集合的含义与表示的说课稿
《集合的含义与表示》说课稿1新人教A版

《集合的含义与表示》说课稿1(新人教A版必修1)1.1 集合本模块对集合的定位是将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言简洁、准确地表示数学对象,目的是为以后的学习和发展学生运用数学语言进行表达和交流的能力打下一定的基础.符号化、形式化是数学的显著特点,从某种意义上来说,学习数学就是学习一种有特定含义的形式化语言,以及用这种形式化语言去表述、解释、解决各种问题.一种数学符号可以有多于一种的语义解释,在数学学习中,经常通过语义转换将一个问题转换为较简单明了的问题,因此,具有语义转换能力是学习数学、理解数学、解决数学问题的重要方面. 在集合语言的学习中,要能针对具体问题,恰当选择用自然语言、图形语言或集合语言(列举法或描述法)去表示相应问题的数学内容,这不仅是学习集合语言的需要,更是培养学生数学语义转换能力的需要.1.1.1 集合的含义与表示(1)从容说课本课是章节第一课,也是同学们刚进入高中阶段的第一课.常言道"良好的开端是成功的一半",本课主要是让学生把生活的群体逐步抽象成特殊的群体,引导他们感受到数学来源于生活,又服务于生活.集合作为一种基本的数学语言,学习并掌握它的最好方法是使用.因此,教学中要多引导学生使用集合语言描述对象,进行自然语言与集合语言间的转换练习.三维目标一、知识与技能1.通过实例了解集合的含义,体会元素与集合的从属关系.2.知道常用数集及其专用记号.3.了解集合中元素的确定性、互异性、无序性.4.会用集合语言表示有关数学对象.二、过程与方法1.通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一.因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养.2.教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力.三、情感态度与价值观培养数学的特有文化--简洁精练,体会从感性到理性的思维过程.教学重点集合的含义与表示方法,用集合语言表达数学对象或数学内容.教学难点区别元素与集合等概念及其符号表示.教具准备多媒体.教学过程一、创设情景,引入新课师:首先祝贺大家跨入人生殿堂的又一个新的台阶--高中,从数学内容上看,高中与初中有不同的地方,就是更趋于数学化,即符号化、严谨化是主要特点,我们的教科书也没有初中那样五彩缤纷,但就其本质上看还是丰富多彩的,从今天开始我们的高中旅程吧!(多媒体投影:非洲草原一群大象在缓步走来)师:大家看到了什么?生:一群大象.老师板演:一群大象--象群.(多媒体投影:蓝蓝的天空中,一群鸟在飞翔)师:这是什么?生:一群鸟在飞.师:对.看到了一群鸟,同时板演:一群鸟--鸟群.(多媒体投影:一群学生在一起玩)师:这是什么?生:一群学生.师:对.同时板演:一群学生--学生群.师:同学们还能举出类似的"群"体吗?生1:全体中国人.师:非常好.生2:中国男人.生3:抢着说:中国女人.师:这些都对.能否跳出这个模式,再思考一些非人的群体. 生4:我们年级十个班,......师:非常好.我们经常像这样在一定范围内,对所讨论的事物进行分类,分类后常用一些术语来描述它们,例如"群体""全体""集合"等.二、讲解新课再观察下列对象:(1)1~20以内所有的质数;(2)我国从1991~2003年的13年内所发射的所有人造卫星;(3)金星汽车厂2003年生产的所有汽车;(4)2004年1月1日之前与我国建立外交关系的所有国家;(5)所有的正方形;(6)到直线l的距离等于定长d的所有的点;(7)方程x2+3x-2=0的所有实数根;(8)新华中学2004年9月入学的高一学生的全体.师生共同概括8个例子的特征.例如,(1)中,我们把1~20以内的每一个质数作为元素,这些元素的全体就组成一个集合;同样地,(2)中,把我国从1991~2003年的13年内发射的每一颗人造卫星作为元素,这些元素的全体也组成一个集合.由此得出结论.1.集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).我们通常用大写拉丁字母A,B,C,...表示集合,用小写拉丁字母a,b,c,...表示集合中的元素.然后让学生把课本上的8个例子表示成集合的形式.2.集合元素的三个特征教师要求每个学生举出一些集合的例子,选出具有代表性的四个问题.例如:(1)A={1,3},问3,5哪个是A的元素?(2)A={素质好的人}能否表示成集合?(3)A={2,2,4}表示是否准确?(4)A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?