正余弦旋转变压器工作原理共49页文档
8.旋转变压器的工作原理(精)

旋转变压器的工作原理
一
旋转变压器是一种角度测量元件,它是一种小型交流电机。 在结构上与两相绕组式异步电动机相似,由定子和转子组成, 定子绕组为变压器的原边,转子绕组为变压器的副边。激磁 电压接到定子绕组上,激磁频率通常为400H、500H、1000H、 3000H、5000H。
特点:其结构简单、动作灵敏,对环境无特殊要求,维 护方便,输出信号幅度大,抗干扰性强,工作可靠。
旋转变压器的工作原理
工作原理:
输入电压 定子绕组
一
u1=Um sint
u1=Um sint
u1=Um sint
1
u2
u2
u2
=0
=励磁电压为U1=Umsint,通过电磁耦
合,将在转子绕组中产生的感应电压为
U2 = K U1sin = K Um sint sin = K Um sin sint
旋转变压器工作原理

旋转变压器工作原理旋转变压器是一种能够将电能从一个电路传输到另一个电路的设备。
它适用于电力系统和通信系统等领域。
旋转变压器的工作原理基于电磁感应。
当一定电流通过旋转变压器中的原边绕组时,会在原边绕组周围产生磁场。
这个磁场会穿过一个铁芯,然后到达另一个绕组,即副边绕组。
当磁场通过副边绕组时,它会产生电动势,从而在副边绕组中产生电压。
旋转变压器实际上可以看作是一个旋转的变压器。
它有一个旋转的铁芯,上面分别包裹着原边绕组和副边绕组。
这个铁芯旋转的方式有多种,比如使用液压油、气动压缩空气、电动驱动等方式。
无论使用何种方式,铁芯都必须旋转起来,才能在原边绕组和副边绕组之间建立磁场。
旋转变压器的参数主要包括变比、频率、相数、额定容量等。
变比是指副边绕组电压与原边绕组电压的比值。
频率是指电源的频率,它决定了旋转变压器的工作范围。
相数是指电源的相数,旋转变压器的绕组数量要与电源的相数相匹配。
额定容量是指旋转变压器能够承受的最大功率。
除此以外,旋转变压器还有一些特殊的应用。
比如,在船舶领域,旋转变压器被用于传输和分配电能,在汽车制造领域,旋转变压器被用于汽车故障电源供应,旋转变压器还可以用于动力变频和电感加热等领域。
总之,旋转变压器是一种非常重要的设备,它能够将电能从一个电路传输到另一个电路。
其工作原理基于电磁感应,通过在原边绕组中产生磁场,然后在副边绕组中产生电压。
旋转变压器的参数包括变比、频率、相数、额定容量等。
除此以外,旋转变压器还有一些特殊的应用,比如在船舶领域、汽车制造领域等。
正余弦旋转变压器绕组设计-概述说明以及解释

正余弦旋转变压器绕组设计-概述说明以及解释1.引言1.1 概述在本篇长文中,我们将讨论正余弦旋转变压器绕组设计这一主题。
作为电力系统中重要的电力传输设备,变压器的设计和优化一直是工程师们关注的焦点。
正余弦旋转变压器是一种基于磁通旋转的新型变压器,其具有较小的漏磁感应率和较高的能量转换效率。
正余弦旋转变压器绕组设计是该类变压器的关键部分,其合理的设计可以提高变压器的性能和稳定性。
在绕组设计中,我们需要考虑变压器的额定功率、电压等级以及所需的相位移等参数。
通过合理选取绕组结构和导线材料,可以实现更高的绝缘强度和更低的耗损。
本篇长文将从正余弦旋转变压器的原理入手,详细介绍正余弦旋转变压器的工作原理及其在电力系统中的应用。
接着,我们将阐述变压器绕组设计的基本原则,包括绕组的布局、层间绝缘和匝间绝缘的设计要点。
最后,我们将重点讨论正余弦旋转变压器绕组设计中的关键问题,例如匝间电压分布的优化以及绝缘材料的选择。
通过对正余弦旋转变压器绕组设计的全面分析和研究,本文旨在为电力系统工程师提供关于变压器设计的重要理论和实践指南。
了解正余弦旋转变压器绕组设计的原理和要点,将帮助工程师更好地应用和改进该类变压器,进一步提升电力系统的运行效率和稳定性。
未来,我们对正余弦旋转变压器绕组设计的发展趋势进行展望,并探讨其在智能电网和可再生能源领域的应用前景。
1.2 文章结构文章结构部分的内容:文章的结构主要分为引言、正文和结论三个部分。
引言部分为文章的开端,主要包括概述、文章结构和目的。
概述部分为文章的开篇,简要介绍了正余弦旋转变压器绕组设计的背景和重要性。
主要说明了正余弦旋转变压器的应用领域和意义。
文章结构部分为本文的大纲,包括引言、正文和结论三个部分。
通过列出大纲,读者可以清晰地了解整篇文章的内容和逻辑结构,方便读者阅读和理解文中的内容。
目的部分主要阐明了本文的写作目的,即希望通过对正余弦旋转变压器绕组设计的研究和分析,提供一种有效的方法和指导原则,以支持工程师在实际应用中进行变压器绕组设计。
