2003年考研数学三真题及答案

合集下载

北京科技大学历年数学分析考研真题汇编(2003-2017)

北京科技大学历年数学分析考研真题汇编(2003-2017)

数展开式;
(2)证明: 1 sin t
1 t

1n
n1
t
1 n

t
Байду номын сангаас1 n


t
不是
的整数倍;
(3)利用上面结果计算广义积分: sin x dx 。
0x
北京科技大学 2013 年硕士学位研究生入学考试试题
=============================================================================================================
0 ,求曲线C
距离 XOY
面最远的点和
最近的点。
7.(15 分)设 f x 在a, b 连续,在 a, b 可导,且 f x 0 。试证明:存在
, a, b ,使
f f


eb b

ea a
e

8.(15 分)设 f (x) 在区间[1,1]上连续且为奇函数, 区域 D 由曲线y 4 x 2 与
a
4a
(a,b), 使得
f ( ) f ( 2 ) 1 . 4(b a)
1
(2)求极限 lim x et d t x x 0
3. (20 分 )

f
(x )

g(x) x
ex
,
x 0 , 其 中 g(x) 有 二 阶 连 续 的 导 数 , 且
0,
试题编号: 613 试题名称:
数学分析
(共 2 页)
适用专业:
数学,统计学

2003年考研数学一试题及完全解析(Word版)

2003年考研数学一试题及完全解析(Word版)

2003年全国硕士研究生入学统一考试数学(一)试卷答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212cos sin lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-【评注】 本题属常规题型(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x . 【评注】 本题属基本题型。

历年数学三真题

历年数学三真题

2001年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设生产函数为Q AL K αβ=,其中Q 是产出量,L 是劳动投入量,K 是资本投入量,而,,A αβ均为大于零的参数,则当1Q =时K 关于L 的弹性为.(2)某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以i W 表示第i 年的工资总额(单位:百万元),则t W 满足的差分方程是.(3)设矩阵111111111111kk A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,且秩()3r A =,则k = . (4)设随机变量和的数学期望分别为2-和2,方差分别为1和4,而相关系数为0.5-,则根据切比雪夫不等式{6}P X Y +≥≤.(5)设总体X 服从正态分布2(0,2)N ,而1215,,,X X X L 是来自总体X 的简单随机样本,则随机变量221102211152()X X Y X X ++=++L L 服从 分布,参数为 .二、选择题(本题共5小题,每小题3分,满分15分.每题小给出的四个选项中,只有一个选项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设()f x 的导数在x a =处连续,又'()lim1x af x x a→=--,则 (A ) x a =是()f x 的极小值点. (B ) x a =是()f x 的极大值点. (C ) (,())a f a 是曲线()y f x =的拐点(D ) x a =不是()f x 的极值点, (,())a f a 也不是曲线()y f x =的拐点.(2)设0()()xg x f u du =⎰,其中21(1),01,2()1(1),12,3x x f x x x ⎧+≤<⎪⎪=⎨⎪-≤≤⎪⎩则()g x 在区间(0,2)内 (A ) 无界(B ) 递减(C ) 不连续(D ) 连续(3)设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 21000001001000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,其中A 可逆,则1B -等于 (A ) 112A PP -.(B ) 112P A P -.(C ) 112PP A -.(D ) 121P A P -.(4)设A 是n 阶矩阵,α是n 维列向量.若秩0T Aαα⎛⎫⎪⎝⎭=秩()A ,则线性方程组 (A ) AX α=必有无穷多解.(B ) AX α=必有唯一解. (C ) 00T AX y αα⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭仅有零解. (D ) 00TA X y αα⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭必有非零解.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于(A ) 1-.(B ) 0.(C ) 12.(D ) 1.三、(本题满分5分)设(,,)u f x y z =有连续的一阶偏导数,又函数()y y x =及()z z x =分别由下列两式确定:2xy e xy -=和0sin x txte dt t-=⎰, 求du dx.四、(本题满分6分)已知()f x 在(,)-∞+∞内可导,且lim '(),lim()lim[()(1)],xx x x x c f x e f x f x x c→∞→∞→∞+==---求c 的值.五、(本题满分6分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线,1y x y ==-及1x =围成的平面区域.六、(本题满分7分)已知抛物线2y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且此抛物线与x 轴围成的平面图形的面积为S .(1)问p 和q 为何值时,S 达到最大值?(2)求出此最大值.七、(本题满分6分)设()f x 在[0,1]上连续,在(0,1)内可导,且满足110(1)()(1),x k f k xe f x dx k -=>⎰证明至少存在一点(0,1)ξ∈,使得1'()(1)().f f ξξξ-=-八、(本题满分7分) 已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数),且(1)n ef n =,求函数项级数1()n n f x ∞=∑之和.九、(本题满分9分)设矩阵111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,112β⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.已知线性方程组Ax β=有解但不唯一,试求: (1)a 的值;(2)正交矩阵Q ,使TQ AQ 为对角矩阵.十、(本题满分8分)设A 为n 阶实对称矩阵,秩(),ij A n A =是()ij n n A a ⨯=中元素ij a 的代数余子式(,1,2,i j = ,)n L ,二次型1211(,,,)n nij n i j i j A f x x x x x A===∑∑L .(1)记12(,,,)T n X x x x =L ,把12(,,,)n f x x x L 写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2)二次型()T g X X AX =与()f X 的规范型是否相同?说明理由.十一、(本题满分8分)一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0,977.((2)0,977,φ=其中()x φ是标准正态分布函数.)十二、(本题满分8分)设随机变量X 和Y 的联合分布是正方形{(,)13,13}G x y x y ≤≤≤≤上的均匀分布,试求随机变量U X Y =-的概率密度()p u .2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)设常数12a≠,则21lim ln[](12)n n n na n a →∞-+=- .(2)交换积分次序111422104:(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3)设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=.已知A α与α线性相关,则a =.0 0.07 0.18 0.15 10.080.320.20则2X 和2Y 的协方差22(,)Cov X Y =.(5)设总体X 的概率密度为(),,(;)0,;x e x f x x θθθθ--⎧≥=⎨<⎩若若 而12,,,n X X X L 是来自总体X的简单随机样本,则未知参数θ的矩估计量为.二、选择题(本题共5小题,每小题3分,满分15分.每题小给出的四个选项中,只有一个选项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则(A ) 当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=.(B ) 对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C ) 当()()f a f b =时,存在(,)a b ξ∈,使'()0f ξ=.(D ) 存在(,)a b ξ∈,使()()'()()f b f a f b a ξ-=-.(2)设幂级数1nn n a x∞=∑与1nn n b x∞=∑13,则幂级数221nn n na xb ∞=∑的收敛半径为 (A ) 5.(B)3. (C )13. (D )15. (3)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x =(A ) 当n m >时仅有零解. (B ) 当n m >时必有非零解. (C ) 当m n >时仅有零解.(D ) 当m n >时必有非零解.(4)设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵.已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵1()T PAP -属于特征值λ的特征向量是(A ) 1P α-. (B )T P α.(C )P α.(D ) 1()TP α-.(5)设随机变量X 和Y 都服从标准正态分布,则 (A )X Y+服从正态分布.(B )22XY +服从分布2χ.(C )2X和2Y 都服从2χ分布.(D )22X Y 服从F 分布.三、(本题满分5分)求极限2[arctan(1)]lim.(1cos )xu x t dt du x x →+-⎰⎰四、(本题满分7分) 设函数(,,)uf x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin )sin x f x x =,求()x dx . 六、(本题满分7分) 设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0,y x a ==所围成的平面区域,其中0 2.a <<(1)试求1D 绕轴x 旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ;(2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数3693()1()3!6!9!(3)!nx x x x y x x n =++++++-∞<+∞L L 满足微分方程'''x y y y e ++=;(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分6分) 设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点(,)a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分) 设齐次线性方程组1231231230,0,0,n nn ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩L L L L L L 其中0,0,2ab n ≠≠≥.试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分) 设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A =.(1)求A 的全部特征值;(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.十一、(本题满分8分)假设随机变量U 在区间上[2,2]-服从均匀分布,随机变量1,1,1,1;U X U -≤-⎧=⎨>-⎩若若1,1,1, 1.U Y U -≤⎧=⎨>⎩若若试求(1)X 和Y 的联合概率分布;(2)()D XY +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()EX 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(= (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是 (A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C)),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ ] (3)设2nn n a a p +=,2nn na a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是 (A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C)321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ]三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n nn x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim 0=--→b x ae xxx ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→n n n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设Tα)0,2,1(1=, Tααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ] (12)设矩阵A=33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0xe x x x --+-→(16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ (17)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n nxn 在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ] (11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ ] (13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数. (Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2007年考研数学(三)真题(B) 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→ )A .1- .l n )B + 1C .1cD -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()lim x f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x →--存在,则'(0)f 存在(3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A10arcsin (,)xdy f x y dx ππ+⎰⎰ .B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( ) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()(0)_________n y =. (13)设(,)f u v 是二元可微函数,(,),y x z f x y =则z zy x y∂∂-=∂∂________. (14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为__________.(15)设距阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分) 设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ= (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)T λλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . (24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量 θ; (Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2008年考研数学(三)真题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at af x dx ⎰等于( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知(,)f x y =(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f 连续,若22(,)uvD f u v =⎰⎰,其中uv D 为图中阴影部分,则Fu∂=∂( )(A )2()vf u (B )2()v f u u(C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭则在实数域上域与A 合同矩阵为( ) ()A 2112-⎛⎫ ⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}m a x ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . (12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == . 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限201sin limln x x x x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂.(17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数, (1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵2221212n n a a a A a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,Tn X x x = ,()1,0,,0B = ,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解;(3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+,证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭;(2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =-. (1)证 T 是2μ的无偏估计量. (2)当0,1μσ==时 ,求DT .2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数3()sin x x f x xπ-=的可去间断点的个数为:( )()A .1()B . 2 ()C .3()D .无穷多个(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则( )()A .1a =,16b =- ()B . 1a =,16b =()C .1a =-,16b =- ()D .1a =-,16b = (3)使不等式1sin ln x tdt x t>⎰成立的x 的范围是( ) ()A . (0,1) ()B .(1,)2π ()C .(,)2ππ()D .(,)π+∞(4)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==则分块矩阵00A B ⎛⎫⎪⎝⎭的伴随矩阵为( ) ()A .**0320B A ⎛⎫ ⎪⎝⎭()B . **0230B A⎛⎫⎪⎝⎭()C .**0320A B⎛⎫⎪⎝⎭()D .**0230A B⎛⎫⎪⎝⎭(6)设,A P 均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则TQ AQ 为( )()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B . 110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫ ⎪⎪ ⎪⎝⎭(7)设事件A 与事件B 互不相容,则( )()A .()0P AB =()B . ()()()P AB P A P B = ()C .()1()P A P B =-()D .()1P A B ⋃=。

