当代数学的起源与发展
数学发展历程

数学发展历程
数学的发展历程可以大致分为四个时期:
1. 数学形成时期:这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。
2. 初等数学时期、常量数学时期:这个时期的基本的、最简单的成果构成中学数学的主要内容。
大约持续了两千年,逐渐形成了初等数学的主要分支:算数、几何、代数。
3. 变量数学时期:变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。
4. 现代数学时期:数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学史复习总结整理篇

数学史复习第0章数学史――人类文明史的重要篇章一、数学史研究哪些内容?P1数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
二、了解数学史有何意义?P1~5数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。
❖(1)了解数学史有助于数学的进一步发展❖(2)对数学家创造过程的了解则可以使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心❖(3)了解数学史就有助于全面了解数学科学❖(4)了解数学史就有助于全面了解整个人类文明史❖(5)要想当好数学教师,充实数学史知识是非常必要的三、历史上关于数学概念的定义有哪些? P6-8历史上对数学的定义,有几种著名的论断:❖数学是量的科学。
(希腊哲学家亚里士多德,公元前4世纪)❖凡是以研究顺序和度量为目的的科学都与数学有关。
(法国数学家笛卡儿,17世纪)❖数学是研究现实世界的空间形式与数量关系的科学。
(恩格斯)❖数学可以定义为这样一门学科,我们永远不知道其中所说的是什么,也不知道所说的内容是否正确。
(罗素)❖数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
(数学的新定义)四、数学史通常采用哪些线索进行分期?本书对数学史如何分期? P9不同的线索将给出不同的分期,通常采用的线索如:1.按时代顺序;2.按数学对象、方法等本身的质变过程;3.按数学发展的社会背景。
对数学史作出如下的分期:❖Ⅰ.数学的起源与早期发展(公元前6世纪前)❖Ⅱ.初等数学时期(公元前6世纪一16世纪)❖ (1)古代希腊数学(公元前6世纪一6世纪)❖ (2)中世纪东方数学(3世纪一15世纪)❖ (3)欧洲文艺复兴时期(15世纪一16世纪)❖Ⅲ.近代数学时期(或称变量数学建立时期,17世纪一18世纪)❖Ⅳ.现代数学时期(1820’一现在)❖ (1)现代数学酝酿时期(1820’一1870)❖ (2)现代数学形成时期(1870—1940’)❖ (3)现代数学繁荣时期(或称当代数学时期,1950一现在)第1章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?P13-14巴比伦楔形数字(六十进制)、玛雅数字(二十进制)、古埃及的象形数字、中国甲骨文数字、希腊阿提卡数字、中国筹算数码、印度婆罗门数字(十进制)二、“河谷文明”指的是什么?P16历史学家往往把兴起于埃及、美索不达米亚、中国和印度等地域的古代文明称为“河谷文明”.早期数学,就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先发展起来的.三、关于古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分都是实用性质,但有个别例外,请举例。
数的发展简史

数的发展简史在人类文明发展的历史长河中,数的发展一直是一个重要的话题。
数的发展不仅仅是一种抽象的概念,更是人类认识世界和改变世界的重要工具。
本文将从古代到现代,简要介绍数的发展历程。
一、古代数的发展1.1 古代数的起源在古代,人们开始意识到需要用数来计数和计量。
最早的数是用手指来计数的,后来发展出了更复杂的计数方法,比如用符木、结绳等来计数。
1.2 古代数学的发展古代数学的发展主要集中在埃及、巴比伦、印度和中国等地。
这些古代文明发展出了各自独特的数学理论和方法,比如埃及人的几何学、巴比伦人的代数学、印度人的数字系统等。