生在师的指导下回答问题:答:(1)3是集合A的元素,5不是集合A的元素.(2)由于素质好的人标准不可量化,故A不能表示为集合.(3)的表示不正确,应表示为A={2,4}.(4)的A与B表示同一集合,因为其元素相同.由此从所给问题可知,集合元素具有以下三个特征:(1)确定性给定的集合,它的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了. (2)互异性一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.(3)无序性集合中的元素是无先后顺序的,也就是说,对于一个给定的集合,它的任何两个元素可以交换位置.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.可再举些例子,深化上述概念.3.元素与集合的关系如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA. 例如,我们用A表示"1~20以内的所有质数"组成的集合,则有3∈A,4A,等等.4.常用数集及其记法:集合非负整数(自然数集)正整数集整数集有理数集实数集记号NN*或N+ZQR5.例题讲解【例1】下面的各组对象能否构成集合?(1)所有的好人;(2)小于2003的数;(3)和2003非常接近的数.解:(1)、(3)中的对象不能构成集合,(2)中的对象能构成集合.【例2】用符号"∈"或""填空:(1)3.14__________Q;(2)π__________Q;(3)0__________N*;(4)0_________N;(5)(-2)0________N*;(6)2________Z;(7)2________Q;(8)2________R. 解:(1)∈ (2)(3)(4)∈ (5)∈ (6)(7)(8)∈【例3】若x∈R,则{3,x,x2-2x}中的元素x应满足什么条件?解:由集合中元素的互异性知解之得x≠-1,且x≠0,且x≠3.三、课堂练习1.用符号"∈"或""填空:(1)设A为所有亚洲国家组成的集合,则中国________A,美国________A,印度________A,英国________A;(2)若A={方程x2=1的解},则-1________A;(3)若B={方程x2+x-6=0的解},则3________B;(4)若C={满足1≤x≤10的自然数},则8________C,9.1________C.答案:(1)∈ ∈ (2)∈ (3)(4)∈2.教科书P13习题1.1 A组第1题答案:(1)∈ (2)∈ (3)(4)∈ (5)∈ (6)∈四、课堂小结1.集合的含义;2.集合元素的性质:确定性、互异性、无序性;3.元素与集合的关系:∈、;4.数集及有关符号.五、布置作业1.下列各组对象不能形成集合的是A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=图象上所有的点2.M={a,b,c}中的三个元素可构成某一个三角形的三边长,那么此三角形一定不是A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形3.方程ax2+5x+c=0的解集是{,},则a=________,c=________.4.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2005+b2006的值为________.5.若-3∈{a-3,2a+1,a2+1},求实数a的值.6.设a、b为整数,把形如a+b的一切数构成的集合记为M,设x∈M,y∈M,试判断x+y,x-y,xy是否属于M,说明理由.板书设计1.1.1 集合的含义与表示(1)集合的含义集合元素的三个特性元素与集合的关系常用数集与记法例1例2例3课堂小结课堂练习。
集合的含义与表示说课稿公开课一等奖课件省赛课获奖课件

3.对的理解列举法
(1)元素间用分隔号“,”隔开;
(2)元素不重复;
(3)对于含较多元素的集合,如果构成该集合 的元素有明显规律,可用列举法,但是必须把 元素间的规律显示清晰后才干用省略号.
4.合理选用集合的表达办法
列举法与描述法各有优点,列举法能够看清集 合的元素,描述法能够看清集合元素的特性, 普通含有较多或无数多个元素时不适宜采用列 举法,由于不能将集合中的元素一一列举出来, 而没有列举出来的元素往往难以拟定.
[例5] 用适宜的办法表达下列集合: (1)24的正约数构成的集合; (2)不不大于3不大于10的整数构成的集合; (3)方程x2+ax+b=0的解集; (4)平面直角坐标系中第二象限的点集;
[分析] 首先搞清晰集合的元素是什么,然 后选用适宜的办法表达集合.
