高考数学压轴题精编精解100题

合集下载

高考数学压轴题精编精解精选100题详细解答(1)

高考数学压轴题精编精解精选100题详细解答(1)

高考数学压轴题精编精解精选100题1.设函数()1,121,23x f x x x ≤≤⎧=⎨-<≤⎩,()()[],1,3g x f x ax x =-∈,其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。

(I )求函数()h a 的解析式;(II )画出函数()y h x =的图象并指出()h x 的最小值。

2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若1a =则当n ≥2时,!n n b a n >⋅.3.已知定义在R 上的函数f (x ) 同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0,4x π∈[]时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围.个 个 4.设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为:12、1122、111222、 (111)⋅⋅⋅⋅⋅⋅222n⋅⋅⋅⋅⋅⋅ ……(1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .6、设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.7、已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.8、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0;(3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考数学压轴题精编精解精选100题详细解答(4)

高考数学压轴题精编精解精选100题详细解答(4)

⾼考数学压轴题精编精解精选100题详细解答(4)31.设函数321()()3f x ax bx cx a b c =++<<,其图象在点(1,(1)),(,())A f B m f m 处的切线的斜率分别为0,a -.(Ⅰ)求证:01ba<≤;(Ⅱ)若函数()f x 的递增区间为[,]s t ,求||s t -的取值范围;(Ⅲ)若当x k ≥时(k 是与,,a b c ⽆关的常数),恒有1()0f x a -+<,试求k 的最⼩值.32.如图,转盘游戏.转盘被分成8个均匀的扇形区域.游戏规则:⽤⼒旋转转盘,转盘停⽌时箭头A 所指区域的数字就是游戏所得的点数(转盘停留的位置是随机的).假设箭头指到区域分界线的概率为01.,同时规定所得点数为0.某同学进⾏了⼀次游戏,记所得点数为ξ.求ξ的分布列及数学期望.(数学期望结果保留两位有效数字)33.设1F ,2F 分别是椭圆C :2222162x y m m+=(0)m >的左,右焦点.(1)当P C ∈,且210P F P F=,12||||8PF PF ?=时,求椭圆C 的左,右焦点1F 、2F .(2)1F 、2F 是(1)中的椭圆的左,右焦点,已知2F 的半径是1,过动点Q 的作2F 切线QM,使得1QF =(M 是切点),如下图.求动点Q 的轨迹⽅程.34.已知数列{}n a 满⾜15a =, 25a =,116(2)n n n a a a n +-=+≥.(1)求证:{}12n n a a ++是等⽐数列;(2)求数列{}n a 的通项公式;(3)设3(3)n n n n b n a =-,且12n b b b m +++<对于n N *∈恒成⽴,求m 的取值范35.已知集合{}121212()00D x x x x x x k =>>+=,,,(其中k 为正常数).(1)设12u x x =,求u 的取值范围;(2)求证:当1k ≥时不等式21212112()()()2k x x x x k--≤-对任意12(,)x x D ∈恒成⽴;(3)求使不等式21212112--≥-对任意12(,)x x D ∈恒成⽴的2k 的范围.36、已知椭圆C :22ax +22b y =1(a >b >0)的离⼼率为36,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点。

2024冲刺高考数学考前选择题压轴精选100题讲义(内部资料)

2024冲刺高考数学考前选择题压轴精选100题讲义(内部资料)