正余弦旋转变压器的工作原理

此时,转子绕组中的电流 I s 和 I c 分别为
在正、余弦绕组中产生的磁场分别为
K uU f sin θ cosθ Zs Z L K uU f cosθ Bcq Bc sin θ K sin θ Zc Z Bsq Bs cosθ K
第7章 旋转变压器
7.1 概 述
7.2 正余弦旋转变压器
7.3 线性旋转变压器
7.4 数字旋转变压器 7.5 旋转变压器的误差分析及主要技术指标 7.6 多极旋转变压器和感应同步器
1
7.1 概
述
7.1.1旋转变压器的分类
7.1.2旋转变压器的结构特点
2
7.1 概
述
旋转变压器是自动控制装置中的一类精密控制微电 机。从物理本质看,可以认为是一种可以旋转的变压器,
由此得出正弦输出回路的电压平衡方程式为
E U I Z E s sqs Ls s s
10
I Z 为正弦输出绕组负载时的输出电压,Z s 为正弦绕组的漏阻抗 式中 U Ls s L
7.2.1正余弦旋转变压器的工作原理
jI x cos2 将E sqs s m
所以旋转变压器输出绕组的电压为
UL
K u sin Uf 1 K u cos
20
7.3 线性旋转变压器
可绘制出输出电压 U L 与转子转角 的关系曲线,ku 的最佳值是0.55,
一般选在0.54~0.57之间。
/64
/48
/32
sin 0.0491 0.0654 0.0980 误差 0.04% 0.07% 0.16%
(整理)正余弦旋转变压器

正余弦旋转变压器课程名称新型特种电机学生学院自动化学院专业班级电机与电器学号2111004002 学生姓名梁国荣指导教师黄开胜2011年8 月1 日概述微特电机种类繁多,其中包括一类独特的电机——旋转变压器。
本文将详细叙述旋转变压器中的正余弦旋转变压器。
旋转变压器(Resolver ),是一种将转子转角变换成与之呈某一函数关系的电信号的原件。
当变压器的一次侧外施单相交流电压励磁时,其二次侧的输出电压与转子转角呈严格的函数关系。
正余弦旋转变压器的一、二次绕组间是可变的相对位置,而且正是利用它们之间的不同相对位置来改变它们之间的互感,以便在二次(转子)绕组中获得与旋转ɑ成正、余弦函数关系的端电压。
正余弦旋转变压器的空载运行如图1所示, S1-S1’作为励磁绕组,S2-S2’作为定子交轴绕组,两者空间互相垂直且匝数、型式完全相同。
R1-R1’和R2-R2’分别为转子上的正弦输出绕组和余弦输出绕组,它们的结构也完全相同。
空载时,在定子励磁绕组上施加单相交流电压f U ,其余绕组均开路。
设励磁绕组的轴线方向为直轴d 轴,这时电机中产生直轴脉振磁通d φ,它在励磁绕组中产生的感应电动势为 4.44f s d E fW φ=。
式中,s W 为定子绕组有效匝数,d φ为直轴脉振磁通的幅值。
图1正余弦旋转变压器原理示意图若略去励磁绕组的漏阻抗压降,则f f E U =,当交流电压恒定时,直轴磁通的幅值d φ为常数。
将直轴磁通d φ分解为与正弦输出绕组轴向方向一致的1d φ和余弦输出绕组的轴向方向一致的2d φ。
设转子正弦绕组的轴线与交轴之间的夹角ɑ为转子转角,如图1所示,则两个磁通分量的幅值分别为1sin d d αΦ=Φ和2cos d d αΦ=Φ,他们在正、余弦输出绕组中产生的感应电动势分别为11224.44 4.44sin sin 4.44 4.44cos cos R R d R d R R R d R d R E fW fW E E fW fW E αααα=Φ=Φ==Φ=Φ=式中,R W 为转子绕组有效匝数;R E 为转子输出绕组轴线与定子励磁绕组轴线重合时直轴磁通d Φ在其中感应的电动势。
旋转变压器原理

旋转变压器原理旋转变压器是一种常见的电力变压器,它通过旋转磁场的原理来实现电压的变换。
在旋转变压器中,有两个或多个线圈,它们分别被称为初级线圈和次级线圈。
当交流电流通过初级线圈时,会产生一个旋转的磁场,这个磁场会感应到次级线圈中,从而产生次级电压。
在本文中,我们将详细介绍旋转变压器的工作原理和应用。
旋转变压器的工作原理是基于法拉第电磁感应定律和电磁感应的原理。
当交流电流通过初级线圈时,会产生一个交变磁场。
这个交变磁场会穿过次级线圈,从而在次级线圈中感应出电动势,从而产生次级电流。
由于初级线圈和次级线圈的匝数不同,根据变压器的匝数比公式,我们可以得到初级电压和次级电压之间的关系。