北京科技大学数学分析考研试题答案2003年

北京科技大学数学分析考研试题答案2003年
, . 八、证明 。 (,可以证明),
因为收敛,由(威尔斯-特拉斯判别法)知,得证. 十、解
2003年数学分析答案 一、解
(1) 但f(x)在x=0处无定义,因此x=0为f(x) 的可去间断点,也称为第一类间 断点.
(2) 在x=1处,因为, ,
左极限右极限,故x=1是f(x)的跳跃间断点,也是第一类间断点. (3) 在处,,
,左极限右极限,所以是f(x)的跳跃间断点,也是第一类间断点. 考查点:间断点的类型
1.可去间断点 若而f在点无定义,或有定义但则称为f的可去间断点. 2.跳跃间断点 若函数f在点的左右极限都存在,但则称点为函数f的 跳跃间断点. 3.可去间断点和跳跃间断点统称为第一类间断点.第一类间断点的 特点是函数在该点处的左、右极限都存在. 4.函数的所有其他形式的间断点,即使得函数至少有一侧极限不存 在的那些点,称为第二类间断点. 5.找间断点的方法 i) 使得函数无意义的点(即考查函数的定义域),比如使分母为0 的点,使中的点. i) 左右极限不相等的点,通常考虑,尤其是函数中含有的形式. iii) 考虑. 例1 解 但是f(x)在x=0处无定义,故x=0是函数的第一类间断点中的可去 间断点. 例2 , 解 x=0处不存在,故x=0是函数的第二类间断点. x=1处,但是函数在x=1处无定义,故x=1是函数的第一类间断点中 的跳跃间断点. 例3 是函数的第二类间断点. 二、(1) 证明 因为,所以,也就是说数列{}有界.令,则,所以f(x)单调 递增,所以,即{}是单调递增数列.由单调有界定理知数列{}收敛。 (2) 设,求解得x=1,即. 考查点:单调有界定理 在实数系中,有界的单调数列必有极限. 求极限的方法之一,设出把x直接带入题中等式,解方程。
三、证明 令,则f(x),g(x)在[a,b]上连续,在(a,b)内可导,由柯西中值定 理知,至少存在一点使得,整理即证. 考查点:柯西中值定理的应用

