三年级奥数-第1讲 加减法的巧算
三年级奥数加减法的速算与巧算.

又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100, 在上面算式中,
1叫9的“补数”;89叫11的“补数”,11
凑整法 〔补数法〕
例1 计算: (1) 1+2+3+4+5+6+7+8+9+10
= ( 1+9)+ ( 2+8)+ ( 3+7)+ ( 4+6)+5+10 =10+10+10+10+10+5 =55
(2) 1+3+5+7+9+11+13+15+17+19 =(1+19)+(3+17)+(5+15)+(7+13)+(9+11) =20+20+20+20+20 =100
凑整法 〔补数法〕
如:43+(38+45)+(55+62+57) =43+38+45+55+62+57 =〔43+57〕+〔38+62〕 +〔45+55〕 =100+100+100 =300
去括号添括号法则
2.在加、减法混合运算中,添括号时:假设添加的括号前 面是“+”号,那么括号内的数的原运算符号不变;假设 添加的括号前面是“-”号,那么括号内的数的原运算符 号“+”变为“-”,“-”变为“+”。
小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
三年级秋季奥数

第一讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加法的巧算:1.加法的交换律:a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+52.加法结合律:a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)例1 计算23+54+18+47+82 (1350+49+68)+(51+32+1650)例2 计算:57+64+238+46 4993+3996+5997+848例3计算:875-364-236 1847-1928+628-136-64 1348-234-76+2234-48-24例4计算512-382 6854-876-97 397-146+288-339练习一巧算下列各题:42+71+24+29+58 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253_158) 1457-(253-158)389-497+234 698-154+269+787第二讲横式数字谜这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:1.一个加数+另一个加数=和;2.被减数-减数=差;3.被乘数×乘数=积;4.被除数÷除数=商。
由它们推演还可以得到以下运算规则:由1.得和-一个加数=另一个加数;由2.得减数+差=被减数,被减数-差=减数;由3.得积÷乘数=被乘数,积÷被乘数=乘数;由4.得商×除数=被除数,被除数÷商=除数。
其次,要熟悉数字运算和拆分。
例如,8=0+8=1+7=2+6=3+5=4+424=1×24=2×12=3×8=4×6(两个数之积)24=1×2×12=2×2×6=2×2×3=……(三个数之积)24=1×2×2×6=2×2×2×3=……(四个数之积)例1下面算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7例2 下列算式中,□,○,△,☆各代表什么数?(1)□+□+□=48;(2)○+○+6=21-○;(3)5×△-18÷6=12;(4)6×3-45÷☆=13。
三年级奥数

第一讲:巧算加减法综合板块一:加法巧算加法交换律:a+b+c=a+c+b 加法结合律:a+b+c=a+(b+c)凑整:利用运算定律(如交换律,结合律,分配律)将一些数凑成整一,整十,整百再计算。
主要的凑整方法有:(1)配对凑整法:根据各个数尾数的特征配对计算,从而得到一些整十,整百数。
(2)拆补凑整法:把一个数通过加法或减法拆出一个整十,整百的数,进而计算。
例1、计算(1)124+158+76 (2)112+164+133+136+188(3)(134+37+55)+(63+866+25)练一练:计算1+2+3+4+……+9例2:计算(1)9+99+999 (2)4001+402+43(3)92+88+93+89+91+91+88+87+94+89练一练:计算(1)19+199+1999+19999 (2)201+196+203+199+202+195板块二:减法巧算(1)带着符号搬家:每个数的符号在自己前面,需要改变预算顺序时,则带着前面的符号搬家。
(2)去添括号:加减混合运算中需要去添括号时,如果括号前面是减号,则括号内“+”变“—”,“—”变“+”。
例3:计算(1)500—8—97—96—6—94—4—3—92(2)300—9—19—29—39—49例4:计算(1)538—125—38 (2)1358—(358+840)(3)(123+348+400)—(23+150+148)练一练:计算(1)743—(343+52)(2)586—47—53—7—93板块三:综合应用例5:818+64—18+36 练一练:计算985+32—85+68本课作业:31+46+32+33+47+48+34+49 9+99+999+9999567+58+242—67 450—137—54—13—146 2014—99—199—299—399 264+451—216+136—184+14924+63+52+37+49+51+76+48+95 7+97+997+9997+99997第二讲:巧算乘法板块一:乘法三率一、常用固定搭配:1、25×4=100;125×8=1000;625×16=10000;2、37×3=111;37×3A=AAA(1≤A≤9);3、7×11×13=1001;4、×9=1;5、142857×7=999999二、乘法三率:1、乘法交换律:a×b=b×a2、乘法结合律:a×b×c=a×(b×c)3、乘法分配律:(a+b)×c=a×c+b×c (a—b)×c=a×c—b×c三、分拆思想:这里所说的分拆是指在计算的过程中以巧算为目的的分拆,为了使计算简便,我们常常把一个数写成两个数或多个数的和差积的形式,这种方法叫分拆。
小学三年级奥数-加减法的巧算

