线线垂直关系的研究,首先将空间角转化为平面角,然后依据解三角形的相关知识或某些公理体系的保证求出这个平面角,从而达到求二面角大小的数学方法。
它体现了“回到定义中去”是数学解题的根本方法。
12用“定义法”求二面角大小的解题思路是:求作二面角的平面角→证明这个平面角是所求→解出这个二面角。
13求作二面角的平面角应把握的原则:先找后作。
常见的作法有两种:其一,根据定义或图形的特征作。
其二,根据三垂线定理(或逆定理)作。
此法难点在于找到平面的垂线,解决的办法:先找面面垂直,利用面面垂直的性质定理找到面的垂线,作棱的垂线,连接垂足与面的垂线的端点,利用线线垂直得出所求角是二面角的平面角。
14常见的线线垂直的判断方法有:①三垂线定理及逆定理。
②等腰三角形“中线是高线”的性质。
③勾股定理的逆定理。
④菱形对角线互相垂直的性质。
⑤线面垂直则线线垂直的性质。
⑥同一法(有公共边的全等三角形中,公共边上的垂足相同)例1(2005年全国卷Ⅰ.18):已知四棱锥P-ABCD的底面是直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD且PA=AD=DC=12AB=1,M是PB的中点,求平面AMC与平面BMC所成二面角的大小。
解:过点A作AN⊥CM,垂足为N,连BN,过点M作MQ⊥AB,垂足为Q,连QN,QC,由三垂线的逆定理知:MC⊥NQ,由三垂线定理知:BN⊥MC,故∠ANB为所求二面角的平面角。
由勾股定理的逆定理知:BC⊥AC,再由三垂线定理知:BC⊥PC,由直角三角形中线的性质有:MA=MC,由等面积求高法知:AN=NB=305,在△ANB中,由余弦定理有:cos∠ANB=AN2+BN2-AB22AN·BN=-23,从而所求二面角的大小是:π-arccos23题评:本例也可以先证△AMC≌△BMC,再利用“同一法”得出BN⊥MC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1二面角的求法
一、思想方法
求二面角的大小,是立体几何计算与运用中的一个重点和难点. 直接法的核心是作(或找)出二面角的平面角,间接法可利用投影、异面直线、空间向量等。
常用的方法有以下几种:
方法一(定义法)即从二面角棱上一点在两个面内分别引棱的垂线如图1。
方法二(三垂线法)在二面角的一个面上一点P 棱及另一个面分别引垂线PA 、PB ,连接AB ,根据三垂线定理(或逆定理),∠PAB 为所求的二面角的平面角.如图2。
方法三(作垂面法)作棱的垂直平面,则这个垂面与二面角两个面的交线所夹的角就是二面角的平面角(图3中∠MAN ).
方法四(投影面积法)一个平面α上的图形面积为S ,它在另一个平面β上的投影面积为S',这两个平面的夹角为θ,则S'=Scos θ或cos θ=/
S S
.
方法五(异面直线法)如图4中,平面α、β相交成θ角,AC 、BD 分别在α、β上,且与棱垂直.若AC=m ,BD=n, CD=d ,则有AB 2
=m 2
+n 2
+d 2
-2mncos θ,故cos θ=2
2
2
2
2m
n d AB
mn
++- (1)
在已知二面角两个面上两点间距离(即|AB|)的情况下,可以用此公式来求θ. 说明:原来的公式中θ理解为两异面直线间的夹角,只取锐角(或直角),故根据A 、B 的位置情况
公式是AB 2=m 2+n 2+d 2
±2mncos θ.但二面角可以取钝角,故只需取“-”号得出公式(1). 方法六(空间向量法)如图5,设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指
向内侧,另一个指向外侧,则二面角l αβ--的平面角α=12
12arccos
||||
n n n n 。
二、例题:
例1.在棱长为1的正方体
1AC 中,(1)求二面角11A B D C --的大小;
(2
)求平面1C BD 与底面ABCD
所成二面角1C BD C --的平面角大小
例2.如果二面角l α
β--的平面角是锐角,点P 到,,l αβ的距离分别为4,
的大小
例3.在正方体AC 1中,E 是BC 中点,F 在AA 1上,且A 1F∶FA=1∶2,求平面B 1EF 与底面A 1B 1C 1D 1所成的二面角.
D
C F
H
B
A
E 例4.矩形ABCD 的两边AB=1
,BD
为棱折成二面角,使.求二面角A-BD-C 的大小.
例5.正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点.当11BC B P ⊥时,求二
面角11C B P C --的大小.
例6.如图,
AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角
B A
C
D --的正弦值
例7.如图,在空间四边形ABCD 中,BCD ∆是正三角形,ABD
∆是等腰直角三角形,且90BAD ∠=,又二面角A BD C --为直二面角,求二面角A CD B --的
大小
图12
A
B
C
D
E
F
例8. 如图所示,四棱锥P—ABCD的底面是边长为a的菱形,∠A=60°,PC⊥平面ABCD,PC=a,E是PA 的中点.(1)求证平面BDE⊥平面ABCD.(2)求点E到平面PBC的距离.(3)求二面
角A—EB—D的平面角大小.
例9. 如图,矩形ABCD中,AB=2,BC=23,以AC为轴翻折半平面,使二平面角B-AC-D为120°,求:(1)翻折后,D到平面ABC的距离;(2)BD和AC所成的角.
例10. 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.
例11. 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,
AB=a.求:平面APB与平面CPD相交所成较大的二面角的余弦值.
三、练习题
1. 如图,ABCD-A 1B 1C 1D 1是正方体,E 、F 分别是AD 、DD 1的中点,则面EFC 1B 和面BCC 1所成二面角的正切值等于( C )
2. 在立体图形P -ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA =AB ,Q 是PC 中点.
AC ,BD 交于O 点.
(Ⅰ)求二面角Q -BD -C 的大小:90° (Ⅱ)求二面角B -QD -C 的大小.60°
3. 已知平面α⊥平面β,交线为AB ,C ∈α,D ∈β,
34===BC AC AB ,E 为BC 的中点,
AC ⊥BD ,BD =8.
①求证:BD ⊥平面α; ②求证:平面AED ⊥平面BCD ; ③求二面角B -AC -D 的正切值.
3
4tg ==
∠BF BD BFD
4. 正方形ABCD 中,以对角线BD 为折线,把ΔABD 折起,使二面角A ˊ-BD-C 为60°,求二面角B-A ˊC-D 的余弦值。
-
7
1
5. 如图平面SAC ⊥平面ACB ,ΔSAC 是边长为4的等边三角形,ΔACB 为直角三角形,∠ACB=90°,BC=24
,求二面角S-AB-C 的余弦值。
11
22
6. 如图,在梯形ABCD 中,AD//BC ,∠ABC=900
,AB=a,AD=3a,sin ∠ADC=
5
5,
又PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的大小。
(答案:arctg 3
5
)。