[解析] (1){1,2,3,4,6,8,12,24}; (2){不不大于3不大于10的整数}={x∈Z|3<
(2)不等式2x-1<5的自然数解构成的集 合.________
(3)古代我国的四大发明构成的集合.________
(4)A={x|0<x≤5且x∈N}.________
(5)B={x|x2-5x+6=0}.________
[解析] (1)6的正约数为1,2,3,6,故所求集合 为{1,2,3,6}
x=2, y=2.
∴D={(0,6),(1,5),(2,2)}.
(5)依题意,p+q=5,p∈N,q∈N*,则
p=0, q=5;
p=1, q=4;
p=2, q=3;
p=3, q=2;
p=4, q=1.
∵x 要满足条件 x=pq,∴E={0,14,23,32,4}.
(2)集合①{x|y=x2+1}的代表元素是x, ∵当x∈R时,y=x2+1故意义. ∴{x|y=x2+1}=R; 集合②{y|y=x2+1}的代表元素是y, 满足条件y=x2+1的y的取值范畴是y≥1, ∴{y|y=x2+1}={y|y≥1}.
高三数学集合的含义与表示的说课稿精选

高三数学集合的含义与表示的说课稿精选
数学是基础,数学学不好物理化学就难以精进,而且数学关联性强,一时学不好就会影响很长时间,最好认真学。
小编准备了高三数学集合的含义与表示的说课稿,具体请看以下内容。
各位老师,大家好!
我是08 数学本科(2)班的xx,我今天说课的题目是集合的含义与表示.下面我先对教材进行分析.
一、教材分析
集合的含义与表示是选自高中新课标A 版教材必修1 第一章第一节内容。
在此之前,学生已经接触过集合的一些相关概念,如自然数的集合、有理数的集合.集合是一个基础性概念,是数学以至所有科学的基础,应用广泛. 集合是高考的对象,在高考中以选择题或填空题的形式出现,在高考中具有不可忽视的地位.本节内容能够培养学生的探索精神和数学素养.
二、教学目标
根据上述对教材的分析,我确定本节课的教学目标为1. 知识与技能目标理解集合的含义,集合的元素的特征,元素与集合的关系. 掌握集合的表。
集合的含义与表示教案

集合的含义与表示教案集合的含义与表示教案(精选6篇)作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
教案应该怎么写才好呢?以下是店铺为大家收集的集合的含义与表示教案,欢迎大家借鉴与参考,希望对大家有所帮助。
集合的含义与表示教案篇1教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2003的13年内所发射的所有人造卫星;⑶ 金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸ 所有的正方形;⑹ 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
集合的含义与表示教案

集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,了解集合是由一些确定的、互不相同的对象组成的整体。
通过举例说明集合的表示方法,如用大括号{}括起来的一组元素。
1.2 集合的元素解释集合中的元素是指构成集合的各个对象。
强调元素的唯一性和确定性。
1.3 集合的表示方法介绍集合的表示方法,包括列举法和描述法。
举例说明如何用列举法表示集合,以及如何用描述法表示集合。
第二章:集合的运算2.1 集合的并集解释并集的定义,即两个集合中所有元素的集合。
引导学生了解并集的表示方法,如A∪B。
2.2 集合的交集解释交集的定义,即两个集合中共有元素的集合。
引导学生了解交集的表示方法,如A∩B。
2.3 集合的补集解释补集的定义,即在全集U中不属于集合A的元素的集合。
引导学生了解补集的表示方法,如A'。
第三章:集合的性质3.1 集合的互异性强调集合中元素的唯一性,即集合中的元素不重复。
通过举例说明如何判断集合中元素的互异性。
