Ansys学习总结
ANSYS软件学习整理

ANSYS学习●ANSYS能完成的工作用户利用ANSYS软件能够完成下列工作:1.能够建立有限元模型或转换结构、产品、零件和系统的CAD模型。
2.能够施加运行载荷或其他设计性能参数。
3.研究物理响应,如应力水平、温度分布或电磁场。
4.进行优化设计,减小产品费用。
5.能够做在某些环境下不可能或不方便的样机实验。
同时,ANSYS软件有一个很好的图形用户截面●进入ANSYS软件在Windows系统中执行“开始>程序>ANSYS”则会弹出一个下拉子菜单,菜单中各向的意义如下:1.Amimate:执行该命令后,将弹出一个演示动画(扩展名为*.A VI)的窗口,通过“OPEN”命令可以在窗口上演示用户指定的动画。
2.Display:用来显示中性图形文件,观察静态或动态屏幕动画,或者将文件转化为适当的格式打印、绘图或输出到字处理软件即桌面出版社软件中,Display软件采用 *.Grph”格式文件中的信息来直接生成图像。
3.Ans-Admin:利用该命令可以完成对ANSYS软件产品的设置。
●应用菜单应用菜单包含着ANSYS软件的有效功能,如文件控制、选择、图形控制和参数化等,用户在ANSYS软件的任何时刻都可以执行应用菜单中的大多数功能。
应用菜单中共列出了10个下拉式子菜单,其中每个下拉式子菜单的意义如下:1.File(文件):容纳着与文件和数据库相关的功能。
如清除数据库、保存数据库到文件、从文件中恢复数据等。
在文件菜单中的某些命令只能在起始状态有效,若用户不再起始状态执行该命令,那么软件就会弹出一个对话框。
要求用户在执行命令或者取消命令之间进行选择。
2.Select(选择):包含允许用户选择数据的某一部分并生成组件的功能。
3.List(列表):能够让用户列出存储在ANSYS数据库中的任何数据,用户也能够获得在软件不同阶段的状态信息,并可列出留在文件中的文件内容。
4.Plot(显示):让用户能够显示关键点、线、面、体、节点、单元和以图形显示其他数据。
ansys心得体会

ansys心得体会ANSYS是一款非常强大的通用有限元分析软件,它广泛应用于工程领域的结构力学、流体力学、热传导、电磁场等领域。
经过一段时间的学习和使用,我对ANSYS有了一些心得体会如下:首先,ANSYS的界面简洁直观,操作方便。
软件的界面布局清晰,功能模块分类明确,用户可以根据自己的需求选择相应的模块进行分析和计算。
在进行模型建立和后处理时,软件提供了丰富的工具和命令,可以轻松完成复杂的操作,大大提高了工作效率。
其次,ANSYS具有强大的模拟和计算能力。
软件内置了丰富的材料模型、加载模型和边界条件等,可以模拟各种复杂的结构和工况,并进行准确的分析和计算。
无论是进行静力学、动力学、流体力学还是热传导分析,ANSYS都能够提供准确可靠的结果,并帮助用户更好地理解和解决问题。
此外,ANSYS支持多种求解器和求解方法,可以根据问题的特点选择合适的求解器来进行计算。
软件提供了强大的预处理和后处理功能,可以对模型进行优化和修正,以减少计算误差和提高计算效率。
ANSYS还支持多种标准和规范,用户可以根据需要选择相应的标准进行分析和设计,使得计算结果更加准确和可靠。
另外,ANSYS还具有良好的可扩展性和可定制性。
软件支持用户自定义材料模型和加载模型,在满足特定需求和研究目标的同时,可以充分发挥软件的计算能力。
用户还可以编写自己的脚本和宏命令,自动化完成重复性工作,提高工作效率。
ANSYS还支持与其他软件的接口,可以方便地进行数据交换和共享,实现多领域、多物理场的耦合模拟。
总之,ANSYS是一款非常强大和灵活的工程分析软件,其功能强大、计算精确、操作简单以及可扩展性强等特点,使得它在工程领域得到广泛应用。
通过学习和使用ANSYS,我不仅对有限元分析理论有了更深入的理解,也对实际工程问题的分析与解决有了更好的把握。
希望在以后的工作和学习中,能够继续充分发挥ANSYS的优势,更好地应用于实际工程中。
学习ansys的一些心得

学习ansys的一些心得(送给初学者和没有盟币的兄弟)1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot2 标点的输入是在英文状态下,“,”。
3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps4 还不会环形阵列。
5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。
6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。