1.3 古代数学的应用古代数学的应用主要集中在土地测量、建筑工程、商业计算等方面。
古代数学家们通过数学方法解决了许多实际问题,为社会的发展做出了重要贡献。
二、中世纪数学的发展2.1 中世纪数学的传播在中世纪,数学知识主要通过阿拉伯人传入欧洲。
阿拉伯人在数学领域取得了重要成就,比如他们引入了阿拉伯数字系统、发展了代数学等。
2.2 中世纪数学的发展中世纪数学的发展主要集中在欧洲。
欧洲的数学家们在代数、几何、三角学等领域取得了重要的成就,为现代数学的发展奠定了基础。
2.3 中世纪数学的应用中世纪数学的应用主要集中在天文学、地理学、商业计算等方面。
中世纪的数学家们通过数学方法解决了许多实际问题,为社会的进步做出了贡献。
三、近现代数学的发展3.1 近现代数学的革命近现代数学的发展经历了几次重大革命,比如微积分的发明、非欧几何的提出、概率论的建立等。
这些革命性的成就为数学的发展开辟了新的道路。
3.2 近现代数学的发展近现代数学的发展主要集中在欧洲和美国。
数学家们在代数、几何、拓扑学、数论等领域取得了许多重要的成就,推动了数学的发展。
3.3 近现代数学的应用近现代数学的应用主要集中在科学研究、工程技术、金融业等领域。
数学方法被广泛应用于各个领域,为社会的发展带来了巨大的影响。
四、当代数学的发展4.1 当代数学的前沿领域当代数学的前沿领域包括数学物理、计算数学、统计学、人工智能等。
数学分支

数学分支学科的历史发展摘要:数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
本文简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。
关键字:代数学几何学分析学代数学范畴一、算术算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指研究自然数(正整数)、分数、小数的简单性质,及其加、减、乘、除、乘方、开方运算法则的一门学科,是数学中最基础的部分,中国古代将数学和数学书也统称为算术。
如果是在高等数学中,则有“数论”的含义。
作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。
它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。
日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。
为了满足这些简单的量度需要,就要用到分数。
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。
它后来被阿拉伯人采用,之后传到西欧。
15世纪,它被改造成现在的形式。
在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。
数的起源与发展

古希腊的荷马史诗《奥德赛》中有这样一则故事;当主人公奥德修斯刺瞎了独眼巨人波吕斐摩斯仅有的一只眼睛以后,那个不幸的盲老人每天都坐在自己的山洞里照料他的羊群,早晨羊儿外出吃草,每出来一只,波吕菲修斯就从一堆石子里捡出一颗,晚上羊儿返回山洞,每进去一只,他就扔掉一颗石子,当他把早晨捡起的石子全部扔掉时,他确信所有的羊都回来了山洞。
数的起源与发展摘要:数,从我们懂事开始,就天天和我们打交道的对象,但是你知道数是怎样产生,又是如何发展成为今天这个模样的吗?数是人类文明的伟大创造,人类在长期的实践中,由于生活的需要产生了数。
在人类几千年的发展历程中,人类对数的认识一步步深入,到现在数已经涉及到社会的各个领域,本文旨在介绍数的起源,数的发展的几个阶段,以及数的衍生。
(一)数的起源数是一个神秘的领域,人类最初对数并没有概念。
但是,生活方面的需要,让人类脑海中逐渐有了“数量”的影子。
数究竟产生于何时,由于其年代久远,我们已经无从考证。
不过可以肯定的一点是数的概念和计数的方法在文字记载之前就已经发展起来了。
根据考古学家提供的证据,人类早在5000多年前就已经采用了某种计数方法。
1.数的概念的产生原始时代的人类,为了维持生活他们必须每天外出狩猎和采集果实。
有时他们满载而归,有时却一无所获;带回的食物有时有富余,有时却不足果腹。
生活中这种数与量上的变化,使人类逐渐产生了数的意识。