小学三年级奥数-加减法的巧算一根,最后一层有多少根?总共有多少根圆木?例1:使用简便方法计算如下:1) 783+25+175 = 9832) 2803+2178+5497+4722 =3) 376+174+24 = 5744) 864+673+136+227 = 19005) +9999+999+99+9 =6) 7+7+5+2+7 = 28例2:计算:999+99+9 = 1107计算:1654-(54+78) = 1522计算:2937-493-207 = 2237计算:-+297 = 871计算:995+996+997+998+999 = 4985计算:1324-875-125 = 324计算:3842-1567-433-842 = 1000计算:538-194+162 = 506计算:497+334-297 = 534计算:7523+(653-1523) = 7653.9375-(2103+3375) = 3897例3:计算:1+2+3+4+5+6+7+8+9+10 = 55计算:11+12+13+14+15+16+17+18+19 = 155计算:101+102+103+104+105+106+107+108+109+110 = 1055计算:1+2+3+。
+18+19 = 190计算:2+4+6+8+。
+98+100 = 1050计算:13+14+15+。
+27 = 2551.有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数连加,和是多少?答案:4702.有一串数,第1个数是5,以后每个数比前一个数大5,最后一个数是90.这串数连加,和是多少?答案:9453.一堆圆木共15层,第1层有8根,下面每层比上层多一根,最后一层有多少根?总共有多少根圆木?答案:最后一层有22根,总共有120根圆木。
小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
小学三年级奥数趣味学习——速算与巧算(加减法中的巧算)

小学三年级奥数趣味学习——速算与巧算(加减法中的巧算)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:减法中的巧算1、把几个互为“补数”的减数先加起来,再从被减数中减去。
例1:① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
三年级小学数学奥数基础教程(全)

小学奥数基础教程(三年级)- 1 - 小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目.解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数.根据“加数=和—另一个加数"知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A —1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28—○=15+7;(3)3×△=54; (4)☆÷3=87;(5)56÷*=7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲加减法的巧算
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:
加法交换律:两个数相加,交换加数的位置,它们的和不变。
即
a+b=b+a,
其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,
a+b+c+d=d+b+a+c=…
其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即
a+b+c=(a+b)+c=a+(b+c),
其中a,b,c各表示任意一数。
例如,
4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。
1.凑整法
先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。
例1计算:(1)23+54+18+47+82;
(2)(1350+49+68)+(51+32+1650)。
解:(1)23+54+18+47+82
=(23+47)+(18+82)+54
=70+100+54=224;
(2)(1350+49+68)+(51+32+1650)
=1350+49+68+51+32+1650
=(1350+1650)+(49+51)+(68+32)
=3000+100+100=3200。
2.借数凑整法
有些题目直观上凑整不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
例2计算:(1)57+64+238+46;
(2)4993+3996+5997+848。
解:(1)57+64+238+46
=57+(62+2)+238+(43+3)
=(57+43)+(62+238)+2+3
=100+300+2+3=405;
(2)4993+3996+5997+848
=4993+3996+5997+(7+4+3+834)
=(4993+7)+(3996+4)+(5997+3)+834
=5000+4000+6000+834=15834。
下面讲减法和加减法混合运算的巧算。
加、减法有如下一些重要性质:
(1)在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
例如,
a-b-c=a-c-b,a-b+c=a+c-b,
其中a,b,c各表示一数。
(2)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。
例如,
a+(b-c)=a+b-c,
a-(b+c)=a-b-c,
a-(b-c)=a-b+c。
(3)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
例如,
a+b-c=a+(b-c),
a-b+c=a-(b-c),
a-b-c=a-(b+c)。
灵活运用这些性质,可得减法或加、减法混合计算的一些简便方法。
3.分组凑整法
例3计算:(1)875-364-236;
(2)1847-1928+628-136-64;
(3)1348-234-76+2234-48-24。
解:(1)875-364-236
=875-(364+236)
=875-600=275;
(2)1847-1928+628-136-64
=1847-(1928-628)-(136+64)
=1847-1300-200=347;
(3)1348-234-76+2234-48-24
=(1348-48)+(2234-234)-(76+24)
=1300+2000-100=3200。
4.加补凑整法
例4计算:(1)512-382;
(2)6854-876-97;
(3)397-146+288-339。
解:(1)512-382=(500+12)-(400-18)
=500+12-400+18
=(500-400)+(12+18)
=100+30=130;
(2)6854-876-97
=6854-(1000-124)-(100-3)
=6854-1000+124-100+3
=5854+24+3=5881;
(3)397-146+288-339
=397+3-3-146+288+12-12-339
=(397+3)+(288+12)-(146+3+12+339) =400+300-500=200。