旋转变压器广泛应用于各种电力系统中,例如发电厂、变电站、工业生产等领域。
它可以实现电压的升降,从而适应不同电气设备的要求。
同时,旋转变压器还可以实现电能的传输和分配,保证电力系统的正常运行。
除了在电力系统中的应用,旋转变压器还被广泛应用于变频器和电机控制系统中。
在变频器中,旋转变压器可以实现电压和频率的调节,从而实现对电机转速的精确控制。
在电机控制系统中,旋转变压器可以实现对电机的启动和调速,提高电机的效率和性能。
在实际工程中,旋转变压器的设计和制造需要考虑很多因素,例如磁路设计、线圈匝数、绝缘材料、冷却方式等。
这些因素对变压器的性能和可靠性都有很大影响。
因此,旋转变压器的设计和制造需要综合考虑电磁学、材料学、热学等多个学科的知识,确保变压器的性能和可靠性。
总之,旋转变压器是一种重要的电力变压器,它通过旋转磁场的原理来实现电压的变换。
它在电力系统、变频器、电机控制系统等领域都有重要的应用。
在未来的发展中,随着电力系统的智能化和高效化要求,旋转变压器将会发挥越来越重要的作用。
旋转变压器的工作原理及应用
旋转变压器的工作原理及应用旋转变压器的工作原理及应用旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。
在结构上与二相线绕式异步电动机相似,由定子和转子组成。
定子绕组为变压器的原边,转子绕组为变压器的副边。
激磁电压接到转子绕组上,感应电动势由定子绕组输出。
常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。
旋转变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。
因此,在数控机床上广泛应用。
通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。
另外,还有一种多极旋转变压器。
也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。
什么是旋转变压器以及应用方式什么是旋转变压器以及应用方式旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。
在结构上与二相线绕式异步电动机相似,由定子和转子组成。
定子绕组为变压器的原边,转子绕组为变压器的副边。
激磁电压接到转子绕组上,感应电动势由定子绕组输出。
常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。
旋转变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。
因此,在数控机床上广泛应用。
通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。
另外,还有一种多极旋转变压器。
也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。
旋转变压器的应用旋转变压器作为位置检测装置有两种应用方式:鉴相方式和鉴幅方式。
旋转变压器的工作原理及应用
旋转变压器的工作原理及应用旋转变压器的工作原理及应用旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。
在结构上与二相线绕式异步电动机相似,由定子和转子组成。
定子绕组为变压器的原边,转子绕组为变压器的副边。
激磁电压接到转子绕组上,感应电动势由定子绕组输出。
常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。
旋转变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。
因此,在数控机床上广泛应用。
通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。
另外,还有一种多极旋转变压器。
也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。
什么是旋转变压器以及应用方式什么是旋转变压器以及应用方式旋转变压器又称分解器,是一种控制用的微电机,它将机械转角变换成与该转角呈某一函数关系的电信号的一种间接测量装置。
在结构上与二相线绕式异步电动机相似,由定子和转子组成。
定子绕组为变压器的原边,转子绕组为变压器的副边。
激磁电压接到转子绕组上,感应电动势由定子绕组输出。