2003考研数三真题与解析

2003考研数三真题与解析

2003 年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上 .1 若x 0,(1) 设 f ( x)x cos ,其导函数在 x0 处连续,则.0, x若x 0,的取值范围是(2) 已知曲线 yx 3 3a 2 x b 与 x 轴相切,则 b 2 可以通过 a 表示为 b 2.(3) 设 a0 , f (x)g( x)a,若 0 x 1,0,其他, 而 D 表示全平面,则If ( x) g( y x)dxdy =.D(4) 设 n 维向量( a,0, ,0, a) T ,a0 ; E 为 n 阶单位矩阵,矩阵 AET ,B E1T,其中 A 的逆矩阵为 B ,则 a .a(5) 设随机变量 X 和 Y 的相关系数为 0.9, 若Z X0.4 ,则 Y 与 Z 的相关系数为.(6) 设总体 X 服从参数为2 的指数分布, X 1, X 2 , , X n 为来自总体 X 的简单随机样本,则当 n时, Y n1 n X i2 依概率收敛于 .n i 1二、选择题:本题共 6 小题,每小题 4 分,共 24 分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内 .(1) 设 f ( x) 为不恒等于零的奇函数,且f (0) 存在,则函数 g( x)f ( x) ()x(A) 在 x 0 处左极限不存在 . (B) 有跳跃间断点 x 0 .(C) 在 x 0 处右极限不存在 .(D) 有可去间断点 x0 .(2) 设可微函数 f ( x, y) 在点 (x 0 , y 0 ) 取得极小值,则下列结论正确的是( )(A) f (x 0 , y) 在 y y 0 处的导数等于零 . (B) f (x 0 , y) 在 y y 0 处的导数大于零 .(C)f ( x 0 , y) 在 y y 0 处的导数小于零 .(D)f (x 0 , y) 在 yy 0 处的导数不存在 .(3) 设 p na na n , q na na n, n 1,2,,则下列命题正确的是()(A) 若a n 条件收敛,则p n 与q n 都收敛 .n 1n 1n 1(B) 若a n 绝对收敛,则p n 与q n 都收敛 .n 1n 1n 1a b (C) 若a n 条件收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1(D) 若a n 绝对收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1a b b(4) 设三阶矩阵 Ab ab ,若 A 的伴随矩阵的秩为1,则必有 ()b b a(A)a b 或 a 2b0 . (B) a b 或 a 2b 0 . (C) a b 且 a 2b0 .(D)a b 且 a 2b 0 .(5) 设1 ,2 , , s 均为 n 维向量,下列结论不正确的是( )(A) 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有 k 11k2 2k s s 0 ,则1 ,2 , , s 线性无关 .(B) 若1, 2,,s 线性相关,则对于任意一组不全为零的数k 1 , k 2 , , k s ,都有k1 1k2 2k s s 0.(C) 1 ,2 ,,s 线性无关的充分必要条件是此向量组的秩为s.(D)1 ,2 ,, s 线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件: A 1 ={ 掷第一次出现正面} , A 2 ={ 掷第二次出现正面 } , A 3 ={ 正、反面各出现一次 } , A 4 ={ 正面出现两次 } ,则事件 ( )(A)A 1, A 2 , A 3 相互独立 . (B) A 2 , A 3 , A 4 相互独立 .(C)A 1 , A 2 , A 3 两两独立 .(D) A 2 , A 3 , A 4 两两独立 .三 、(本题满分 8 分)设 f ( x)1 1 1 , x [ 1 ,1) ,试补充定义 f (1)使得 f ( x) 在 [ 1,1] 上连xsin x(1 x) 22 续.四 、 (本题满分 8 分 )设 f (u, v) 具有二阶连续偏导数, 且满足2 f2 f1,又g( x, y) f [ xy,1(x 2 y 2 )] ,u 2v 222g2g求x 2y 2 .五 、 (本题满分 8 分 )计算二重积分Ie ( x 2 y 2 ) sin( x 2y 2 )dxdy.D其中积分区域 D{( x, y) x 2y 2}.六、 (本题满分 9 分 )求幂级数 1( 1) n x 2n ( x 1) 的和函数 f (x) 及其极值 .n 12n七、 (本题满分 9 分 )设 F ( x) f (x) g( x) , 其中函数 f (x), g (x) 在 ( ,) 内满足以下条件:f ( x) g( x) ,g ( x) f ( x) ,且 f (0)0 , f ( x)g (x)2e x .(1) 求 F ( x) 所满足的一阶微分方程;(2) 求出 F ( x) 的表达式 . 八、 (本题满分 8 分 )设函数f ( x) 在 [0, 3]上连续,在 (0, 3)内可导,且 f (0) f (1) f (2) 3, f (3)1 .试证:必存在(0,3) ,使 f ( ) 0.九、 (本题满分 13 分 )已知齐次线性方程组(a1 a1 x1 a1 x1a1 x1b)x1( a2a2 x2a2 x2a2 x2a3 x3a n x n0,b) x2a3 x3a n x n0,(a3b) x3a n x n0,a3 x3(a n b) x n0,n其中a i 0. 试讨论a1, a2,,a n和b满足何种关系时,i 1(1)方程组仅有零解;(2)方程组有非零解 . 在有非零解时,求此方程组的一个基础解系.十、 (本题满分13 分 )设二次型f (x1,x2,x3)XT222222(b0) ,AX ax1x2x3bx1x3中二次型的矩阵 A 的特征值之和为1,特征值之积为 -12.(1)求 a, b 的值;(2) 利用正交变换将二次型 f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、 (本题满分13分)设随机变量 X 的概率密度为1, 若x [1,8],f ( x)3x23其他 ;0,F(X ) 是 X 的分布函数.求随机变量 Y F (X ) 的分布函数.十二、 (本题满分13 分 )设随机变量X 与 Y 独立,其中X 的概率分布为X ~120.3,0.7而 Y 的概率密度为 f ( y) ,求随机变量 U X Y 的概率密度 g(u) .2003 年全国硕士研究生入学统一考试数学三试题解析一、填空题(1) 【答案】2【分析】无穷小量乘以有界函数的极限仍是无穷小量.【详解】是参变量, x 是函数f(x) 的自变量f ( x) f (0)x cos1lim x 1 cos1f(0)lim lim x0 ,x 0x0x0x x 0x要使该式成立,必须lim x10 ,即 1 .x 0当 x(,0)(0,) 时,f( x)x1 cos1x 2 sin1x x要使 f ( x)0 在x0 处连续,由函数连续的定义应有lim f( x)lim x1 cos 1x 2 sin1f (x) 0x0x 0x x由该式得出 2 .