2024考前选择题压轴精选100题1(23-24高三上·江苏南京·期中)在△ABC 中,AB ⊥AC ,且AB =AC =5,M 是BC 的中点,O 是线段AM 的中点,则OA ⋅OB +OC的值为()A.0B.-54C.-54D.-582(23-24高三下·湖南湘潭·阶段练习)已知圆O 的半径为1,A ,B ,C 为圆O 上三点,满足AB=3,则OC ⋅AC +BC的取值范围为()A.1,2B.1,3C.12,2D.12,33(23-24高三上·江苏南通·期末)某中学开展劳动实习,学生制作一个矩形框架的工艺品.要求将一个边长分别为10cm 和20cm 的矩形零件的四个顶点分别焊接在矩形框架的四条边上,则矩形框架周长的最大值为()A.202cmB.305cmC.405cmD.602cm4(23-24高三上·北京顺义·期中)如图,在边长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是该正方体对角线BD 1上的动点,给出下列四个结论:①AC ⊥B 1P ;②△APC 面积的最小值是2;③只存在唯一的点P ,使BD 1⊥平面APC ;④当BP =233时,平面ACP ⎳平面A 1C 1D .其中正确结论的个数是()A.1个B.2个C.3个D.4个5(2024·陕西咸阳·二模)已知函数f x =cos x +a 2x 2,若x =0是函数f x 的唯一极小值点,则a 的取值范围为()A.1,+∞B.-1,1C.-1,+∞D.-∞,16(2024·全国·模拟预测)已知函数f x =x +sin x sin 3π2-x +a ,且f x +f -x =0,则关于x 的不等式f 3π2-x +14>π12的解集为()A.-∞,5π12B.-∞,π2C.-∞,17π12D.-∞,2π37(23-24高二下·江苏无锡·期中)若函数f (x )=ae 2x +(a -2)e x -x 有两个零点,则a 的取值范围为()A.(0,1)B.(0,+∞)C.(-∞,0)D.(0,e )8(23-24高二下·上海·阶段练习)已知结论:椭圆x 2a 2+y 2b2=1(a >b >0)的面积为S =πab .如图,一个平面α斜截一个足够高的圆柱,与圆柱侧面相交的图形为椭圆E .若圆柱底面圆半径为r ,平面α与圆柱底面所成的锐二面角大小为θ0<θ<π2,则下列对椭圆E 的描述中,错误的是()A.短轴为2r ,且与θ大小无关B.离心率为cos θ,且与r 大小无关C.焦距为2r tan θD.面积为πr 2cos θ9(2024·上海·一模)椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A.x2x +yB.x x +2yC.y 2x +yD.y x +2y10(2024·山东烟台·一模)在平面直角坐标系xOy 中,点A -1,0 ,B 2,3 ,向量OC =mOA+nOB ,且m -n -4=0.若P 为椭圆x 2+y 27=1上一点,则PC 的最小值为()A.4510B.10C.8510 D.21011(23-24高三下·安徽芜湖·阶段练习)设椭圆C :x 2a2+y 28=1(a >22)的左、右焦点分别为F 1,F 2,直线l :y =x +t 交椭圆C 于点A ,B ,若△F 1AB 的周长的最大值为16,则C 的离心率为()A.33B.53C.22D.5912(2024·山西吕梁·二模)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2作双曲线C 的一条渐近线的垂线,垂足为A ,O 为坐标原点,若AF 1 -AF 2 =AO ,则双曲线C 的离心率为()A.213B.132C.3D.33213(2024·上海徐汇·二模)三棱锥P -ABC 各顶点均在半径为22的球O 的表面上,AB =AC =22,∠BAC =90。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

高考数学压轴题精编精解100题(解答)

高考数学压轴题精编精解100题(解答)

以往高考数学压轴题汇总详细解答1.解:(I )()()1,1211,23ax x g x a x x -≤≤⎧=⎨--<≤⎩(1)当0a <时,函数()g x 是[]1,3增函数,此时,()()max 323g x g a ==-,()()min 11g x g a ==-,所以()12h a a =-;(2)当1a >时,函数()g x 是[]1,3减函数,此时,()()min 323g x g a ==-,()()max 11g x g a ==-,所以()21h a a =-;————4分(3)当01a ≤≤时,若[]1,2x ∈,则()1g x ax =-,有()()()21g g x g ≤≤; 若[]2,3x ∈,则()()11g x a x =--,有()()()23g g x g ≤≤; 因此,()()min 212g x g a ==-,————6分 而()()()()3123112g g a a a -=---=-, 故当102a ≤≤时,()()max 323g x g a ==-,有()1h a a =-;当112a <≤时,()()max 11g x g a ==-,有()h a a =;————8分 综上所述:()12,011,021,1221,1a a a a h a a a a a -<⎧⎪⎪-≤≤⎪=⎨⎪<≤⎪⎪->⎩。