7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。
复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。
8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。
9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。
10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines.11 Ansys中没有Undo命令.需及时保存数据库文件.Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界.13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。
15 Ansys的模态分析是线型分析。
任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。
16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain)17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:780018 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options.19 弹簧阻尼器单元:Combination-Spring damper 14.20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。
学习有限元ANSYS总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
ANSYS学习经验总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点《材料力学》《弹性力学》《塑性力学》《计算方法》《计算固体力学》先学GUI 再学命令流相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
ansys 学习心得

ANSYS学习心得
封装中心
ANSYS是一种集结构、流体、电场、磁场、声场分析于一体的,广泛应用的商业工程分析软件。
可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
简单的讲, ANSYS的是一款仿真软件,基本原理是基于各门学科的基本理论和计算公式,利用计算机强大的运算能力,求解出我们需要的场域数值,使用过程主要包括五个部分:
1.实体建模
建模就是把复杂的实物抽象转化成由简单几何图形组成的有限元模型。
2.网格划分
根据计算精度的需要,对有限元模型进行网格划分。
创新产品设计仿真计算结构优化生产
产品失效分析仿真计算产品改进试验
3.加载
对模型施加初始边界条件和激励。
以温度场仿真为例,就是要确定物体的初始温度,热源情况以及散热条件等。
4.求解
根据设置好的条件,软件利用计算机完成求解过程。
5.后处理
查看计算结果,(等直线,剃度,矢量,透明,动画效果等),输出计算结果(图表,曲线),检查在一个时间段或子步历程中的结果。
Ansys可分析领域及在封装中心的应用:
1.热管理分析
电路板,管壳,散热情况分析。
烧结炉恒温区工艺曲线分析。
气流场分析
氮气流速对低温炉温度影响净化间挥发物排风情况
静力分析
焊缝疲劳寿命云图
管壳或基板模态分析
4.电磁场分析
电磁铁磁感应强度分布情况
互感器隔离特性分析5.其他
焊料融化—凝固过程
宇航级元器件噪声分析。
ansys软件学习总结

ANSYS软件学习ANSYS有限元典型分析主要分为3个步骤:(1)建立有限元模型;(2)加载和求解;(3)结果后处理和结果查看。
有限元模型的建立是进行分析的前提,对于模型的获得可以有两种方式:一种是首先在ANSYS中创建或在CAD软件中建立模型并导入到ANSYS中,然后对实体模型进行网格划分,已生成有限元模型。
另一种是直接在ANSYS中用单元和节点生成有限元模型。
利用第一种创建有限元模型的方法有以下几个流程:(1)创建或者导入实体模型(2)选取单元类型及分别设置各部分材料属性参数并赋予到有限元单元(3)对实体模型进行网格划分。