3.2 集合的确定性解释集合的确定性,即集合中的元素是明确指定的。
强调集合中的元素是确定的,不会有歧义。
3.3 集合的无序性解释集合的无序性,即集合中元素的顺序无关紧要。
强调集合中的元素无论顺序如何排列,其表示的集合是相同的。
第四章:集合的例子4.1 自然数集合介绍自然数集合N,包括0和所有正整数。
解释自然数集合的性质,如无限性和递增性。
4.2 整数集合介绍整数集合Z,包括所有正整数、0和所有负整数。
解释整数集合的性质,如无限性和对称性。
4.3 实数集合介绍实数集合R,包括所有有理数和无理数。
解释实数集合的性质,如无限性和连续性。
第五章:集合的应用5.1 集合在数学中的应用强调集合在数学中的基础作用,如解决方程、不等式等问题。
通过举例说明集合在数学中的应用。
5.2 集合在科学中的应用解释集合在科学中的作用,如分类和归纳。
举例说明集合在科学研究中的应用。
5.3 集合在生活中的应用强调集合在日常生活中的应用,如购物时的商品分类、旅行时的景点选择等。
集合的含义与表示说课稿

《聚集的寄义与暗示》说课稿尊重的列位评委师长教师:大家好!今天我说课的内容是《聚集的寄义与暗示》的教授教养设计,下面我将分离从教授教养内容的剖析.教授教养目标的肯定.教授教养办法的选择和教授教养进程的设计及板书设计这五个方面来阐述我对这节课的教授教养假想.一. 教材内容的剖析聚集是现代数学的根本说话,可以简洁.精确地表达数学内容.本节是让学生学会用聚集的说话来描写对象,会用聚集和对应的说话来描写函数的概念,可见它是往后数学进修的基本,也是造就学生抽象归纳分解才能的主要素材.依据本课教材的特色.教授教养大纲对本节课的教授教养请求以及学生的认知程度,我从三个方面肯定了以下教授教养目标:1. 常识技巧:(1)懂得聚集的寄义与聚集中元素的特点(2) 熟记经常应用数集符号(3) 能用列举.描写法暗示具体聚集2.进程办法: 让学生阅历从聚集实例中抽象归纳分解出聚集配合特点的进程,感知聚集的寄义.让学生经由过程不雅察.归纳.总结的进程,进步抽象归纳分解才能.3. 情绪立场:使学生感触感染到进修聚集的须要性,加强进修的积极性.教授教养重难点教授教养重点: 聚集的寄义与暗示办法.教授教养难点: 精确应用本节课所学符号,能用聚集说话描写出数学对象.教法指点本节是高中数学第一节,为了更好地与初中常识连接,同时针对学生单薄的数学基本,设计较简略的标题,下降门槛,吸引他们入门,防止废弃.2. 办法选择在教授教养中留意启示引诱,经由过程预习学案的情势把常识问题化,经由过程实例引诱学生不雅察归纳,上课组织学生分组评论辩论,让他们阅历不雅察.猜测.推理.交换.反思的理性思维的根本进程,切实转变学生的进修办法.学法指点让学生经由过程课前联合学案,浏览教材,自立预习,课上交换.评论辩论.归纳分解,课后温习巩固三个环节,更好地完成本节课的教授教养目标.值得提出的是:聚集作为一种数学说话,最好的进修办法是应用,所以应当多做转换演习,四.教授教养进程的设计为达到本节课的教授教养目标,凸起重点,冲破难点,我把教授教养进程设计为五个阶段:创设情境,引入课题;研探新知,建构概念;巩固深化,反馈改正;归纳整顿,整体熟习;安插功课,预留悬念.具体进程如下:(一)创设情境,引入课题1.经由过程预习,在初中进修中,我们接触过哪些聚集?请举例解释.2.依据你对聚集的懂得,能在生涯中举出几个聚集的实例吗?[设计解释] 适应学生的认知纪律,从他们熟习的聚集入手,清除学生进修新常识的恐怖感,同时,合时地引出,聚集的寄义毕竟是什么呢?这就是本节课要解决的问题,适当地引出课题.(二)研探新知,建构概念思虑1:(1)1~20以内的所有质数;(2)绝对值小于3的整数;(3)六中高一二班的所有男同窗;(4)平面上到定点O的距离等于定长的所有的点.上述四例可否构成聚集?并说出聚集由什么构成.[设计解释] 让小组评论辩论,代表谈话,师生配合填补答案,目标是活泼教室氛围,并轻松地归纳分解出聚集及其元素的寄义.思虑2元素有什么特点?