————10分(II )画出()y h x =的图象,如右图。

————12分数形结合,可得()min 1122h x h ⎛⎫==⎪⎝⎭。

————14分2.解: (Ⅰ)先用数学归纳法证明01n a <<,*n N ∈. (1)当n=1时,由已知得结论成立;(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,因为0<x<1时,1()1011x f x x x '=-=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)<f(k a )<f(1),即0<11ln 21k a +<-<.故当n=k+1时,结论也成立. 即01n a <<对于一切正整数都成立.————4分 又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.综上可知10 1.n n a a +<<<————6分(Ⅱ)构造函数g(x)=22x -f(x)= 2ln(1)2x x x ++-, 0<x<1, 由2()01x g x x'=>+,知g(x)在(0,1)上增函数.又g(x)在[]0,1上连续,所以g(x)>g(0)=0. 因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而21.2n n a a +<————10分 (Ⅲ) 因为 1111,(1)22n n b b n b +=≥+,所以0n b >,1n n b b +12n +≥ ,所以1211211!2n n n n n n b b b b b n b b b ---=⋅⋅≥⋅ ————① , ————12分 由(Ⅱ)21,2n n a a +<知:12n n n a a a +<, 所以1n a a =31212121222n n n a a a a a aa a a --⋅< ,因为1a =, n≥2, 10 1.n n a a +<<< 所以 n a 1121222n a a a a -<⋅<112n n a -<2122n a ⋅=12n ————② . ————14分由①② 两式可知: !n n b a n >⋅.————16分3.(Ⅰ)在21212122()()2()cos 24sin f x x f x x f x x a x ++-=+中,分别令120x x x =⎧⎨=⎩;1244x x x ππ⎧=+⎪⎪⎨⎪=⎪⎩;1244x x xππ⎧=⎪⎪⎨⎪=+⎪⎩得22()()2cos 24sin , (+)()2 2(+)()2cos 2)4sin 224f x f x x a x f x f x a f x f x x a x ππππ⎧⎪+-=+⎪⎪+=⎨⎪⎪+-+⎪⎩,=(+(+)①②③由①+②-③,得1cos 2()1cos 242()22cos 22cos(2)44222x x f x a x x a a ππ-+-=+-++[]-[] =22(cos 2sin 2)2(cos 2sin 2)a x x a x x ++-+∴())sin(2)4f xa a x π=+-+(Ⅱ)当0,4x π∈[]时,sin(2)4x π+∈2. (1)∵()f x ≤2,当a <1时,12[)]2a a =+-≤()f x ≤)aa -≤2.即1(1a ≤2 ≤a ≤1.(2)∵()f x ≤2,当a ≥1时,- 2≤a a )≤()f x ≤1.即1≤a ≤4+.故满足条件a 的取值范围[,4+.4.(1)3.223,1.2222==⇒=-====e a a b a a c e b b 椭圆的方程为1422=+x y (2分) (2)设AB 的方程为3+=kx y由41,4320132)4(1432212212222+-=+-=+=-++⇒⎪⎩⎪⎨⎧=++=k x x k k x x kx x k x y kx y (4分)由已知43)(43)41()3)(3(410212122121221221++++=+++=+=x x k x x k kx kx x x ay y b x x±=++-⋅++-+=k k k k k k 解得,4343243)41(44222 2 (7分)(3)当A 为顶点时,B 必为顶点.S △AOB =1 (8分)当A ,B 不为顶点时,设AB 的方程为y=kx+b42042)4(1422122222+-=+=-+++⇒⎪⎩⎪⎨⎧=++=k kb x x b kbx x k x y bkx y 得到442221+-=k b x x :04))((0421212121代入整理得=+++⇔==b kx b kx x x y y x x 4222=+k b (11分)41644|||4)(||21||||212222122121++-=-+=--=k b k b x x x x b x x b S 1||242==b k 所以三角形的面积为定值.(12分)5(1)12(101)10(101)99n n n n a =-⋅+⋅- ……………………………… (2分 ) 1(101)(102)9n n=-⋅+101101()(1)33n n --=⋅+…………………………………(4分) 记:A =1013n - , 则A=333n⋅⋅⋅⋅⋅⋅为整数 ∴ n a = A (A+1) , 得证 ……( 6分)(2) 21121010999n n n a =+-………………………………………………… (8分)2422112(101010)(101010)999n n n S n =++⋅⋅⋅⋅⋅⋅++++⋅⋅⋅⋅⋅⋅- 2211(101110198210)891n n n ++=+⋅--……………………………………………(12分) 6、解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF .3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k. 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得 依题意220(1680)0k k ∆=-><<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x .4520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F 12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k R F ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|7、解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.个:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++ 因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形, .32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又,,392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角. 9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当,.CBA 3310y 为钝角时∠-<22222y y 3428y 3y 349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点. 3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y 1x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--=A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或8、解:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1(2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴ )x (f 1)x (f =-由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴ 0)x (f 1)x (f >-=又x=0时,f(0)=1>0 ∴ 对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)x x (f )x (f )x (f )x (f )x (f 121212>-=-⋅= ∴ f(x 2)>f(x 1) ∴ f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x) 又1=f(0),f(x)在R 上递增 ∴ 由f(3x-x 2)>f(0)得:x-x 2>0 ∴ 0<x<3 9、解:(1)由题意知021)1(=++=c b f ,∴b c 21--=记1)12()12()()(22--++=++++=++=b x b x c b x b x b x x f x g 则075)3(>-=-b g 051)2(<-=-b g 7551<<⇒b01)0(<--=b g 即)75,51(∈b01)1(>+=b g(2)令u=)(x f 。

高考全国百所名校数学压轴题精选(含答案及解析)

高考全国百所名校数学压轴题精选(含答案及解析)