所以f( x) 在x0处右连续的充要条件是 2 .(2)【答案】 4a 6【详解】设曲线与x 轴相切的切点为( x0,0) ,则yx x00 .而 y 3x23a 2,有 3x023a2又在此点 y 坐标为0(切点在x轴上),于是有x033a2 x0 b 0,故b x033a2 x0x0 ( x023a2 ) ,所以22(322)224446.b x0x0aa a a(3)【答案】 a2【详解】本题积分区域为全平面,但只有当0 x 1,0 y x 1 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.If ( x) g( y=2dxdy= a21x 1212 dx dy a[( x 1) x]dx ax)dxdy a0x0 D0x 10y x 1(4) 【答案】 -1【详解】这里T为 n 阶矩阵,而T2a 2 为数,直接通过 AB E 进行计算并注意利用乘法的结合律即可.由题设,有AB (ET)(E 1T)=ET1 T1 TTaaaET1 T1 (T )T =ET1 T2aTaaaE( 1 2a 1 )TE ,1a1, a于是有1 2a0 ,即 2a 2a 1 0 ,解得 a1. 已知 a0 ,故 a1 .a2(5) 【答案】 0.9.【详解】利用方差和相关系数的性质D ( X a) DX , Cov( X ,Ya) Cov( X ,Y ) ,又因为 Z 仅是 X 减去一个常数,故方差不会变, Z 与 Y 的协方差也不会变,因此相关系数也不会变.Cov(Y, Z ) Cov (Y, X 0.4)E[(Y (X 0.4)] E(Y ) E( X0.4)E(XY) 0.4E(Y) E(Y) E( X )0.4E(Y)E(XY)E(Y )E( X ) Cov ( X ,Y ) ,且 D ZD X . 又 Cov (Y, Z ) Cov ( X , Y) ,所以Cov(Y, Z )Cov(X ,Y) XY0.9.D YD ZD XD Y(6) 【答案】1.2【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量X 1 , X 2 , , X n ,当方差一致有界时, 其算术平均值依概率收敛于其数学期望的算术平均值:1np1n).X iEX i (nn i 1n i 1【详解】本题中X 12, X 22 , , X n 2 满足大数定律的条件,且EX i 2 DX i(EX i ) 2 = 1(1)21 ,422因此根据大数定律有1 n 2依概率收敛于1 n2 1Y nX i EX i.n i 1n i 12二、选择题(1) 【答案】 (D)【详解】 方法 1:直接法:由f (x) 为奇函数知, f (0) 0 ;又由 g( x)f ( x) ,知g (x) 在xx 0 处没定义,显然 x 0 为 g( x) 的间断点,为了讨论函数g( x) 的连续性,求函数g(x) 在 x0 的极限.lim g ( x) lim f ( x) lim f (x) f (0) 导数的定义f (0)存在,x 0 x 0x x 0x故 x 0 为可去间断点.方法 2:间接法:取f ( x)x ,此时 g( x) =x1, x 0,可排除 (A) (B) (C)三项.x 0, x0,(2) 【答案】 ( A)【详解】 由函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微, 知函数 f ( x, y) 在点 ( x 0 , y 0 ) 处的两个偏导数都存在,又由二元函数极值的必要条件即得 f (x, y) 在点 (x 0 , y 0 ) 处的两个偏导数都等于零. 从而有df ( x 0 , y) fdyy y 0y( x, y ) ( x 0 , y 0 )选项 ( A) 正确.(3) 【答案】 ( B)【详解】由 p na n an, qna n an,知 0 pa , 0q a n2nnn2若a n 绝对收敛,则 a n 收敛 . 再由比较判别法,p n 与q n 都收敛,后者n 1n 1n 1n 1与 q n 仅差一个系数,故q n 也收敛,选 (B) .n 1n 1(4) 【答案】 (C)【分析】A 的伴随矩阵的秩为 1, 说明 A 的秩为 2,由此可确定a, b 应满足的条件.【详解】 方法 1:根据 A 与其伴随矩阵A 秩之间的关系n r Anr A *1 r A n 1 0 r An 1知秩 ( A )=2,它的秩小于它的列数或者行数,故有a b b 1 b b1 b b A b a b(a 2b) 1 a b(a 2b) 0 a b0 b b a1 b aa b( a 2b)( a b)2 0有 a 2b0 或 a b .当 a b 时,b b bAb b b b b b2 1 1 b b b3 1 10 0 00 0 0显然秩 A1 2 , 故必有 a b 且 a 2b0 . 应选 (C).n r An 方法 2:根据 A 与其伴随矩阵A 秩之间的关系, rA *1 r A n 1 ,0 r An 1知 r A *1 , r A2 . 对 A 作初等行变换a b b 2 1 13 1 1Ab a bb b aa b b b a a b 0 b aa b当 a b 时,从矩阵中可以看到A 的秩为 1,与秩 A2 ,不合题意 (排除 (A) 、 (B))故 ab ,这时ab bAb a a b 02 b a 3b aa bba 2b bb11 01b a0a b12 00110113故 a 2b0 ,且 ab 时,秩 ( A )=2 ,故应选.(5) 【答案】 (B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】 (A): 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有 k 11k 22k s s 0 ,则1 ,2 ,,s 必线性无关 .因 为 若1, 2,, s 线 性 相 关 , 则 存 在 一 组 不 全 为 零 的 数 k 1, k 2 , , k s , 使 得k 11k 22ks s0 ,矛盾. 可见 (A) 成立.(B):若 1, 2, , s 线 性 相 关 , 则 存 在 一 组 ( 而 不 是 对 任 意 一 组 不 全 为 零 的 ) 数k 1 , k 2 , ,k s ,都有 k 11k2 2k ss0. (B) 不成立.(C)1 ,2 ,, s 线性无关,则此向量组的秩为s ;反过来,若向量组1 ,2 ,, s 的秩为 s ,则1 ,2 ,, s 线性无关,因此 (C)成立.(D)1 ,2 ,, s 线性无关,则其任一部分组线性无关, 则其中任意两个向量线性无关,可见 (D) 也成立.综上所述,应选 (B).【评注】 原命题与其逆否命题是等价的 . 例如,原命题:若存在一组不全为零的数k 1 , k 2 , , k s ,使得 k 1 1k2 2k ss0成立,则 1,2 ,, s 线性相关.其逆否命题为:若对于任意一组不全为零的数k 1 , k 2 , , k s ,都有 k 11k 22ks s0 ,则 1 , 2 , , s 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6) 【答案】 C【分析】 (1) A, B 两事件相互独立的充要条件:P AB P A P B(2) A, B,C 三事件相互独立的充要条件:(i) A, B, C 两两相互独立;(ii) P ABCP AP BP C【详解】 方法 1:因为1 ,P A 21 A 31 1 P A 1, P ,P A 4,且2224P A 1A 21 ,P A 1 A 31 11 ,P A 1 A2 A 30 ,4,P A 2 A 3,P A 2 A 4444可见有P A 1A 2 P A 1 P A 2 ,P A 1A 3 P A 1 P A 3 ,P A 2A 3PA 2PA 3,PA1A2A3PA1PA2PA3,PA2A4PA2PA4.