在那个时候,他们开始了解有与无,多与少的差别,进而知道了一和多的区别。
然后又从多到二、三等单个数目概念的形成,是一个不小的飞跃。
随着社会的进一步进步和发展,简单的计数就是必须的了,一个部落集体必须知道它有多少成员或有多少敌人,一个人也必须知道他的羊群里的羊是不是少了。
这样,人类的祖先在与大自然的艰难搏斗中,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,逐渐产生了数的概念。
数的产生,标志着人类的思维逐步由事件的直观思维走向形式或抽象思维。
大学数学史考试知识点

1、 数学是研究现实世界的空间形式与数量关系的科学。
2、 古希腊三大著名的几何问题是:A 、 化圆为方,即作一个与给定的圆面积相等的正方形;B 、 倍立方体,即求作一个立方体,使其体积等于已知立方体的两倍;C 、 三等分角,即分任意角为三等分。
3、 九章算术是中国古典数学最重要著作。
4、 刘徽的数学成就最突出的是“割圆术”和体积理论。
5、 祖冲之圆周率上下限为1415927.31415926.3<<π。
6、 《数书九章》的作者是秦九韶7、 变量数学的第一个里程碑是解析几何的发明。
8、 欧拉是史上最多产的数学家。
9、 高斯一生至少给出过二次互反律8个不同的证明。
10、高斯1801年发表了《算术研究》后,数论作为现代数学的一个重要分支得到了系统的发展.11、《数书九章》明确的、系统的叙述了求解一次同余方程组的一般解法。
12、非欧几何的发明首先由罗巴切夫斯基发表。
13、1900年法国数学家希尔伯特提出23个数学问题。
14、1994年英国数学家wilson 证明了费马大定理。
15、Cantor (康托尔)系统发展了集合论.1、 宋元数学最突出的成就之一是高次方程的数值求解。
2、 宋世杰的代表著作是“算学启蒙”和“四元玉鉴”。
3、 罗巴切夫斯基最早最系统地发表非欧几何的研究成果.4、 黎曼1854年创立了更广泛的几何是黎曼几何。
5、 统一几何理论是德国数学家克莱因。
6、 我国数学家陈景润在哥德巴赫猜想中取得世界领先的成果。
1.世界上第一个把π 计算到3。
1415926<n <3.1415927 的数学家是B.祖冲之2.我国元代数学著作《四元玉鉴》的作者是C.朱世杰3.就微分学与积分学的起源而言( A )积分学早于微分学4.在现存的中国古代数学著作中,最早的一部是D.《周髀算经》5.简单多面体的顶点数V 、面数F 及棱数E 间有关系V+F-E=2这个公式叫 欧拉公式6.中国古典数学发展的顶峰时期是D 。
关于数学的由来简介3篇

关于数学的由来简介第一篇:数学的起源和发展数学作为一门学科,其起源可以追溯到古代。
在人类的文明历程中,各个文明古国都有自己的数学思想和数学成果,如古埃及、古印度、古希腊、古罗马等。
科学技术的进步推动了数学的飞速发展,数学也成为了现代科学的基础和重要组成部分。
首先,古埃及是世界上最早的数学文明之一,其数学成就主要表现在测量、几何和代数方面。
例如,古埃及人使用极其简单的方法进行高精度的土地测量。
他们还学会了推导和使用勾股定理,以及计算圆周率等。
古印度数学发展的历史同样悠久,隋末唐初,印度《一百至一千的称数》和《大乘法经》广传中国。
印度数学家阿耳戈摩哥的《九章算术》对中国《九章算术》也有很大的影响。
印度数学的代表成就之一是无穷级数的概念,还有计算出了$2^{216}-1$为质数。
其次,古希腊的数学成就尤为显著,视为世界上最早的发扬光大的数学文明。
希腊数学的代表人物是欧几里得,他所创立的《几何原本》被视为数学史上的里程碑。
对几何的研究,让古希腊数学家不断地发现新的定理和方法,打下了一定的代数基础。
此外,希腊人还发明了一些几何工具,如竖劈仪、刻度尺等,用于测量距离、角度等。
古罗马数学的贡献主要体现在实用性方面。
罗马人对数字的发明使用、商业计算都有极其扎实的功底,达到了非常高的精度。
再者,中世纪欧洲的数学发展又格外活跃。
欧洲学者将古代各国的数学思想和成果进行整理、推广和吸收,开展了广泛而深入的数学研究,如对等式、代数式、解析几何等的深入探究,推进了几何、代数、微积分、数论等数学领域的发展。
伟大的意大利数学家菲波那契在欧洲广泛传播印度阿拉伯算术之后,自创了一套计算工具,被誉为欧洲数学的重要里程碑,菲波那契数列至今仍是数学研究的重要问题之一。