高考全国百所名校数学压轴题精选1.如右图(1)所示,定义在区间D 上的函数)(x f ,如果满足:对x D ∀∈,∃常数A ,都有()f x A ≥成立,则称函数..()f x 在区间...D 上有下界....,其中A 称为函数的下界...... (提示:图(1)、(2)中的常数A 、B 可以是正数,也可以是负数或零) (Ⅰ)试判断函数348()f x x x=+在(0,)+∞上是否有下界?并说明理由;(Ⅱ)又如具有右图(2)特征的函数称为在区间D 上有上界.请你类比函数有下界的定义,给出函数()f x 在区间D 上有上界的定义,并判断(Ⅰ)中的函数在(,0)-∞上是否有上界?并说明理由;(Ⅲ)若函数()f x 在区间D 上既有上界又有下界,则称函数()f x 在区间D 上有界,函数()f x 叫做有界函数.试探究函数3()b f x ax x=+(0,a >0b >,a b 是常数)是否是[,]m n (0,0,m n >>m 、n 是常数)上的有界函数?【解析】:24.(I )解法1:∵2248()3f x x x'=-,由()0f x '=得224830x x-=,416,x = ∵(0,)x ∈+∞, ∴2x =,-----------------2分∵当02x <<时,'()0f x <,∴函数)(x f 在(0,2)上是减函数; 当2x >时,'()0f x >,∴函数)(x f 在(2,+∞)上是增函数; ∴2x =是函数的在区间(0,+∞)上的最小值点,m in 48()(2)8322f x f ==+=∴对(0,)x ∀∈+∞,都有()32f x ≥,------------------------------------4分即在区间(0,+∞)上存在常数A=32,使得对(0,)x ∀∈+∞都有()f x A ≥成立, ∴函数348()f x x x=+在(0,+∞)上有下界. ---------------------5分[解法2:0x >∴ 3348161616()32f x x x xxxx=+=+++≥= 当且仅当316x x=即2x =时“=”成立∴对(0,)x ∀∈+∞,都有()32f x ≥,即在区间(0,+∞)上存在常数A=32,使得对(0,)x ∀∈+∞都有()f x A ≥成立, ∴函数348()f x x x=+在(0,+∞)上有下界.](II )类比函数有下界的定义,函数有上界可以这样定义:定义在D 上的函数)(x f ,如果满足:对x D ∀∈,∃常数B ,都有()f x ≤B 成立,则称函数)(x f 在D 上有上界,其中B 称为函数的上界. -----7分 设0,x <则0x ->,由(1)知,对(0,)x ∀∈+∞,都有()32f x ≥,∴()32f x -≥,∵函数348()f x x x=+为奇函数,∴()()f x f x -=-∴()32f x -≥,∴()32f x ≤-即存在常数B=-32,对∀(,0)x ∈-∞,都有()f x B ≤, ∴函数348()f x x x =+在(-∞, 0)上有上界. ---------9分 (III )∵22()3b f x ax x'=-,由()0f x '=得2230b ax x-=,∵0,0a b >> ∴4,3b x a=∵ [,](0,)m n ⊂+∞,∴x =,----------10分∵当0x <<时,'()0f x <,∴函数)(x f 在(0当x >时,'()0f x >,∴函数)(x f∞)上是增函数;∴x =是函数的在区间(0,+∞)上的最小值点,3f a =+=---------------------11分①当m ≥)(x f 在[,]m n 上是增函数;∴()()()f m f x f n ≤≤∵m 、n 是常数,∴()f m 、()f n 都是常数 令(),()f m A f n B ==,∴对[,]x m n ∀∈,∃常数A,B,都有()A f x B ≤≤ 即函数3()b f x ax x=+在[,]m n 上既有上界又有下界-------------------------12分②当n ≤时函数)(x f 在[,]m n 上是减函数∴对[,]x m n ∀∈都有()()()f n f x f m ≤≤ ∴函数3()b f x ax x=+在[,]m n 上有界.-------------------------13分③当m n <<时,函数)(x f 在[,]m n 上有最小值m in ()f x=3f a =+=令A =令B=()f m 、()f n 中的最大者则对[,]x m n ∀∈,∃常数A,B,都有()A f x B ≤≤ ∴函数3()b f x ax x=+在[,]m n 上有界.综上可知函数3()b f x ax x=+是[,]m n 上的有界函数--------------14分2.如图,已知双曲线322yx -=1的两个焦点为F 1,F 2,两个顶点为A 1,A 2,点),0(b P 是.0,0,2121>⋅<⋅PA PA PF PF y 且轴正半轴上一点(I )求实数b 的取值范围;(II )直线PF 1,PF 2分别与双曲线各交于两点,求以这四个交点为顶点的四边形的面积S 的取值范围。