故 A1 , A2 , A3两两独立但不相互独立; A2 , A3 , A4不两两独立更不相互独立,应选(C) .方法 2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见 (A) 不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确 . 因此只要检查 (C) 和 (D)P A2 A3A4P0 PA2P A3111 P A4442故(D) 错,应选 (C).三【详解】为使函数 f ( x) 在1,1]上连续,只需求出函数 f (x) 在 x1的左极限 lim f( ) ,[x1x2然后定义 f (1) 为此极限值即可.lim f ( x)lim[11x 1]x 1x1x sin(1x)1lim[11]1lim(1 x) sin xsin x(1(1x)sin xx1x)x 1令 u 1 x ,则当 x 1 时, u0,所以lim f ( x)1lim u sin(1u)u sin(1u)x 1u01lim u sin(1u)1lim u sin(1u)u (sin cos u cos sin u)u sin u u 0u01lim u sin(1u)1limcos(1u)等2u2洛22u u0u01lim 2 sin(1u)10=1洛22=u0定义 f (1)1,从而有 lim f ( x)1f (1), f(x) 在 x1处连续.又 f ( x) 在[1,1) x12上连续,所以 f ( x) 在 [ 1,1] 上连续.2四【详解】由复合函数z f [( x, y), ( x, y)] 的求导法则,得g f( xy)f 1( x2y2 )f f 2y xx u x v x u vg f( xy)f 1 ( x2y2 )f f 2xy u y v x u y .v从而2 g y 2 f y 2 f x f x 2 f y 2 f xx2u2u v v u v v2y2 2 f2xy 2 f x2 2 f fu2u v v2v2 g x 2 f x 2 f y f y 2 f x 2 f yy2u2u v v u v v2x2 2 f2xy 2 f y2 2 f fu2u v v2v2 g 2 g2y22f( x2y2)2 f( x2y2)(2 f 2 f)=x2y2.所以x 2y2( x)2v2u2v2u五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设x r cos, y r sin,有I e ( x2y2) sin( x2y2 )dxdy e e ( x2 y2 ) sin( x2y2 ) dxdyD De2e r 2sin r2rdr e2e r2d2d sin0000记 A e t sin tdt ,则A e t sin tdt e t d cost e t cost000e1 e t d sin te1 e t sin t00因此A 1(1 e) , I e(1 e )2(1 e ).22t r 2r 2 dr 2 e e t sin tdt.e t costdte t sin tdt = e 1 A.六【分析】 (1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2)等比级数求和公式x n 1 x x2x n1( 1 x 1)n 01x【详解】先对和函数 f (x)1( 1)n x2n求导n 12nf ( x)( 1)n x2 n 1x( 1)n x2 n 2x( 1)n x2nn 1n 1n0x( x2 ) n x1xn 01x2 1 x2对上式两边从0 到x积分x(t )dt x t dt f ( x) f (0)1ln(1 x2 )f0 1t 202由 f (0) 1,得f ( x) 11ln(1 x2 )( x 1).2为了求极值,对 f ( x) 求一阶导数,12x xf ( x)1 x2 1 x22令 f (x)0 ,求得唯一驻点 x0.由于1x2,f(0)10f ( x)x2 )(12由极值的第二充分条件,得 f ( x) 在 x0 处取得极大值,且极大值为 f (0) 1.七【分析】题目要求 F ( x) 所满足的微分方程,而微分方程中含有其导函数,自然想到对 F ( x)求导,并将其余部分转化为用 F ( x) 表示,导出相应的微分方程,然后再求解相应的微分方程即可.【详解】 (1) 方法1:由F ( x) f (x)g (x) ,有F (x) f (x) g( x) f ( x) g (x) =g2( x) f 2 ( x)[ f ( x) g(x)]2 2 f ( x) g( x) = (2e x) 22F ( x)可见 F ( x) 所满足的一阶微分方程为F (x)2F ( x)4e2x .相应的初始条件为 F (0) f (0) g(0) 0 .方法 2:由F (x) f ( x) g (x),有F ( x) f ( x)g( x) f (x)g ( x) =[ f ( x)]2[g ( x)] 2[ f ( x)g ( x)] 2 2 f ( x)g ( x)又由f ()() 2x. 有f ( x)xf (x)g( x)g (x) f (x)g ( x)2e ,,,于是x g x eF ( x)4e2 x 2 f (x) g( x)4e2 x2F ( x)可见 F ( x) 所满足的一阶微分方程为F (x)2F ( x)4e2x .相应的初始条件为 F (0) f (0) g(0)0(2)题 (1) 得到F ( x)所满足的一阶微分方程,求 F (x) 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程dyP( x) y Q( x) 的通解为dxy e P ( x ) dxQ( x)eP ( x) dxCdx2dx2x2dx 2 x4 x 2 x 2 x所以()e [ 4e dx C]= e [ 4e dx C ]=e Ce .F x e将 F(0)0 代入上式,得 01C, C 1 .所以 F ( x)e2 x e 2 x.八【分析】题目要证存在(0,3) ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知 f (3) 1 ,只需要再证明存在一点 c[0,3) ,使得 f (c) 1 f (3) ,然后在 [ c,3] 上应用罗尔定理即可.条件 f (0) f (1) f (2) 3 等价于f (0)f (1) f ( 2)1.问题转化为1介于 f (x) 的最3值之间,最终用介值定理可以达到目的.【详解】方法 1:因为f ( x)在[0,3]上连续,所以 f ( x) 在[0,2]上连续,则在[0,2]上必有最大值 M 和最小值m(连续函数的最大值最小值定理),于是m f (0)M , m f (1)M , m f (2) M .三式相加3m f (0) f (1) f (2) 3M .从而f ( 0 ) f( 1 )f( 2 )m31 M .