对于简单的模型在ANSYS中直接建模比较方便,但本人觉得对于公司的产品,在ANSYS 中建模或直接生成有限元模型都比较麻烦,所以选择了在CAD软件(Solidworks)中画零件的三维图并组装为装配体,之后导入到ANSYS中。
具体过程以850柔性支柱绝缘子为例显示如下:(1)Solidworks绘制各部件三维图,装配体简化图(只有法兰和引拔棒,且两者完全配合无间隙),另存保存为Parasolid(*.x-t)类型,文件名字最好不包含中文,例:zpt-jh等。
(2)打开ANSYS13.0程序,导入装配体简化图。
File>Import>Para…. >在Directories: 中找到装配体简化图存放位置,并双击打开;点击OK即可。
(3)对导入到ANSYS中的装配体只显示装配体的线,而不能显示面和体(如上所示),处理方法为:PlotCtrls > Style> Solid Model Facets,在Solid Model Facets对话框中选择Normal Faceting,再点击OK并Replot即可。
(4)Preferences选取Structural。
(5)单元类型设置:Preprocessor>Element Type>Add/Edit/Delete>Add…> Structural Solid:Brick 8 node 185或Tet 10 node 187(本例中选取187) >OK>Close。
ANSYS使用心得体会

ANSYS使用心得体会首先,熟练掌握基本操作是非常重要的。
ANSYS界面繁杂,功能众多,初学者往往会有些迷茫。
但只要掌握了基本操作,就能够快速上手。
比如,了解如何创建几何模型、应用合适的材料属性、添加边界条件等等。
这些基本操作的熟练掌握,能够极大地提高工作效率。
其次,合理的前处理工作是确保结果准确性的关键。
在进行有限元分析前,需要对几何模型进行前处理,包括划分单元网格、定义材料属性和边界条件等。
这些工作的准确性直接影响到最终的分析结果。
因此,需要对模型进行严谨的检查,确保网格质量良好、边界条件设置合理等。
同时,也需要考虑到实际工程情况,合理简化模型,减少计算量。
同时,了解不同分析方法的适用范围也非常重要。
ANSYS提供了很多分析方法和求解器,比如静力学分析、热传导分析、流体流动分析等。
不同的分析方法适用于不同的问题,需要根据实际情况选择合适的分析方法。
比如,对于涉及气体流动的问题,可以选择CFD模块进行流体流动仿真;而对于机械结构的分析,可以选择结构力学模块进行静力学分析等。
另外,对结果的合理解读也是非常重要的。
有限元分析的结果不仅仅是一个数字,它反映了结构或流场的内部应力、变形、温度等信息。
因此,对结果的合理解释能够帮助我们更好地理解问题,并进行后续的工程判断。
比如,在结构分析中,我们可以通过查看应力云图、变形云图等来判断结构的强度、刚度等;在流体流动分析中,我们可以通过查看流速、压力分布等来判断流场的稳定性、流动特性等。
最后,不断学习和探索是提高使用ANSYS技能的关键。
ANSYS是一个功能强大的软件,涉及的领域非常广泛。
通过参加培训课程、阅读相关文献等方式,可以不断提升自己的技能水平。
此外,要保持好奇心,勇于探索新的理论和方法。
只有不断学习和探索,才能够在日常工作中更好地应用ANSYS。
总之,ANSYS是一款非常优秀的工程分析软件,通过使用它,我对工程问题的理解能力得到了很大的提高。
熟练掌握基本操作、合理的前处理工作、选择合适的分析方法、合理解读结果以及不断学习和探索,是我使用ANSYS的一些心得体会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、ANSYS输出mnf文件模型单位要统一,最好都适用国际单位米制的,那么弹性模量、密度也要统一单位。
然后进行单元添加:solid45、beam4、mass21给beam4设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变)给mass21设置实常数(real constant):基本都是1e-12(米制单位,毫米要相应改变)添加材料设置:包括两种材料,一种是实体需要的材料,即为应该模型材料。
一种就是需要刚度大但是质量轻的材料,一般用的是密度为1e-12,弹性模量比模型实体的高出5个数量级(这个数值对能否导成功有直接影响,可以进行试算,用高5个数量级保证了稳定输出)。
在attachpoint铰链位置添加两个keypoint,然后用mass21去划分网格。
可以得到node 1、node2,然后对模型整体用solid45划分。
现在要把这两个孔刚化,就需要用到刚性梁单元。