高考数学压轴题精编精解精选100题详细解答08

高考数学压轴题精编精解精选100题详细解答08

参考答案: 71解:(Ⅰ)由已知得()(,) 11 22OA OB m n mn ⋅=⋅=-=-分14m n ∴⋅= …………4分(Ⅱ)设P 点坐标为(x ,y )(x >0),由OP OA OB =+得(,)()(,)x y m n =+,())m n m n =+- …………5分∴)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn = 8分 ∴ P 点的轨迹方程为221(0)3y x x -=> 它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支 …………9分(Ⅲ)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧12122121222222(2)(2)2()491224313134031x x ty ty t y y t y y t t t t t t t =++=+++-=⋅+⋅+--+=->- ∴ 2310t -<,即2103t <<又由 120x x +>同理可得 2103t << …………11分由3ME EN =得1122(2,)3(2,)x y x y --=-,∴121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-由21222229(3)331y y y y y t =-=-=-得222331y t =--消去2y 得 2222363(31)31t t t =---,解之得:2115t = ,满足2103t << …………13分故所求直线l 存在,0y --=0y +-= …………14分72.73解: (Ⅰ)当10≤<x 时, 01<-≤-x ,则=--=)()(x f x f b x a ax x -+-223452.……………………………2分 当0=x 时, )0()0(--=f f 0)0(=∴f . ……………………………3分⎪⎩⎪⎨⎧≤<-+-=<≤-+++=∴).10(,452),0( ,0),01(,452)(223223x b x a ax x x x b x a ax x x f …………………………4分(Ⅱ)当10≤<x 时,224106)(a ax x x f +-='))(23(2a x a x --=))(32(6a x ax --=. ………5分 (1)当13232<<a ,即231<<a 时, 当⎪⎭⎫ ⎝⎛∈32,0a x 时,0)(>'x f , 当⎥⎦⎤⎝⎛∈1,32a x 时,0)(<'x f , )(x f ∴在⎪⎭⎫ ⎝⎛32,0a 单调递增,在⎥⎦⎤⎝⎛1,32a 上单调递减,b a a f a g -==∴32728)32()(. ……………………………7分 (2)当2321≤≤a ,即323≤≤a 时,0)(≥'x f ,)(x f ∴在(]1,0单调递增. b a a f a g -+-==∴254)1()(2, ……………………………9分⎪⎪⎩⎪⎪⎨⎧≤≤-+-<<-=∴).323(,254),231(,2728)(23a b a a a b a a g ……………………………10分(Ⅲ) 要使函数)(x f 在(]1,0上恒有0)(≤x f ,必须使)(x f 在(]1,0上的最大值0)(≤a g . 也即是对满足31≤<a 的实数a ,)(a g 的最大值要小于或等于0. ………………11分 (1)当231<<a 时,0928)(2>='a a g ,此时)(a g 在)23,1(上是增函数, 则)(a g b -⎪⎭⎫⎝⎛<3232728b -=27. 027≤-∴b ,解得27≥b . ………① ………………12分 (2)当323≤≤a 时,058)(>-='a a g ,此时,)(a g 在⎥⎦⎤⎢⎣⎡3,23上是增函数, )(a g 的最大值是b g -=23)3(.023≤-∴b ,解得23≥b .………② ……………………………13分由①、②得实数b 的取值范围是23≥b . ……………………………14分74解:(Ⅰ)设椭圆C 的方程为:)0(12222>>=+b a by a x ,则122=-b a .......① (1)分当l 垂直于x 轴时,B A ,两点坐标分别是),1(2a b 和),1(2ab -,24221),1(),1(a b a b a b -=-⋅=⋅∴,则65124=-ab ,即426b a =.………② …3分由①,②消去a ,得01624=--b b .212=∴b 或312-=b (舍去).当212=b 时,232=a .因此,椭圆C 的方程为123222=+y x .……………………………5分(Ⅱ)设存在满足条件的直线l .(1)当直线l 垂直于x 轴时,由(Ⅰ)的解答可知3622==a b AB ,焦点F 到右准线的距离为212=-=c c a d ,此时不满足AB d 23=. 因此,当直线l 垂直于x 轴时不满足条件. ……………………………7分 (2)当直线l 不垂直于x 轴时,设直线l 的斜率为k ,则直线l 的方程为)1(-=x k y .由⎪⎩⎪⎨⎧=+-=1232),1(22y x x k y ⇒03612)26(2222=-+-+k x k x k , 设B A ,两点的坐标分别为),(11y x 和),(22y x ,则1362221+=+k k x x ,26362221+-=k k x x . ]4))[(1(1212212212x x x x k x x k AB -++=-+=)]2636(4)136)[(1(222222+--++=k k k k k 13)1(622++=k k . ……………………9分 又设AB 的中点为M ,则=+=221x x x M13322+k k .