由介值定理知,至少存在一点c[0,2] ,使f (c)f (0) f (1) f (2)1.3因为 f ( c) f (3) 1 ,且f (x)在[c,3]上连续,在(c,3)内可导,由罗尔定理知,必存在(c,3) (0,3) ,使 f ( )0.方法2:由于f (0) f (1) f (2) 3,如果 f (0), f (1), f (2) 中至少有一个等于1,例如f (2) 1 ,则在区间[ 2, 3]上对 f ( x) 使用罗尔定理知,存在(0, 2)(0, 3)使f ( ) 0. 如果 f (0), f (1), f (2) 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间 (0, 2) 内至少存在一点使f () 1.在区间 [ ,3] 对 f ( x) 用罗尔定理知,存在( ,3) (0,3) ,使 f ( )0. 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的 (-1) 倍加到其余各行,即可计算出行列式的值.【详解】方程组的系数行列式a1 b a2a3a na1a2 b a3a nA a1a2a3 b a na1a2a3a n bnb a i a2a3a ni 1nb a i a2b a3a ni 1nb a i a2a3b a ni1nb a i a2a3a n bi11a2a3a n1a2b a3a nn(b a i ) 1a2a3 b a ni11a2a3a n b1a2a3a nn 0b00n0 = b n 1 (b(b a i ) 0 0b a i ).i1i1000bn(1)当 A0 ,即b0且 b a i0 时,秩A n ,方程组仅有零解.i1(2)当 b0时,A0,原方程组的同解方程组为a1 x1a2 x2a n x n0.n0 可知,a i(i由a i1,2,, n) 不全为零.不妨设 a10 ,得原方程组的一个基础解系i1a2,1,0,,0)T,(a3,0,1,,0)T,, na n,0,0,,1)T.1(2a1(a1a1n时, A0.这时 b0 ,原方程组的系数矩阵可化为(3)当 b a ii 1na1a i a2a3a ni1na1a2a i a3a ni1A na1a2a3a i a ni 1na1a2a3a n a ii 1a1na i a2a3a ni 1n na i a i00将第 1行的(1)倍i1i 1n n加到其余各行a i0a i0i1i 1n na i00a ii1i1n从第 2行到第 n行a1i 1a i a2a3a n同乘以1倍1100n1010a ii110010000将第 i行的 ( a )倍1100i加到第 1行,.i 2,3,, n10001001由此得原方程组的同解方程组为x2x1, x3x1,, x n x1.原方程组的一个基础解系为(1,1, ,1)T .十【分析】特征值之和等于 A 的主对角线上元素之和,特征值之积等于 A 的行列式,由此可求出 a, b 的值;进一步求出 A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要 ),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.a0b【详解】 (1)二次型f的矩阵为A020. 设 A 的特征值为i (i 1,2,3) ,由题设得b02123a11a22a33 a 2 ( 2) 1,a0b123| A |0204a 2b212.b02解得 a 1,b2.(2)求矩阵 A 的特征值,令102E A020(2)2(3) 0,202得矩阵 A 的特征值122, 3 3.对于基础解系10 2 122, 解齐次线性方程组 (2EA) x 0 ,系数矩阵为 00 ,得 2 041 (2,0,1)T ,2(0,1,0)T .4 02对于 33 ,解齐次线性方程组 ( 3E A)x 0 ,系数矩阵为 0 5 0 ,得2 01基础解系3(1,0, 2)T .由于 1,2 ,3 已是正交向量组,为了得到规范正交向量组,只需将1, 2, 3 单位化,由此得1( 2 ,0, 1 )T , 2 (0,1,0)T , 3 ( 1 ,0,2 )T .5 55 5令矩阵2155Q1230 1 0 ,1 0255则 Q 为正交矩阵.在正交变换 XQY 下,有2 0 0 Q T AQ0 2 0 ,0 03且二次型的标准形为f2 y 12 2 y 223y 32 .【评注】本题求 a, b 也可先计算特征多项式,再利用根与系数的关系确定:二次型 f 的矩阵 A 对应特征多项式为abE A0 2 0(2)[ 2(a 2) (2ab 2 )].b2设 A 的特征值为1 , 2,3,则12,2 31232 (a 2) 1, 1 2 3a 2,2 3(2a b 2 ). 由题设得 2(2a b 2 )12.解得 a 1,b2 .第一步求参数见 《数学复习指南》 P361 重要公式与结论 4,完全类似例题见 《文登数学全真模拟试卷》数学三 P47 第九题.十一【分析】先求出分布函数 F ( x) 的具体形式,从而可确定 YF(X) ,然后按定义求 Y的分布函数即可.注意应先确定 Y F (x) 的值域范围 (0F(X)1) ,再对 y 分段讨论.【详解】易见,当 x1时, F (x) 0; 当 x 8时, F ( x) 1.对于 x [1,8] ,有x1 3 x 1.F ( x)dt133 t 2设 G ( y) 是随机变量 YF (x) 的分布函数. 显然,当 y0 时, G ( y) =0;当 y 1时,G ( y) =1 . 对于 y [ 0,1) ,有G ( y) P{ Yy} P{F(X) y}P{3 X 1y}P{ X ( y 1)3} F [( y 1)3 ] y.于是, YF ( x) 的分布函数为0,若 y 0,G ( y)y, 若 0y1,1,若 y 1.十二 【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布, 一般用分布函数法转化为求相应的概率. 注意 X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度 g(u) ,一般应先求分布函数G (u) P{ U u}P{ X Y u} ,在计算概率的时候,应充分利用X 只有可能取值 X 1和 X2.全概率公式:如果事件A 1, , A n 构成一个完备事件组,即它们是两两互不相容,其和为(总体的样本空间 ) ;并且0,1,2, , .则对任一事件B 有nP B P( A i )P(B | A i ).i 1【详解】设 F ( y) 是 Y 的分布函数,由全概率公式,得U X Y 的分布函数G (u) P{ X Y u}P{X 1}P{X Y 0.3P{ X Y u X 0.3P{Y u 1 X u X 1}P{ X2}P{ X Y u X 2} 1}0.7P{X Y u X2}1}0.7P{Y u 2 X2} .由于 X 和 Y 相互独立,所以P{Y u 1} P{ Y u1X 1}, P{Y u 2}P{ Y u 2 X2}所以G (u)0.3P{ Y u1}0.7 P{ Y u 2}0.3F (u1)0.7 F (u2).由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度g (u)G (u)0.3F(u1) 0.7F (u2) 0.3 f (u 1)0.7 f (u2).。