(1)高一二班个子高的同窗可否构成一个聚集?由此解释什么?学生:不克不及.聚集中的元素必须是肯定的.(2)学生:不克不及.聚集中的元素是不反复消失的.(3)高一二班的全部同窗构成一个聚集,有没有变更?由此解释什么? 学生:没变更.[设计解释] 将常识问题化,问题生涯化,激发学生进修的自动性,引诱学生归纳出聚集中元素的三大特点,师长教师用简洁的说话归纳分解为——肯定性.互异性.无序性.思虑3:(1)设聚集A 暗示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在聚集A 中?哪些不在聚集A 中?(2)对于一个给定的聚集A,那么某元素a 与聚集A 有哪几种可能关系?(3)假如元素a 是聚集A 中的元素,我们若何用数学化的说话表达?(4)假如元素a 不是聚集A 中的元素,我们若何用数学化的说话表达?[设计解释]在预习学案的指点下,这几个问题比较简略,直接提问同窗答复,并师生一路完美答案.通干预干与题的层层深刻,目标是引诱学生归纳出元素与聚集的关系及暗示办法. 思虑4:(1)所有的天然数,正整数,整数,有理数,实数可否分离构成聚集?(2)天然数集,正整数集,整数集,有理数集,实数集等一些经常应用数集,分离用什么符号暗示?[设计解释]这些符号是往后进修当中必备的,所以在提问学生答复落实答案之后,必定要给出两三分钟的时光让学生联合符号特色记忆,并再提问落实.同时为了巩固上述的两个常识点,配备了下面的演习题.2.聚集的暗示法:列举法思虑1:考核下列聚集:(1)小于5的所有天然数构成的聚集;(2)方程 的所有实数根构成的聚集.[设计解释]这道思虑题是为了让学生由天然说话过渡到聚集说话,总结出列举法暗示聚集的特色与留意事项.描写法思虑2:考核下列聚集:(1)不等式2x-7<3 的解构成的聚集;(2)绝对值小于2的实数构成的聚集.[设计解释] 描写法必定要强调清楚写法,大括号及内的三大部分:一般符号,竖杠,元素的配合特点缺一不成.例 用描写法写出下列聚集:(1)不等式4x-5<3的解集;(2)所有偶数构成的聚集.[设计解释](1)较为简略,让学生上黑板板书答案,目标是看其书写的规范性,对高一新生习惯造就是至关主要的.(三)巩固深化,反馈改正(1)方程2x -2=0的所有实数根构成的聚集;(2)由大于10小于20的所有整数构成的聚集.[设计解释](1)是闇练应用列举法和描写法暗示聚集,也引诱有心同窗思虑两法各自的优缺陷.(2)表现对本节课所学符号说话的分解应用.(四)归纳整顿,整体熟习1.本节课我们进修了哪些常识内容?2.你以为进修聚集有什么意义?3. 比较列举法与描写法的优缺陷.(五)安插功课,预留悬念组: 2.3.4.[设计解释]因为是第一节新课,对聚集暗示法的适当选择请求不轻易过高,只是在这里埋下伏笔,让学生领会列举法.描写法x x 2各有所长,跟着他们进修应用的进程,天然能适当地选择.五.板书设计为了重点凸起.层次分明.层次清楚,我将黑板分为几个版面,按照如下格局进行板书:把黑板分成两大块,第一板块写聚集与元素的寄义及相干要点,第二板块写例题剖析.总之,本堂课在教授教养设计上重视渗入渗出数学思惟办法,将教室教授教养传授的常识化为学生的本质,尽量做到使学生成为进修的真正主人翁,发散学生的思维和造就学生的进修才能,正如叶圣陶师长教师所说:“教,是为了不教”.以上就是我对《聚集的寄义与暗示》这节课的教授教养假想.缺少之处,恳请列位评委师长教师批驳斧正.感谢!聚集的寄义与暗示一.概念(投影)1.聚集,元素例题(投影)演习板书区演习板书区2.元素的特点:肯定性,互异性,无序性二.暗示法(投影)。
集合的概念和含义说课

1.1.1集合的含义和与表示说课稿一、教材分析1、教材地位和作用集合是高中数学人教版必修1第一章第一节的内容,集合是初中到高中的一个过渡内容,它能简洁、准确地表达教学内容,它是现代数学的基本语言。
在高中数学中,集合的初步知识与其他内容有着密切的联系。
学习好集合是进一步学好函数和有关知识打好基础。