当ABP ∆为正三角形时,直线MP 的斜率为kk MP 1-=. 23=P x ,)13(2)1(31)13323(111122222222++⋅+=+-⋅+=-+=∴k k k k k k k x x k MP M P . …………………………11分当ABP ∆为正三角形时,AB MP 23=,即)13(2)1(312222++⋅+k k k k =13)1(62322++⋅k k , 解得12=k ,1±=k . …………………………13分因此,满足条件的直线l 存在,且直线l 的方程为01=--y x 或01=-+y x .……14分75解:(Ⅰ)12)1(1---=n n n a a ,])1(1)[2()1(111---+-=-+∴n n n n a a , (3)分又3)1(11=-+a ,∴数列()⎭⎬⎫⎩⎨⎧-+n n a 11是首项为3,公比为2-的等比数列.……5分1)2(3)1(1--=-+n n n a , 即123)1(11+⋅-=--n n n a . ………………6分 (Ⅱ)12649)123(1121+⋅+⋅=+⋅=---n n n n b .9264321)21(1641)41(19-+⋅+⋅=+--⋅⋅+--⋅⋅=n n S n n n n n . ………………9分(Ⅲ)1)1(2)12(si n--=-n n π,1231)1()2(3)1(111+⋅=----=∴---n n n n n c . ……………………10分 当3≥n 时,则12311231123113112+⋅+++⋅++⋅++=-n n T <12211211321])(1[28112312312317141--+=⋅+⋅+⋅++--n n 7484488447612811])21(1[6128112=<=+<-+=-n . 321T T T << , ∴对任意的*∈N n ,74<n T . ………………………14分76、(1)1'()(2)(1),(0),'(0)2axf x e ax x f f a=+-=-=-所以切线方程为120x y a++=(2)'()02,1f x x x a==-=令则 当2a <-时,22()(,)(1,),1)f x a a-∞-+∞-在和上单调递减,在(上单调递增 2'()0,()a f x f x R =-≤当时,在上减函数当20a -<<时,22()(,1)(,))f x a a-∞-+∞-在和上单调递减,在(1,上单调递增()0,(1)0f f a-><1(1)a f e a∴=-为最小值1330,a e x a a a ⎡⎫∴-+≥∈-+∞⎪⎢⎣⎭对恒成立(]0,ln3a ∴∈77、(1)2=a 时,xx x f ln 2)(-=, xx x x x x f 2ln 2ln )(+-=',2ln 1)2(='f ,………………………2分 又0)2(=f所以切线方程为)2(2ln 1-=x y ………………………2分 (2)1°当10<<x 时,0ln <x ,则x xax >-ln x x x a ln ->⇔ 令x x x x g ln )(-=,x xx x g 2ln 22)(--=',再令x x x h ln 22)(--=,0111)(<-=-='xx xx x h 当10<<x 时0)(<'x h ,∴)(x h 在)1,0(上递减, ∴当10<<x 时,0)1()(=>h x h , ∴02)()(>='xx h x g ,所以)(x g 在)1,0(上递增,1)1()(=<g x g ,所以1≥a ……………………5分 2°1>x 时,0ln >x ,则x xax >-ln x x x a ln -<⇔)(x g a <⇔由1°知当1>x 时0)(>'x h ,)(x h 在),1(+∞上递增 当1>x 时,0)1()(=>h x h ,02)()(>='xx h x g所以)(x g 在),1(+∞上递增,∴1)1()(=>g x g∴1≤a ;………………………5分由1°及2°得:1=a ………………………1分 78、解:(I )依题意知:直线l 是函数()ln f x x =在点(1,0)处的切线,故其斜率1(1)11k f ===所以直线l 的方程为1y x =-又因为直线l 与()g x 的图像相切 所以由22119(1)0172222y x x m x y x mx =-⎧⎪⇒+-+=⎨=++⎪⎩ 得2(1)902(4m m m ∆=--=>==不合题意,舍去)(Ⅱ)因为()(1)()ln(1)2(1),h x f x g x x x x =+-=+-+>-所以1'()111xh x x x -=-=++当10x -<<时,'()0;h x > 当0x >时, '()0h x < 因此,()h x 在(1,0)-上单调递增,在(0,)+∞上单调递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个个高考数学压轴题精编精解精选100题,精心解答{完整版}1.设函数()1,121,23x f x x x ≤≤⎧=⎨-<≤⎩,()()[],1,3g x f x ax x =-∈,其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。