总的来说,数学在不同时期有着不同的发展阶段和成就,但它作为一门高度抽象、逻辑精密的学科,在实践和理论中不断提高人类的认知水平和创造力,并且在现代社会中发挥了重要的作用,也为科学技术的进步提供了强有力的支持。
数学的发展史

数学的发展史主讲人:王标一、数学的意义数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
英国科学史家丹皮尔说过:“再没有什么故事能比科学思想发展的故事更有魅力了”。
数学是历史员悠久的人类纫识领域之一。
从远古屈指计数到现代高速电子计算机的发明;从量地测天到抽象严密的公理化体系,在五千余年的数学历史长河中,重大数学思想的诞生与发展,确实构成了科学史上最富有理性魅力的题材。
当然,仅仅具有魅力并不能成为开设一门课程的充分理由。
数学史无论对于深刻认识作为科学的数学本身,还是全面了解整个人类文明的发展都具有重要意义。
与其他知识学科相比,数学是一门历史性或者说累积性很强的科学。
重大的数学理论总是在继承和发展原有理论的基础上建立起来的。
它们不仅不会推翻原有的理论,而且总是包容原先的理论。
例如,数的理论的演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含了古典定义作为其特例,……。
可以说,在数学的进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
如果我们对比天文学的“地心说”、物理学的“以太说”、化学的“燃素说”的命运,就可以看清数学发展不同于其他学科的这种特点。
因此有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏。
唯独数学,每一代人都在古老的大厦上添加一层楼。
”这种说法虽然有些绝对,但却形象地说明了数学这幢大厦的累积特性。
当我们为这幢大厦添砖加瓦时,有必要了解它的历史。
按美国《数学评论》杂志的分类,当今数学包括了约60个二级学科,400多个三级学科,更细的分科已难以统计。
面对着如此庞大的知识系统,职业数学家越来越被限制于一、二个专门领域。
庞加莱(1854一1912)曾经被称为“最后一位数学通才”。
对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限思想的诞生与发展【摘要】极限思想谈的是数学中的思维问题,它的广泛使用是由数学本身的发展所决定的。
它把对立统一的关系刻画得淋漓尽致,这种充满哲理的辩证关系对指导我们的工作、学习与科研都有着积极的意义.极限理论是微积分的重要理论基础,之后的导数、微分与积分等概念都是在此基础上推导出来的,如此重要的思想是怎么产生的呢?【关键词】极限诞生发展回归【综述】极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。
用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。
极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。
一、极限思想的诞生与一切科学的思想方法一样,极限思想也是社会实践的产物.极限的思想可以追溯到古代,在我国春秋战国时期虽已有极限思想的萌芽——我国的惠施就在庄子的《天下篇》中有一句著名的话:“一尺之棰,日取其半,万世不竭”,惠施提出了无限变小的过程。
但从现在的史料来看,这种思想主要局限于哲学领域,还没有应用到数学上,当然更谈不上应用极限方法来解决数学问题。
直到公元3世纪,我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”。
他的极限思想是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失”。
第一个创造性地将极限思想应用到数学领域。
这种无限接近的思想就是后来建立极限概念的基础。
刘徽的割圆术是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想。
公元三十节,古希腊诡辩学家安提丰在球员面积时提出了用成倍扩大圆内正多边形边数,通过内接正多边形的面积来表示圆面积的方法,即“穷竭法”。
这是一种粗糙的极限论思想,虽然获得的结果是正确的,但在逻辑上是有问题的。