2003年考研数学真题与答案

2003年考研数学真题与答案
c 2a − 3b
= 3(a + b + c)[(a − b)2 + (b − c)2 + (c − a)2 ] ,
但根据题设 (a − b)2 + (b − c)2 + (c − a)2 ≠ 0 ,故 a + b + c = 0.
充分性:由 a + b + c = 0 ,则从必要性的证明可知, A = 0 ,故秩 ( A) < 3.
⎢⎣ 1 −1 1 ⎥⎦
α Tα =
3
.
⎡ 1 −1 1 ⎤ ⎡ 1 ⎤
⎡1⎤
【详解】 由αα T = ⎢⎢−1 1 −1⎥⎥ = ⎢⎢−1⎥⎥[1 −1 1],知α = ⎢⎢−1⎥⎥ ,于是
⎢⎣ 1 −1 1 ⎥⎦ ⎢⎣ 1 ⎥⎦
⎢⎣ 1 ⎥⎦
⎡1⎤
α Tα = [1 −1 1]⎢⎢−1⎥⎥ = 3.
其中A的逆矩阵为B,则a= -1 .
【详解】 由题设,有
于是有
AB = (E − αα T )(E + 1 αα T ) a
= E − αα T + 1 αα T − 1 αα T ⋅αα T
a
a
= E − αα T + 1 αα T − 1 α (α Tα )α T
a
a
= E − αα T + 1 αα T − 2aαα T a
⎢⎣− 2 − 2 3 ⎥⎦
从而
⎡9 0 0⎤ B + 2E = ⎢⎢− 2 7 − 4⎥⎥ ,
⎢⎣− 2 − 2 5 ⎥⎦
λ−9 0 0 λE − (B + 2E) = 2 λ − 7 4 = (λ − 9)2 (λ − 3) ,

2003考研数学真题+答案

2003考研数学真题+答案

1 x 与 x 轴及直线 x e 所围成的三角形绕直线 x e 旋转所得的圆锥体积 e
1 e 2 ;曲线 y ln x 与 x 轴及直线 x e 所围成的图形绕直线 x e 旋转所得的旋 3
2003 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
即汽锤击打 3 次后,可将桩打进地下
1 r r 2 a
n 1
m.
„„ 6 分
(2) 用归纳法:设 xn 1 r ... r
a ,则
2003 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
k k „„ 8 分 kxdx ( x2n1 x 2n ) [ x2n1 (1 r r n1 )a 2 ] xn 2 2 2 n1 由于 Wn1 rWn r 2Wn1 r nW ,故得 xn )a2 r n a2 , 1 (1 r r Wn1
sin x
dx
„„ 6 分 „„ 8 分
(2) 由于 esin x e sin x 2,
2003 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
故由(1)得 xe
L

sin y
dy ye sin x dx (e sin x e sin x )dx 2 2
0

„„ 10 分
证法 2
(1) 根据格林公式, 得 xe
L
sin x

sin y
dy ye sin x dx (e sin y e sin x )d „„ 2 分

数学分析-2003年西安电子科技大学考研真题——陌凡vov

数学分析-2003年西安电子科技大学考研真题——陌凡vov

西安电子科技大学2003
一、(60分)填空题。

1.数列的上确界,下确界。

2.曲线与曲线在原点相切,则。

3.设有一个原函数,则。

4.级数的收敛区间为。

5.设,其中,具有二阶连续导数,则。

6.曲线与直线之间的最短距离为。

7.用关于的二次多项式在原点附近逼近函数,其差为的高阶无限小,则,,。

8.,其中。

9.在处得阶导数,其中。

10.设为椭圆,其周长记为,则。

二、(10分)设,,判断的奇偶性、单调性、凹凸性,求曲线的拐点
和水平渐近线,并画出图像。

三、(10分)计算曲面积分,其中为有向曲面,其法向量与轴正向的
夹角为锐角。

四、(10分)设在区间上可导且导函数有界,试讨论在区间上的有界
性和一致连续性。

五、(10分)设为正值递减数列,发散,求。

六、(10分)设在上二阶连续可导,证明存在使得。

七、(10分)设在上连续,在上可导,,,证明,并说明在什么情况
下等号成立。

八、(10分)给定函数序列,,问当在什么范围时,在上一致收敛。

九、(10分)设在点处存在,在点处连续,证明在点处可微。

十、(10分)设,求证:
(1)对任意自然数,方程在内有且仅有一根。

(2)设是的根,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Yn =
1 n 1 1 n 2 依概率收敛于 X EX i2 = . ∑ ∑ i 2 n i =1 n i =1
二、
选择题
(1)【答案】D 【解】 显然 x=0 为 g(x)的间断点,且由 f(x)为不恒等于零的奇函数知,f(0)=0. 于是有
lim g ( x) = lim
x →0 x →0
f ( x) f ( x) − f (0) = lim = f ′(0) 存在,故 x=0 为可去间 x → 0 x x−0
2

f ( x) =
1 1 1 1 + − , x ∈ [ ,1). πx sin πx π (1 − x) 2
试补充定义 f(1)使得 f(x)在 [ ,1] 上连续.
1 2
四 、 (本题满分 8 分)
1 2 ∂2 f ∂2 f 2 设 f(u,v)具有二阶连续偏导数, 且满足 又 g ( x, y ) = f [ xy, ( x − y )] , + 2 = 1, 2 2 ∂u ∂v
断点. (2)【答案】A 【 解 】 可 微 函 数 f(x,y) 在 点 ( x0 , y 0 ) 取 得 极 小 值 , 根 据 取 极 值 的 必 要 条 件 知
f y′ ( x 0 , y 0 ) = 0 ,即 f ( x0 , y ) 在 y = y 0 处的导数等于零, 故应选 A.
(3) 【答案】B 【解】 若
1 n 2 ∑ X i 依概率收敛于 ___. n i =1
二、选择题(本题共 6 小题,每小题 4 分,满分 24 分. 每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内) (1)设 f(x)为不恒等于零的奇函数,且 f ′(0) 存在,则函数 g ( x) = (A) 在 x=0 处左极限不存在. (C) 在 x=0 处右极限不存在.
一、填空题
(1)【答案】 λ > 2 【解】 当 λ > 1 时,有
1 1 ⎧ λ −1 ⎪λx cos + x λ − 2 sin , 若x ≠ 0, ′ f ( x) = ⎨ x x 若x = 0, ⎪ 0 , ⎩
显然当 λ > 2 时,有 lim f ′( x) = 0 = f ′(0) ,即其导函数在 x=0 处连续.源自∞n都收敛.
(B) 若
∑ a n 绝对收敛,则 ∑ p n 与 ∑ q n 都收敛. ∑ a n 条件收敛,则 ∑ p n 与 ∑ q n 敛散性都不定.
n =1 ∞ n =1 ∞ n =1 ∞
(C) 若
(D) 若
∑ a n 绝对收敛,则 ∑ p n 与 ∑ q n 敛散性都不定.
n =1 n =1 n =1
D
(4)设 n 维向量 α = (a,0, L,0, a) , a < 0 ;E 为 n 阶单位矩阵,矩阵
T
1 A = E − αα T , B = E + αα T , a
其中 A 的逆矩阵为 B,则 a=___. (5)设随机变量 X 和 Y 的相关系数为 0.9, 若 Z = X − 0.4 ,则 Y 与 Z 的相关系数为 ___. (6)设总体 X 服从参数为 2 的指数分布, X 1 , X 2 , L, X n 为来自总体 X 的简单随机样 本,则当 n → ∞ 时, Yn =
3 2
2 2
(2)已知曲线 y = x − 3a x + b 与 x 轴相切,则 b 可以通过 a 表示为 b = __ . ( 3 ) 设 a>0 , f ( x) = g ( x) = ⎨
⎧a, 若0 ≤ x ≤ 1, 而 D 表 示 全 平 面 , 则 ⎩0, 其他,
I = ∫∫ f ( x) g ( y − x)dxdy = ___.
f ( x) ( x