二、教学目标1、知识与技能:初步理解集合的含义,知道常用数集及其记法;初步了解“属于”关系的意义;初步了解有限集、无限集、空集的意义2、过程与方法:通过实例,初步体会元素与集合的关系,从观察分析入手正确理解集合。
学生自己举出实例,初步感受集合语言在描述现实和数学对象的意义。
3、情感态度价值观:在解决问题的过程中培养学生主动探索活动和积极参与思考问题,养成学生细心观察,认真分析的习惯,让学生能独立解决问题,从而激发学生的学习兴趣。
三、重点与难点重点是正确理解集合的含义与集合的表示;难点是正确理解集合中元素的“三性”。
四教学与学法根据本节课的内容和新课标的要求,为实现教学目标,我在教法上采用情景教学法和问题教学法这两种方法。
另外,在教学上可以利用多媒体辅助教学,节省时间,增大信息量。
由于本节课所面对的是高一的学生,这个年龄段的学生思维活跃,求知欲强,但是在思维习惯上还有待老师引导,因此,在学法上,坚持学生主动学习和教师引导法,把学习的主动权教给学生,教师作为引导者带领学生创设问题,让学生从问题中质疑,尝试,归纳,总结。
五、教学过程整个教学的流程分为创设情境,导入课题;发现问题,探求新知;巩固新知,反馈调控;归纳小结,布置作业4大块:1、创设情境,导入课题:过创设情境,结合生活中的实例,调动学生的学习积极性,为新课教学做好铺垫。
首先举一个生活中例子:军训前学校通知:高一年级学生到操场集合进行军训.试问这个通知的集合是什么?通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.2、讲授新课:(1)首先以书中的例题“小于10的自然数”为例,通过分析,从而总结规律得出元素与集合的概念。
集合的含义与表示的说课稿

集合的含义与表示的说课稿集合的含义与表示的说课稿说课的题目是《集合的含义与表示》,下面将从教材分析、学情分析、教学目标、教法学法、教学过程、教学反思六个方面说一下对这节课的教学研究。
一、教材分析教学内容:本节课选自《普通高中课程标准实验教科书》人教A 版必修1第一章第一节《集合的含义与表示》,教学安排为1课时。
重点难点:在教学中,把集合的含义与表示方法作为本节课的重点,而把集合表示方法的恰当选择作为教学难点。
二、学情分析对于刚升入高中的学生来说,基础知识相对扎实,具备一定的逻辑思维能力;从认知情况来看,对于生活实例,他们的感性大于理性,抽象概括能力较弱,但是学生们富有好奇心,充满求知欲,愿意接触新事物。
哈佛大学校长陆登庭曾说过“如果没有好奇心和求知欲做动力,就不可能产生对社会具有巨大价值的发明创造。
”因此对学生的好奇心和求知欲加以引导,才能让学生的学习更富创造性。
三、教学目标知识与技能:要求学生理解集合的含义,元素的特征;元素与集合的关系,熟练掌握常用数集的记号,以及掌握集合的表示方法。
过程与方法:教学过程中,应用自然语言与集合语言描述数学对象,与学生一道归纳出集合的含义,掌握从具体到抽象,从特殊到一般的研究方法。
情感态度价值观:使学生感受数学的简洁美与和谐统一美,培养学生独立思考、敢于创新、勇于探索的科学精神,激发学生学习数学的兴趣,从而实现情感、态度、价值观方面的培养目标。
四、教法学法由于本节课是高中数学的起始课,而且概念较多,所以在教学过程中我决定从身边实例出发,通过老师引导,小组讨论、自主探究等多种方式逐渐培养学生的抽象概括能力;为了达到预期的教学效果,在学法指导方面,使教学过程活动化、学习过程自主化、获取知识的过程体验化,将教学内容转化为学生自主探究的活动过程,体现新课程改革倡导的自主学习的理念。
五、教学过程(一)创设情境、导入新课。
我以老师走进教室关上门,教室内的所有人能否组成集合作为引入,这样生活化的场景让学生感到亲切,集中了注意力,同时抛出问题,为后继教学埋下伏笔,接着介绍集合论的创始人,德国数学家康托,这样处理既让学生了解了相关的数学背景,同时又提高了学生的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的含义与表示(说课稿)
各位老师,大家好!