这无法保证无限扩大后的正边形的边会与圆周重合。
由于希腊人“对无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。
古希腊的大科学家阿基米德用“穷竭法”求抛物线的弓形面积时,发现这种方法还不够严密,因此在获得结果后再用归谬发,从逻辑上证明结果的正确性。
到了16世纪,荷兰数学家斯泰文在考查三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观运用极限思想思考问题,放弃了归谬法的证明。
如此,他在无意中将极限发展成为一个实用概念。
刘徽的方法与“穷竭法”思路一致,但与阿基米德的方法相比可以说是事半功倍,他的观点与当今极限论的观点是十分相近的。
二、极限思想的发展1、极限论初步定义极限思想的进一步发展是与微积分的建立紧密相联系的。
16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展、建立微积分的社会背景。
起初牛顿和莱布尼茨以无穷小概念为基础建立微积分,后来因遇到了逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。
牛顿用路程的改变量ΔS与时间的改变量Δt之比ΔS/Δt表示运动物体的平均速度,让Δt无限趋近于零,得到物体的瞬时速度,并由此引出导数概念和微分学理论。
他意识到极限概念的重要性,试图以极限概念作为微积分的基础,他说:“两个量和量之比,如果在有限时间内不断趋于相等,且在这一时间终止前互相靠近,使得其差小于任意给定的差,则最终就成为相等”。
但牛顿的极限观念也是建立在几何直观上的,因而他无法得出极限的严格表述。
牛顿所运用的极限概念,只是接近于下列直观性的语言描述:“如果当n无限增大时,a n无限地接近于常数A,那么就说a n以A为极限”。
这种描述性语言,人们容易接受,现代一些初等的微积分读物中还经常采用这种定义。
但是,这种定义没有定量地给出两个“无限过程”之间的联系,不能作为科学论证的逻辑基础。
正因为当时缺乏严格的极限定义,微积分理论才受到人们的怀疑与攻击,例如,在瞬时速度概念中,究竟Δt是否等于零?如果说是零,怎么能用它去作除法呢?如果它不是零,又怎么能把包含着它的那些项去掉呢?这就是数学史上所说的无穷小悖论。
英国哲学家、大主教贝克莱对微积分的攻击最为激烈,他说微积分的推导是“分明的诡辩”。
贝克莱之所以激烈地攻击微积分,一方面是为宗教服务,另一方面也由于当时的微积分缺乏牢固的理论基础,连牛顿自己也无法摆脱极限概念中的混乱。
这个事实表明,弄清极限概念,建立严格的微积分理论基础,不但是数学本身所需要的,而且有着认识论上的重大意义。
2、极限论的明确定义随着微积分应用的更加广泛和深入,遇到的数量关系也日益复杂,例如研究天体运行的轨道等问题已超出直观范围。
在这种情况下,微积分的薄弱之处也越来越暴露出来,严格的极限定义就显得十分迫切需要。
Morris Kline在《古今数学思想》中说“随着微积分的概念与技巧的扩展,人们努力去补充被遗漏的基础。
在牛顿和莱布尼兹不成功地企图去解释概念并证明他们的程序是正确的之后,一些微积分方面的书出现了,他们试图澄清混乱,但实际上却更加混乱。
”经过100多年的争论,直到19世纪上半叶由于对无穷级数的研究,人们对极限概念才有了较明确的认识。
1821年法国数学家柯西在他的《分析教程》中进一步提出了极限定义的ε方法,把极限过程用不等式来刻划。
在这本书中,柯西首次对数学分析进行了系统的论述,他拜托了极限概念和几何图形及几何量的任何前置,应用变量以及函数概念一开始就给出了相当精确地极限定义:如果一个变量逐次所取得的值无限趋向于一个定值,最终使这个变量的值与该定值之差要多小就多小,那么该定值就称为所有其他值的极限。
可惜的定义仍然是粗糙的,所谓的“无限接近”、“要多小就多小”等都只能给人以一种模糊的直觉,说明它仍然没有彻底摆脱残存在头脑中的几何直观,建立成纯粹严整的算术基础。
虽然它不是极限定义的最终形式,但确实是知道那时为止所给的极限的最佳定义,是后来所有更好定义的基础。