(B) 有跳跃间断点 x=0. (D) 有可去间断点 x=0.
(2)设可微函数 f(x,y)在点 ( x0 , y 0 ) 取得极小值,则下列结论正确的是( (A) f ( x 0 , y ) 在 y = y 0 处的导数等于零. (C)
)
(B) f ( x 0 , y ) 在 y = y 0 处的导数大于零. (D) f ( x 0 , y ) 在 y = y 0 处的导数不存在.
∑ a n 绝对收敛,即 ∑ an 收敛,当然也有级数 ∑ a n 收敛,再根据
n =1 n =1 n =1



pn =
an + an 2
, qn =
an − an 2
及收敛级数的运算性质知,
∑ p n 与 ∑ q n 都收
n =1 n =1


敛,故应选(B). (4)【答案】C 【解】 根据 A 与其伴随矩阵 A*秩之间的关系知,秩(A)=2,故有
n =1

x 2n ( x < 1) 的和函数 f(x)及其极值. 2n
七、 (本题满分 9 分) 设 F(x)=f(x)g(x), 其中函数 f(x) , g(x)在 (−∞,+∞) 内满足以下条件:
f ′( x) = g ( x) , g ′( x) = f ( x) ,且 f(0)=0, f ( x) + g ( x) = 2e x .
f ( x0 , y ) 在 y = y 0 处的导数小于零.
1
(3)设 p n =
an + an 2
, qn =
an − an 2
, n = 1,2, L ,则下列命题正确的是(
)
(A) 若
∑a
n =1 ∞ n =1 ∞

n
条件收敛,则
∑p
n =1 ∞ n =1 ∞

n

∑q
n =1 ∞ n =1 ∞
2003 年全国硕士研究生入学统一考试 数学三试题
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) (1)设 f ( x ) = ⎨
1 ⎧ λ ⎪ x cos , 若x ≠ 0, 其导函数在 x=0 处连续,则 λ 的取值范围是_. x 若 = 0 , x ⎪ ⎩ 0,
⎧(a1 + b) x1 + a 2 x 2 + a3 x3 + L + a n x n ⎪a x + ( a + b ) x + a x + L + a x 1 1 2 2 3 3 n n ⎪ ⎪ ⎨a1 x1 + a 2 x 2 + (a 3 + b) x3 + L + a n x n ⎪ LLLLLLLLLL ⎪ ⎪ ⎩a1 x1 + a 2 x 2 + a3 x3 + L + (a n + b) x n
F(x)是 X 的分布函数. 求随机变量 Y=F(X)的分布函数. 十二、 (本题满分 13 分) 设随机变量 X 与 Y 独立,其中 X 的概率分布为
2 ⎞ ⎛ 1 X ~⎜ ⎜ 0.3 0.7 ⎟ ⎟, ⎝ ⎠
而 Y 的概率密度为 f(y),求随机变量 U=X+Y 的概率密度 g(u).
2003 年全国硕士研究生入学统一考试 数学三答案
⎡a b b ⎤ ⎢ ⎥ (4)设三阶矩阵 A = b a b ,若 A 的伴随矩阵的秩为 1,则必有 ⎢ ⎥ ⎢ ⎥ b b a ⎣ ⎦
(A) a=b 或 a+2b=0. (C) a ≠ b 且 a+2b=0. (B) a=b 或 a+2b ≠ 0. (D) a ≠ b 且 a+2b ≠ 0.
(5)设 α 1 , α 2 , L, α s 均为 n 维向量,下列结论不正确的是 (A) 若对于任意一组不全为零的数 k1 , k 2 , L, k s ,都有 k1α 1 + k 2α 2 + L + k sα s ≠ 0 , 则 α 1 , α 2 , L, α s 线性无关. (B) 若 α 1 , α 2 , L, α s 线性相关,则对于任意一组不全为零的数 k1 , k 2 , L, k s ,都有
中二次型的矩阵 A 的特征值之和为 1,特征值之积为-12. (1) 求 a,b 的值; (2) 利用正交变换将二次型 f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、 (本题满分 13 分) 设随机变量 X 的概率密度为
⎧ 1 , 若x ∈ [1,8], ⎪ f ( x) = ⎨ 33 x 2 其他; ⎪ ⎩ 0,
(1) 求 F(x)所满足的一阶微分方程; (2) 求出 F(x)的表达式. 八、 (本题满分 8 分) 设函数 f(x)在[0,3]上连续,在(0,3)内可导,且 f(0)+f(1)+f(2)=3, f(3)=1.试证必存在
ξ ∈ (0,3) ,使 f ′(ξ ) = 0.
九、 (本题满分 13 分) 已知齐次线性方程组
k1α 1 + k 2α 2 + L + k sα s = 0.
(C) (D)
α 1 , α 2 ,L,α s 线性无关的充分必要条件是此向量组的秩为 s. α 1 , α 2 ,L,α s 线性无关的必要条件是其中任意两个向量线性无关.
(6)将一枚硬币独立地掷两次,引进事件: A1 ={掷第一次出现正面}, A2 ={掷第二次出现 正面}, A3 ={正、反面各出现一次}, A4 ={正面出现两次},则事件 (A) A1 , A2 , A3 相互独立. (C) A1 , A2 , A3 两两独立. 三 、 (本题满分 8 分) (B) A2 , A3 , A4 相互独立. (D) A2 , A3 , A4 两两独立.
cov(Y , Z ) DY DZ
相关文档
最新文档