用beam4单元连接孔上每一个节点与孔中心节点(需要成为attachpoint的点)。
6、ansys中的add、glue、overlap的区别及联系1、相加(add):相加是指对所有图元进行叠加,包含原是个图元的所有部分,生成一个新图元,各个原始图元的公共边界将被清除,形成一个单一的整体。
在ansys的面相加中只能对共面的图元进行操作.对两个已经存在的面进行相加操作命令:aadd,na1,na2,na3,na4,na5,na6,na7,na8,na92)对两个已经存在的体进行相加操作命令:vadd,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv93)对两条已经存在的线进行操作命令:lcomb,nl1,nl2,keepkeep表示保留进行相加操作的图元,deleted表示进行相加操作后删除原始图元。
2、搭接(overlap):搭接食指将分离的同阶图元转变为一个连续体,其中图元的所有重叠区域将独立成为一个图元。
搭接与相加操作类似,但相加操作是由几个图元生成一个图元整体,而搭接则是由几个图元生成更多的图元,相交的部分则被分离出来。
1)、线和线之间进行搭接操作命令:lovlap,nl1,nl2,nl3,nl4,nl5,nl6,nl7,nl8,nl92)、面和面之间进行搭接操作命令:aovlap,na1,na2,na3,na4,na5,na6,na7,na8,na93)、体和体之间进行搭接操作命令:vovlap,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv93、粘结(glue)粘结操作是将多个图元组合成一个连续体,图元之间仅在公共边界处相连,其公共边界的维数低于原始图元一维。
粘结操作与加操作类似,但不同的是这些图元之间仍然相互独立,只是在边界上连接。
粘结操作通常还与搭接操作配合使用。
1)、通过粘结线生成新线命令:lglue,nl1,nl2,nl3,nl4,nl5,nl6,nl7,nl8,nl92)、通过粘结面生成新面命令:aglue,na1,na2,na3,na4,na5,na6,na7,na8,na93)、通过粘结体生成新体命令:vglue,nv1,nv2,nv3,nv4,nv5,nv6,nv7,nv8,nv9Ansys使用技巧-后处理1.ANSYS后处理时如何按灰度输出云图?1)你可以到utilitymenu-plotctrls-style-colors-window colors 试试2)直接utilitymenu-plotctrls-redirect plots2 将云图输出为JPG菜单->PlotCtrls->Redirect Plots->To JPEG Files3.怎么在计算结果实体云图中切面?命令流/cplane/type图形界面操作<1.设置工作面为切面<2.PlotCtrls-->Style-->Hidden line Options将[/TYPE]选项选为section将[/CPLANE]选项选为working plane4. 非线性计算过程中收敛曲线实时显示solution>load step opts>output ctrls>grph solutrack>on5. 运用命令流进行计算时,一个良好的习惯是:使用SELECT COMMEND后.........其后再加上ALLSEL..6. 应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值如你plnsolv,s,eqv则SMX与SMN分别代表最大值等效应力和最小值等效应力如你要看的是plnsolv,u则SMX与SMN分别代表位移最大值和位移最小值不要被S迷惑mx(max)mn(min)7. 在非线性分析中,如何根据ansys的跟踪显示来判断收敛?在ansys output windows 有force convergenge valu 值和criterion 值当前者小于后者时,就完成一次收敛你自己可以查看两条线的意思分别是:F L2:不平衡力的2范数F CRIT:不平衡力的收敛容差,如果前者大于后者说明没有收敛,要继续计算当然如果你以弯矩M为收敛准则那么就对应M L2 和M CRIT8. 两个单元建成公共节点,就成了刚性连接,不是接触问题了。
作为接触问题,两个互相接触的单元的节点必须是不同的。
9. 接触单元主要分为有厚度和无厚度的,有厚度主要以desai为代表,无厚度的则以goodman 为代表。
尽管古得曼也提出了相应的本构关系,但是如今goodman 单元成了无厚度接触单元的代名词,相应的本构关系现在也作了较大的改进。