为排除极限概念中的几何直观,德国数学家维尔斯特拉斯将柯西的表述进一步加工,成为现在所说的柯西极限定义或叫“εδ-”定义,即如果对于每一个预先给定的任意小的正数 ε,总存在一个正数 δ,使得对于适合不等式00x x δ<-<的一切x ,所对应的函数值()f x 都满足不等式()f x A ε-<,则常数A 就叫做 ()y f x =当0x x →时的极限,记作 0lim ()x x f x A →=。
维尔斯特拉斯用静态的方式刻画了动态的极限概念和连续概念,既排除了莱布尼兹的固定无穷小,也消除了柯西的语言叙述的繁琐,这样的定义是严格的,至今还被所有微积分的教科书普遍采用。
回顾极限论的发展历史,它经历了“静态—动态—静态”的演化,从一个侧面反映了数学发展的辩证性,也反映了数学内部的逻辑倾向与算法化倾向之间的矛盾转化。
数学本身也正是在这种矛盾的斗争和转化中不断前进的。
三、 极限思想的回归所谓数学的极限思想,即是指通过构造对应的数列通项a n 或函数f(x),在自变量无限趋向某个方向的条件下,使得通项a n 函数f(x)在变化的过程中,最终无限趋向与某个固定常量A ,从而得以解决实际问题。
数学的极限思想是以一个发展的思想来看待和处理问题的方式,可以让我们的思想完成有限上升到无限的升华,是思考方式的质的飞跃,对我们在解决实际问题的时候具有非常重要的指导意义。
在各个知识领域内,解决难题时可以改变研究问题的研究条件,改变研究条件的趋近方向,即从原来关注一个点,变换到一个区间上去考虑研究对象的结果(即构造函数),再回到起始位置来观察问题的结果(即求极限)。
以这样动态、发展的思想来研究问题,往往能更快地找到解决问题的方法。
1、极限思想在数学分析里的应用(1)极限思想在概念里的渗透如以函数()y f x =在点0x 连续的定义。
记0x x x ∆=-称为自变量x (在点0x )的增量或改变量,设00()y f x =,相应的函数y (在点0x )的增量记为0000()()()()y f x f x f x x f x y y ∆=-=+∆-=-,可见,函数()y f x =在点0x 连续等价于0lim 0x y ∆→∆=,是当自变量x 得增量x ∆时,函数值得增量y ∆趋于零时的极限。
函数()y f x =在点0x 导数的定义。
设函数()y f x =在点0x 的某邻域内有定义,若极限000()()lim x x f x f x x x →--存在,则称函数f 在点0x 处可导,令0x x x =+∆,00()()y f x x f x ∆=+∆-,则可写为0000()()limlim x x x f x x f x y x x→→+∆-∆==∆∆()0'f x ,所以,导数是函数增量y ∆与自变量增量x ∆之比y x ∆∆的极限。
函数()y f x =在区间[],a b 上的定积分的定义。
设f 是定义在[],a b 上的一个函数,J 是一个确定的实数,若对认给的正数ε,总存在某一正数δ,使对[],a b 的任何分割T ,以及在其上任意选取的点集{}i ξ,只要T σ<,就有()1ni i i f x J ξε=∆-<∑,则称函数f 为在[],a b 上的定积分,记()b a J f x dx =⎰。
是当分割细度趋于零时,积分和式1()ni i i f x ξ=∆∑的极限。
数项级数n u ∑的敛散性是用部分和数列{}n S ,n s u =∑的极限来定义的等等。
(2)极限思想在导数中的应用瞬时速度。
设一质点做直线运动,其运动规律为()t s s =,若0t 为某一确定的时刻,t 为邻近于0t 的时刻,则00()()s t s t v t t -=-是质点在时间段[]0,t t 上的平均速度。
若t →0t 时平均速度v 的极限存在,则称极限000()()lim t t s t s t v t t →-=-为质点时刻0t 的瞬时速度。
切线的斜率。
曲线)(x f y =在其上一点()00,p x y 处的切线PT 是割线PQ 当动点Q 沿此曲线无限接近于点p 时的极限位置。
由于割线PQ 斜率为00()()f x f x k x x -=- 因此当x →0x 时如果k 的极限存在,则极限000()()lim x x f x f x k x x →-=-即为切线PT 的斜率。
给出导数的定义:设函数)(x f y =在点0x 的某邻城内有定义,若极限000()()lim x x f x f x x x →--存在,则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作()0'f x 。