(I )求函数()h a 的解析式; (II )画出函数()y h x =的图象并指出()h x 的最小值。

2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12,2a =则当n ≥2时,!n n b a n >⋅.3.已知定义在R 上的函数f (x ) 同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数);(2)(0)()14f f π==;(3)当0,4x π∈[]时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围.4.设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅ay b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5.已知数列{}n a 中各项为: 12、1122、111222、 (111)⋅⋅⋅⋅⋅⋅14243222n⋅⋅⋅⋅⋅⋅14243 …… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .6、设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.7、已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.8、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0;(3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。

9、已知二次函数),(2)(2R c b c bx x x f ∈++=满足0)1(=f ,且关于x 的方程0)(=++b x x f 的两实数根分别在区间(-3,-2),(0,1)内。

(1)求实数b 的取值范围;(2)若函数)(log )(x f x F b =在区间(-1-c ,1-c )上具有单调性,求实数C 的取值范围10、已知函数,1)21(,)1,1()(-=-f x f 上有意义在且任意的x 、)1,1(-∈y 都有).1()()(xy y x f y f x f ++=+ (1)若数列).(),(12,21}{*211n nn n n x f N n x x x x x 求满足∈+==+ (2)求)21()131()111()51(12+++++++n f n n f f f Λ的值.11.在直角坐标平面中,△ABC 的两个顶点为 A (0,-1),B (0, 1)平面内两点G 、M 同时满足①0GA GB GC ++=u u u r u u u r u u u r r , ②||MA uuu r = ||MB uuu r = ||MC u u u u r ③GM u u u u r ∥AB u u u r(1)求顶点C 的轨迹E 的方程(2)设P 、Q 、R 、N 都在曲线E 上 ,定点F , 0) ,已知PF u u u r ∥FQ uuur ,RF u u u r ∥FN u u u r 且PF u u u r ·RF u u u r= 0.求四边形PRQN 面积S 的最大值和最小值.12.已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1; ⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<Λ13.(本小题满分14分)已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=----Λ,证明:{}n a 是等差数列;(Ⅲ)证明:()23111123n n N a a a *++++<∈L 14.已知函数()(),023232≠++-=a cx x a x a x g (I )当1=a 时,若函数()x g在区间()1,1-上是增函数,求实数c 的取值范围;(II )当21≥a 时,(1)求证:对任意的[]1,0∈x ,()1/≤x g 的充要条件是43≤c ;(2)若关于x 的实系数方程()0/=x g 有两个实根βα,,求证:,1≤α且1≤β的充要条件是.412a a c -≤≤-15.已知数列{a n }前n 项的和为S n ,前n 项的积为n T ,且满足(1)2n n n T -=。

①求1a ;②求证:数列{a n }是等比数列;③是否存在常数a ,使得()()()212n n n S a S a S a ++-=--对n N +∈都成立? 若存在,求出a ,若不存在,说明理由。

16、已知函数()y f x =是定义域为R 的偶函数,其图像均在x 轴的上方,对任意的[0,)m n ∈+∞、,都有()[()]n f m n f m =g ,且(2)4f =,又当0x ≥时,其导函数'()0f x >恒成立。

(Ⅰ)求(0)(1)F f -、的值;(Ⅱ)解关于x的不等式:22f ⎡⎤≥⎢⎥⎣⎦,其中(1,1).k ∈-17、一个函数()f x ,如果对任意一个三角形,只要它的三边长,,a b c 都在()f x 的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为“保三角形函数”. (I )判断()1f x =,()2f x x =,()23f x x =中,哪些是“保三角形函数”,哪些不是,并说明理由;(II )如果()g x 是定义在R 上的周期函数,且值域为()0,+∞,证明()g x 不是“保三角形函数”;(III )若函数()sin F x x =,x ∈()0,A 是“保三角形函数”,求A 的最大值. (可以利用公式sin sin 2sin cos22x y x yx y +-+=)18、已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式;(Ⅱ)设21=+nn nS b a ,若数列{}n b 为等比数列,求a 的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设11111n n n c a a +=++-,数列{}n c 的前n 项和为T n . 求证:123n T n >-.19、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =L ,,,),且123a a a ,,成公比不为1的等比数列。