Ansys中接触单元并不是goodman 单元,类似于goodman 单元ansys里面的接触单元是是通用的,而goodman是一种专业的单元。
goodman单元假定两片长为L的接触面以无数微小的切向和法向弹簧所连接,接触面单元与相邻接触面两边的单元只在结点处有力的联系。
单元厚度为零,受力前两接触面完全吻合.10. 怎样检查接触单元的normal direction?是不是打开plotctrls/symbols/esys on?是要/PSYM,ESYS,ON的,然后你再SELECT CONTACTELEMENT AND TARGE ELEMENT,REPLOT,看看他们的NORMAL DIRECTION是否正确的。
11. 生成接触单元的几种方法在通用模快中,有两种发法1)通过定易接触单元定易组元component然后通过gcgen生成2)用接触向导contact wizard自动生成,不需定易接触单元在动力学摸块中3)如果用接触向导定义了接触(包括接触面和目标面),那么接触单元就已经生成了,可以直接进行分析。
接触单元的定义要考虑到所有可能发生接触的区域。
现在不接触,变形后可能会接触。
定义接触一般有两种方法,第一种方法是用命令手动定义;第二种方法是利用接触向导定义。
接触单元依附于实体单元的表面,由实体单元表面的节点组构成。
所以只需要在实体单元生成后,将其表面可能接触的节点用cm,...,node 命令定义成节点组,在定义接触单元时用上就可以了。
或者在实体单元生成后,定义接触时选择其表面进行接触定义也可以。
对于刚体,不需要进行网格划分,只需要在定义接触时选择几何面、线就可以进行接触定义了。
12. 用POST1进行结果后处理(1). 进入POST1命令:/POST1GUI:Main Menu>General Postproc(2). 读取结果依据载荷步和子步号或者时间读取出需要的载荷步和子步结果。
命令:SETGUI:Main Menu>General Postproc>ReadResults-Load step(3). 绘变形图命令:PLDISP,KUNDKUND=0 显示变形后的的结构形状KUND=1 同时显示变形前及变形后的的结构形状KUND=1 同时显示变形前及变形后的的结构形状,但仅显示结构外观GUI:Main Menu>General Postprocessor>PlotResults>Deformed Shape(4). 变形动画以动画的方式模拟结构静力作用下的变形过程GUI:Utility Menu>Plotctrls>Animate>DeformedShape(5). 列表支反力在任一方向,支反力总和必等于在此方向的载荷总和GUI:Main Menu>General Postprocessor>ListResults>Rection Solution…(6). 应力等值线与应力等值线动画应力等值线方法可清晰描述一种结果在整个模型中的变化,可以快速确定模型中的危险区域。
GUI:Main Menu>General Postprocessor>PlotResults>-Contour Plot-Nodal Solution…应力等值线动画GUI:Utility Menu>Plotctrls>Animate>DeformedShape13. 面载荷转化为等效节点力施加的方法在进行分析时,有时候需要将已知的面载荷按照节点力来施加,比如载荷方向及大小不变的情况(ANSYS将面力解释为追随力,而将节点力解释为恒定力),那么,在只知道面力的情况下,如何施加等效于该面力的等效节点力呢?可以通过如下步骤给有限元模型施加与已知面载荷完全等效的节点力:(1)在模型上施加与已知面力位置、大小相同但方向相反的面力。
Main Menu->Solution->Apply->Pressure->。
(注意:所施加面力要与已知力反号)。
(2) 将模型的所有节点自由度全部约束。
Main Menu->Solution->Apply->Displacement->OnNodes(3)求解模型。
Main Menu->Solution->Current LS(这一步会生成结果文件Jobname.rst)(4)开始新的分析:Main Menu->Solution->New Analysis(5)删除前两步施加的面力和约束。
Main Menu->Solution->Delete->Pressure->Main Menu->Solution->Delete-> Displacement->On Nodes(6)从Jobname.rst中保存的支反力结果施加与已知面力完全等效的节点力。