常用的激磁频率为400Hz,500Hz,1000Hz和5000Hz。
旋转变压器结构简单,动作灵敏,对环境无特殊要求,维护方便,输出信号幅度大,抗干扰性强,工作可靠。
因此,在数控机床上广泛应用。
通常应用的旋转变压器为二极旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组。
另外,还有一种多极旋转变压器。
也可以把一个极对数少的和一个极对数多的两种旋转变压器做在一个磁路上,装在一个机壳内,构成“粗测”和“精测”电气变速双通道检测装置,用于高精度检测系统和同步系统。
旋转变压器的应用旋转变压器作为位置检测装置有两种应用方式:鉴相方式和鉴幅方式。
正余弦旋转变压器
正余弦旋转变压器课程名称新型特种电机学生学院自动化学院专业班级电机与电器学号2111004002 学生姓名梁国荣指导教师黄开胜2011年8 月1 日概述微特电机种类繁多,其中包括一类独特的电机——旋转变压器。
本文将详细叙述旋转变压器中的正余弦旋转变压器。
旋转变压器(Resolver ),是一种将转子转角变换成与之呈某一函数关系的电信号的原件。
当变压器的一次侧外施单相交流电压励磁时,其二次侧的输出电压与转子转角呈严格的函数关系。
正余弦旋转变压器的一、二次绕组间是可变的相对位置,而且正是利用它们之间的不同相对位置来改变它们之间的互感,以便在二次(转子)绕组中获得与旋转ɑ成正、余弦函数关系的端电压。
正余弦旋转变压器的空载运行如图1所示, S1-S1’作为励磁绕组,S2-S2’作为定子交轴绕组,两者空间互相垂直且匝数、型式完全相同。
R1-R1’和R2-R2’分别为转子上的正弦输出绕组和余弦输出绕组,它们的结构也完全相同。
空载时,在定子励磁绕组上施加单相交流电压f U g,其余绕组均开路。
设励磁绕组的轴线方向为直轴d 轴,这时电机中产生直轴脉振磁通d φ,它在励磁绕组中产生的感应电动势为 4.44f s d E fW φ=。
式中,s W 为定子绕组有效匝数,d φ为直轴脉振磁通的幅值。
图1正余弦旋转变压器原理示意图若略去励磁绕组的漏阻抗压降,则f f E U =,当交流电压恒定时,直轴磁通的幅值d φ为常数。
将直轴磁通d φ分解为与正弦输出绕组轴向方向一致的1d φ和余弦输出绕组的轴向方向一致的2d φ。
设转子正弦绕组的轴线与交轴之间的夹角ɑ为转子转角,如图1所示,则两个磁通分量的幅值分别为1sin d d αΦ=Φ和2cos d d αΦ=Φ,他们在正、余弦输出绕组中产生的感应电动势分别为11224.44 4.44sin sin 4.44 4.44cos cos R R d R d R R R d R d R E fW fW E E fW fW E αααα=Φ=Φ==Φ=Φ=式中,R W 为转子绕组有效匝数;R E 为转子输出绕组轴线与定子励磁绕组轴线重合时直轴磁通d Φ在其中感应的电动势。
旋转变压器 工作原理
04
旋转变压器的使用
旋转变压器在EPS系统上面的应用
EPS是一个典型的电机伺服系统。在EPS中,汽车转向时,转矩传感器检测到转向盘的力 矩和转动方向,将这些信号输送到电控单元,电控单元根据转向盘的转动力矩、转动方向和 车辆速度等数据向电动机控制器发出信号指令,使电动机输出相应大小及方向的转动力矩以 产生助动力。 EPS必须满足很高的实时性和较高的精度要求,同时,要确保其具有高的可靠性。无刷旋 转变压器是较好的选择。
可靠性较差 成本高,可靠性较差
正余弦式 绝对式
分辨率高、通用接口 分辨率高、可绝对定位
旋转变压器
绕线式
可靠性高,高精度、可绝对定位
使用麻烦
精度偏低,使用麻烦
磁阻式
可靠性最高,结构简单紧凑
02
旋转变压器的类型
02
旋转变压器的类型
从电机原理来看, 旋转变压器又是一种能旋转的 变压器。 这种变压器的原、 副边绕组分别装在 定、 转子上。 原、 副边绕组之间的电磁耦合 程度由转子的转角决定, 故转子绕组的输出电压 大小及相位必然与转子的转角有关。
旋转变压器
演讲人:
01
CONTENTS
概述
02 03
04
旋转变压器的类型
正余弦旋转变压器
旋转变压器的使用
01
概述
01
概述
旋转变压器,又称同步分解器,是一种电磁式传感器,精密测位用的机电元件,
其输出电信号与转子转角成某种函数关系。旋转变压器也是一种测量角度用的小型交
流电动机,主要用来测量旋转物体的转轴角位移和角速度。 作为速度及位置传感元件,常用的有这样几种:光学
03
正余弦旋转变压器
3.2 正余弦变压器工作原理