(I )求c 的值; (II )求{}n a 的通项公式。

(III )由数列{}n a 中的第1、3、9、27、……项构成一个新的数列{b n },求nn n b b 1lim +∞→的值。

20、已知圆M P N y x M 为圆点定点),0,5(,36)5(:22=++上的动点,点Q 在NP 上,点G 在MP 上,且满足0,2=⋅=. (I )求点G 的轨迹C 的方程; (II )过点(2,0)作直线l ,与曲线C 交于A 、B 两点,O 是坐标原点,设,OB OA OS +=是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.21.飞船返回仓顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回仓预计到达区域安排三个救援中心(记为A,B,C),B在A的正东方向,相距6km,C在B的北偏东300,相距4km,P为航天员着陆点,某一时刻A接到P的求救信号,由于B、C两地比A距P远,因此4s后,B、C两个救援中心才同时接收到这一信号,已知该信号的传播速度为1km/s.(1)求A、C两个救援中心的距离;(2)求在A处发现P的方向角;(3)若信号从P点的正上方Q点处发出,则A、B收到信号的时间差变大还是变小,并证明你的结论.22.已知函数||1y x=+,222y x x t=-++,11()2ty xx-=+(0)x>的最小值恰好是方程320x ax bx c+++=的三个根,其中01t<<.(Ⅰ)求证:223a b=+;(Ⅱ)设1(,)x M,2(,)x N是函数32()f x x ax bx c=+++的两个极值点.①若122||3x x-=,求函数()f x的解析式;②求||M N-的取值范围.23.如图,已知直线l与抛物线yx42=相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0). (I)若动点M满足0||2=+⋅,求点M的轨迹C;(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F (E在B、F之间),试求△OBE与△OBF面积之比的取值范围.24.设.2)(,ln)(),(2)(--==--=epqeegxxfxfxqpxxg且其中(e为自然对数的底数)(I)求p与q的关系;(II)若)(xg在其定义域内为单调函数,求p的取值范围;(III)证明:①)1()1(->≤+xxxf;②)1(412ln33ln22ln2222+--<+++nnnnnΛ(n∈N,n≥2).CBA25.已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式;(Ⅱ)设021nnS b a =+,若数列{}n b 为等比数列,求a 的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设11111n n n c a a +=++-,数列{}n c 的前n 项和为T n ,求证:123n T n >-.26、对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.如果函数2()(,*)x a f x b c N bx c +=∈-有且仅有两个不动点0、2,且1(2)2f -<-. (Ⅰ)试求函数()f x 的单调区间;(Ⅱ)已知各项不为零的数列{}n a 满足14()1n n S f a =g ,求证:1111ln n nn a n a ++-<<-; (Ⅲ)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:200820071ln 2008T T -<<.27、已知函数f (x )的定义域为{x | x ≠ kπ,k ∈ Z },且对于定义域内的任何x 、y ,有f (x - y ) =f (x )·f (y )+1f (y )-f (x )成立,且f (a ) = 1(a 为正常数),当0 < x < 2a 时,f (x ) > 0.(I )判断f (x )奇偶性;(II )证明f (x )为周期函数; (III )求f (x )在[2a ,3a ] 上的最小值和最大值.28、已知点R (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上 ,且满足230PM MQ +=u u u u r u u u u r r,0RP PM ⋅=u u u r u u u u r .(Ⅰ)⑴当点P 在y 轴上移动时,求点M 的轨迹C 的方程;(Ⅱ)设1122(,) (,)A x y B x y 、为轨迹C 上两点,且111, 0x y >>,N(1,0),求实数λ,使AB AN λ=u u u r u u u r ,且163AB ||=29、已知椭圆W 的中心在原点,焦点在x6. 椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C .(Ⅰ)求椭圆W 的方程;(Ⅱ)求证:CF FB λ=u u u r u u u r(λ∈R );(Ⅲ)求MBC ∆面积S 的最大值.30、已知抛物线2:ax y C =,点P (1,-1)在抛物线C 上,过点P 作斜率为k 1、k 2的两条直线,分别交抛物线C 于异于点P 的两点A (x 1,y 1),B (x 2,y 2),且满足k 1+k 2=0. (I )求抛物线C 的焦点坐标; (II )若点M 满足MA BM =,求点M 的轨迹方程.31.设函数321()()3f x ax bx cx a b c =++<<,其图象在点(1,(1)),(,())A f B m f m 处的切线的斜率分别为0,a -.(Ⅰ)求证:01ba<≤;(Ⅱ)若函数()f x 的递增区间为[,]s t ,求||s t -的取值范围;(Ⅲ)若当x k ≥时(k 是与,,a b c 无关的常数),恒有1()0f x a -+<,试求k 的最小值.32.如图,转盘游戏.转盘被分成8个均匀的扇形区域.游戏规则:用力旋转转盘,转盘停止时箭头A 所指区域的数字就是游戏所得的点数(转盘停留的位置是随机的).假设箭头指到区域分界线的概率为01.,同时规定所得点数为0.某同学进行了一次游戏,记所得点数为ξ.求ξ的分布列及数学期望.(数学期望结果保留两位有效数字)33.设1F ,2F 分别是椭圆C :2222162x y m m+=(0)m >的左,右焦点. (1)当P C ∈,且210PF PF =u u u r u u u rg,12||||8PF PF ⋅=时,求椭圆C 的左,右焦点1F 、2F . (2)1F 、2F 是(1)中的椭圆的左,右焦点,已知2F e 的半径是1,过动点Q 的作2F e 切线QM ,使得12QF =(M 是切点),如下图.求动点Q 的轨迹方程.34.已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.(1)求证:{}12n n a a ++是等比数列; (2)求数列{}n a 的通项公式;Q (x ,MF 1F 2Oyx(3)设3(3)n n n n b n a =-,且12n b b b m +++<对于n N *∈恒成立,求m 的取值范35.已知集合{}121212()00D x x x x x x k =>>+=,,,(其中k 为正常数).(1)设12u x x =,求u 的取值范围; (2)求证:当1k ≥时不等式21212112()()()2k x x x x k--≤-对任意12(,)x x D ∈恒成立; (3)求使不等式21212112()()()2k x x x x k--≥-对任意12(,)x x D ∈恒成立的2k 的范围. 36、已知椭圆C :22ax +22b y =1(a >b >0)的离心率为36,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点。

相关文档
最新文档