我是08数学本科(2)班的xx,我今天说课的题目是集合的含义与表示.下面我先对教材进行分析.
一、教材分析
集合的含义与表示是选自高中新课标A版教材必修1第一章第一节内容。
在此之前,学生已经接触过集合的一些相关概念,如自然数的集合、有理数的集合.集合是一个基础性概念,是数学以至所有科学的基础,应用广泛. 集合是高考的对象,在高考中以选择题或填空题的形式出现,在高考中具有不可忽视的地位.本节内容能够培养学生的探索精神和数学素养.
二、教学目标
根据上述对教材的分析,我确定本节课的教学目标为
1. 知识与技能目标
理解集合的含义,集合的元素的特征,元素与集合的关系. 掌握集合的表示方法. 了解常用的数集.培养学生的抽象思维能力、分析能力、判断能力.
2. 过程与方法目标
应用自然语言与集合语言描述不同的具体问题,与学生一道归纳出集合的含义. 掌握从具体到抽象,从特殊到一般的研究方法.
3. 情感态度价值观目标
使得学生感受数学的简洁美与和谐统一美. 培养学生正确的、高尚的、唯物的价值观.培养学生独立思考、敢于创新、勇于探索的科学精神,激发同学们学习数学的兴趣.
三、重点和难点
重点:根据上述对教材的分析,确定的教学目标,我确定本节课的教学重点为:集合的含义,集合的表示方法.
难点:考虑到学生已有的知识基础与认知能力,我认为教学难点是集合的表示方法.
关键:学好本节课的关键是理解集合的含义,掌握集合的表示方法.
四、教学方法
1.学情分析
(1)生理特点:高中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.
(2)心理特点:高中学生虽有好奇,好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.
(3)认知障碍:有的学生遗忘了学过的知识,有的学生想象能力与归纳能力较差.
2.教法学法
根据上面的分析,从高中生的心理特点和认知水平出发,结合学生的实际情况与认知障碍,按照突出重点,突破难点,本节课采用学生广泛参与,师生共同探讨的启发式教学法.
五、教学过程(用描述性语言,不要具体化!)
根据以上分析,我对本节课的教学过程作如下安排:
1.引入课题
先引导学生回顾自然数的集合,有理数的集合,再提出问题:集合的含义是什么呢?
2.新课讲解
(1)分析自然数的集合,有理数的集合,不等式的解集,归纳出它们的共同特征:都是由一些确定的、互不相同的对象组成的整体.
(2)根据上面的分析与讨论,以及归纳出的共同特征,讲解集合的含义,元素与集合的关系,一些常见的数集.
(3)为了化解教学难点,我将结合具体的例子,讲解列举法与描述法.
(4)为了加强学生对集合的含义的理解,我将与学生一起归纳出集合的元素的特征.
(5)为了提高学生解决实际问题的能力,我将讲解三个不同题型、不同难度的例题.
3.课堂练习
为了使得学生掌握等差数列的定义与通项公式,提高解题技能,我将在课堂上布置3道不同类型、不同难度的练习题.
4.归纳小结
完成以上的教学内容后,我将组织学生对本节课的内容做一个总结,强调重点.
5.布置作业
为了巩固所学知识,激发学生的求知欲,我将布置3道不同类型、不同难度的作业题.
六、板书设计
各位老师,以上只是我的一种预设方案,但课堂千变万化,我将根据实际情况灵活掌握,随机发挥.本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!。